TĂI LIỆU THAM KHẢO Tiếng Việt

Một phần của tài liệu Tích phân ngẫu nhiên ito và một số hướng mở rộng tích phân ngẫu nhiên ito (Trang 41 - 47)

Tiếng Việt

[1] Phạm Luận (2006), Phương phâp phđn tích phổ nguyín tử, Nhă xuất bản Bâch Khoa Hă Nội.

[2] Trần Thị Mai (2015), Nghiín cứu câc đặc điểm hĩa lí của nước ngầm tại hai

mặt cắt thuộc huyện Phúc Thọ, phía Nam sơng Hồng – Hă Nội gĩp phần giải thích nguyín nhđn hình thănh ơ nhiễm asen, Luận văn thạc sĩ khoa học Mơi

trường, Trường Đại học Khoa học Tự nhiín, Đại học Quốc gia Hă Nội.

[3] Nguyễn Thị Hoa Mai (2014), Nghiín cứu sự vận động của asen trong nước ngầm tại khu vực Nam Dư – Hoăng Mai – Hă Nội trín cơ sở phđn tích asen trong câc pha liín kết của trầm tích, Luận ân Tiến sĩ khoa học Hĩa học, Đại

học Khoa học Tự nhiín, Đại học Quốc gia Hă Nội.

[4] Nguyễn Thị Hoa Mai, Phạm Thị Kim Trang, Cao Thị Mai Trang, Nguyễn Thị Thu Trang, Nguyễn Như Khuí, Hoăng Thị Tươi, Phạm Hùng Việt vă Dieke

Postma (2012), “Tối ưu qui trình chiết asen trong trầm tích”, Tạp chí Khoa học

ĐHQGHN, Khoa học Tự nhiín vă Cơng nghệ, 28, pp. 239-246.

[5] Cao Mai Trang (2011), Nghiín cứu sựphđn bốcủa As trong tầng Holocene tại

Nam Dư, Hă Nội, Luận văn thạc sĩ khoa học Mơi trường, Trường Đại học

Khoa học Tự nhiín, Đại học Quốc gia Hă Nội.

[6] Phạm Thị Kim Trang (2007), “Hiện trạng ơ nhiễm thạch tín trong nước giếng khoan tại câc tỉnh đồng bằng sơng Hồng”, Tạp chí Nơng nghiệp vă Phât triển

nơng thơn, 12+13, pp. 148-152.

[7] QCVN 03-MT:2015/BTNMT

[8] QCVN 09-MT:2015/BTNMT

[9] UNICEF (2004), Ơ nhiễm thạch tín trong nguồn nước sinh hoạt ở Việt Nam –

Khâi quât tình hình vă câc biện phâp giảm thiểu cần thiết, UNICEF Việt Nam, Hă Nội.

Tiếng Anh

[10] Anawar H. M., Akai J., Sakugawa H. (2004), “Mobilization of arsenic form subsurface sediments by effect of bicarbonate ions in groundwater”,

Chemosphere, 54, pp. 753-762.

[11] Appello C. A. J, Van der Weiden M. J. J., Tournassat C., Charlet L. (2002), “Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic”, Environmental Science and Technology, 36 (14), pp. 3096-3103.

[12] Appelo C.A.J., Postma D. (2005), Geochemistry, groundwater and polution, 2nd edition, A.A. Balkema Publishers, The Netherlands.

[13] Appelo T. (2006), Arsenic in groundwater – A world problem, Proceedings Seminar Utrecht, Colophon, Netherlands.

[14] Banwart S., Davies S., Stumm W. (1989), “The role of Oxalate in accelerating the reductive dissolution of hematite (α-Fe2O3) by ascorbate”, Colloids and

surfaces, 39, pp. 303-309.

[15] Berg M., Con H. T., Chuyen T. N., Viet P. H, Schertenleib R., Giger W. (2001), “Arsenic Contamination of Groundwater and Drinking Water in Vietnam: A

Human Health Threat”, Evironmental Science & Technology, 35(13), pp. 2621-2626.

[16] Berg M., Stengel C., Trang P. T. K., Viet P. H., Sampson M. L., Leng M., Samreth S., Fredericks D. (2007), “Magnitude of arsenic pollution in the Mekong and Red River deltas – Cambodia and Vietnam”, Science of the Total

Environment, 372, pp. 413-425.

[17] Berg M., Trang P. T. K., Stengel C., Buschmann J., Viet P. H., Dan N. V., Giger W., Stuben D. (2008), “Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction”, Chemical Geology, 249, pp. 91-112.

[18] Chapelle F. H., McMahon P. B. (1991), “Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 reduction”, Journal of Hydrology, 127, pp. 85-108.

[19] Chapelle F. H., McMahon P. B., Dubrovsky N. M., Fujii R. F., Oaksford E. T., Vroblesky D. A. (1995), “Deducing the distribution of terminal electron- accepting processes in hydrologically diverse groundwater systems”, Water

resources research, 31 (2), pp. 359-371.

[20] Eiche E., Neumann T., Berg M., Weinman B., van Geen A., Norra S., Berner Z., Trang P. T. K, Viet P. H., Stuben D. (2008), “Geochemical processes underlying a sharp contract in groundwater arsenic concentration in a village on

Red River delta, Viet Nam”, Applied Geochemistry, 23, pp. 3143-3154.

[21] Fendorf S., Michael H. A., van Geen A. (2010), “Spatial and temporal variations of groundwater arsenic in South and Southeast Asia”, Science, 328, pp. 1123-1127.

[22] Galhardo C. X., Masini J. C. (2000), “Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry”, Analytica Chimica Acta, 417, pp. 191-200.

[23] Giral M., Zagury G. J., Deschínes L., Blouin J. P. (2010), “Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils”, Environmental Pollution, 158, pp. 1890-1898.

[24] Guo H., Yang S., Tang X., Li Y., Shen Z. (2008), “Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia”, Science of the total environment, 393, pp. 131-144.

[25] Hansen L. K. (1998), Biochemistry of methane in a shallow sandy aquifer, Ph.D Dissertation, Department of Geology and Geotechnical Engineering Technical University of Denmark and Geological Survey of Denmark and Greenland.

[26] Harvey C. F., Swartz C. H., Badruzzaman A. B. M., Keon-Blute N., Yu W., Ali M. A., Jay J., Beckie R., Neidan V., Brabander D., Oates P. M., Ashfaque K. N., Islam S., Hemond H. F., Ahmed M. F. (2002), “Arsenic mobility and groundwater extraction in Bangladesh”, Science, 298, pp. 1602-1606.

[27] Henke K. R. (2009), Arsenic: Environmental chemistry, Health threats and

Waste treatment, John Wiley & Sons, Inc., New Jersey, USA.

[28] Jakobsen R., Postma D. (1999), “Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark”, Geochimica et Cosmochimica Acta, 63 (1), pp. 137-151.

[29] Keon N. E., Swartz C. H., Brabander D. J., Harvey C., Hemond H. F. (2001), “Validation of an Arsenic sequential extraction method for evaluating mobility in sediments”, Environmental science technology, 35 (13), pp. 2778-2784.

[30] Kumar B., Suzuki K. T. (2002), “Arsenic round the world: a review”, Talanta, 58, pp. 201-235.

[31] Li Q. P., Zhang J., Millero F. J., Hansell D. A. (2005), “Continuous colorimetric determination of trace ammonium in seawater with a long-path waveguide capillary cell”, Marine chemistry, 96, pp. 73-85.

[32] Lovley D. R., Goodwin S. (1988), “Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments”,

Geochimica et Cosmochimica Acta, 52, pp. 2993-3003.

[33] Matera V., Le Hĩcho I., Laboudigue A., Thomas P., Tellier S., Astruc M. (2003), “A methodological approach for the identification of arsenic bearing phases in polluted soils”, Environmental Pollution, 26, pp. 51-64.

[34] Meng X., Wang W. (1998), “Speciation of arsenic by disposable cartridge”, In

Proceeding of the Third International conference of Arsenic Exposure and Health Effects, Society for Environmental Geochemistry and Health,

University of Colorado, Denver.

[35] Norrman J., Sparrenbom C. J., Berg M., Nhan D. D., Nhan P. Q., Rosqvist H., Jacks G., Sigvardsson E., Baric D., Moreskog J., Harms-Ringdahl P., Hoan N.

V. (2008), “Arsenic mobilization in a new well field for drinking water production along the Red River, Nam Du, Hanoi”, Applied Geochemistry, 23, pp. 3127-3142.

[36] Nĩvoa-Munoz J. C., G Queijeiro J. M., Blanco-Ward D., Âlvarez-Olleros C., García-Rodeja E., Mar tí nez-Cortizas A. (2007), “Arsenic fractionation in agricultural acid soils form NW Spain using a sequential extraction procedure”,

Science of the Total Environment, 378, pp. 18-22.

[37] Pedersen H. D., Postma D., Jakobsen R. (2006), “Release of arsenic associated with the reduction and transformation of iron oxides”, Geochimica et

Cosmochimica Acta, 70, pp. 4116-4129.

[38] Polizzoto M. L., Harvey C. F., Li G., Badruzzman B., Ali A., Newville M., Sutton S., Fendorf S. (2006), “Solid-phases and desorption processes of arsenic within Bangladesh sediments, Chemical geology, 228, pp. 97-111.

[39] Postma D., Larsen F., Hue N. T. M., Duc M. T., Viet P. H., Nhan P. Q., Jessen

S. (2007), “Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling”,

Geochemica et Cosmochimica Acta, 71, pp. 5054 – 5071.

[40] Postma D., Larsen F., Thai N. T., Trang P. T. K., Jakobsen R., Nhan P. Q., Long T. V., Viet P. H., Murray A. S. (2012), “Groundwater arsenic concentrations in Vietnam controlled by sediment age”, Nature Geosceince, 5, 656-661,

[41] Sailo L., Mahanta C. (2014), “Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls”, Environmental Monitoring

and Assessment, 186, pp. 6805-6820.

[42] Shankar S., Shanker U., Shikha (2014), “Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies

for Mitigation”, The Scientific World Journal, 2014, doi: 10.1155/2014/304524.

[43] Smedley P.L., D.G. Kinniburgh (2002), “A review of the source, behaviour and distribution of arsenic in netural weters”, Applied Geochemistry, 17, 517–568.

[44] Smedley P. L., Zhang M., Zhang G., Luo Z. (2003), “Mobilization of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner

Mongolia”, Applied geochemistry, 18, pp. 1453-1477.

[45] Stookey L. L. (1970), “Ferrozine – A new spectrophotometric reagent for iron”,

Analytical chemistry, 42 (7), pp. 779-781.

[46] Stumm W., Morgan J. J. (1981), Aquatic Chemistry, second ed. Wiley & Sons, New York.

[47] Swartz C. H., Blute N. K., Badruzzman B., Ali A., Brabander D., Jay J., Besancon J., Islam S., Hemond H. F., Harvey C. F. (2004), “Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization”, Geochimica et

Cosmochimica Acta, 68 (22), pp. 4539-4557.

[48] Wang S., Mulligan C. N. (2008), “Speciation and surface structure of inorganic arsenic in solid phases: A review”, Environmental International, 34, pp. 867-879.

[49] Welch A. H., Stollenwerk K. G. (2003), Arsenic in groundwater:

Geochemistry and Occurrence, Kluwer Academic, USA.

[50] Wenzel W. W., Kirchbaumer N., Prohaska T., Stingeder G., Lombi E., Adriano

D. C. (2001), “Arsenic fractionation in soils using an improved sequential extraction procedure”, Analytica Chemica Acta, 436, pp. 309 – 323.

[51] Wilde F. D., Radtke D.B. (1998), National field manual for the collection of

water-quality data: Field measurements, USGS–TWRI book 9, chapter A6.

[52] Winkel L. H. E., Trang P. K. T., Lan V. M., Stengel C., Amini M., Ha N. T., Viet P. H., Berg M. (2011), “Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century”,

Proceedings of the National Academy of Sciences of the United States of America, 108 (4), pp. 1246-1251.

Một phần của tài liệu Tích phân ngẫu nhiên ito và một số hướng mở rộng tích phân ngẫu nhiên ito (Trang 41 - 47)

Tải bản đầy đủ (DOCX)

(47 trang)
w