1.Bài toán xấp xỉ mô hình EX1
Đầu vào:
- Mô hình mờ được thể hiện như trong bảng 3.1 bao gồm các luật. - Trong đó gồm 2 biến ngôn ngữ (N, I) tương ứng với một ĐSGT.
Đầu ra: Giá trị đầu ra (N) tương ứng với giá trị đầu vào (I).
Thực hiện:
Bước 1) Xây dựng các ĐSGT AI cho các biến ngôn ngữ I, và AN cho biến ngôn ngữ N.
Cụ thể như sau: Xây dựng ĐSGT AI cho biến cường độ dòng điện I và ĐSGT AN cho biến tốc độ vòng quay N tương tự phương pháp trên.
Bước 2) Sử dụng các ánh xạ ngữ nghĩa định lượng Ivà Nchuyển đổi mô hình mờ về mô hình định lượng ngữ nghĩạ Như trong bảng 3.8
Bước 3) Xây dựng cấu trúc mạng nơron RBF dựa trên mô hình định lượng ngữ nghĩa với n mốc nội suy mạng.
Dựa vào mô hình định lượng ngữ nghĩa, xây dựng mạng nơron RBF gồm 1 đầu vào và 1 đầu ra, các điểm của mô hình định lượng ngữ nghĩa được sử dụng làm tâm và tập mẫu huấn luyện mạng. Mạng được huấn luyện theo thuật toán huấn luyện đề cập trong mục 2.4 với các tham số được chọn như sau:
r = 1, tốc độ học 0.1 sai số 0.00001.
Bước 4)Ứng với giá trị đầu vào thực hoặc mờ, xác định giá trị định lượng tương ứng, thực hiện phương pháp nội suy sử dụng mạng RBF và xác định đầu ra tương ứng của phép nội suy trên bề mặt mô hình định lượng ngữ nghĩa, việc giải định lượng đầu ra của phép nội suy sẽ cho kết quả lập luận.
Qua một số lần chạy thử trên Matlab, ta xác định được kết quả xấp xỉ mô hình EX1 của Cao-Kandel là:e(EX1) = 33.096833
Hình 3.5 là đường cong xấp xỉ mô hình EX1 của Cao-Kandel bằng phương pháp lập luận xấp xỉ dựa trên ĐSGT và phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng mạng nơron RBF.
Bảng 3.9. Sai số lớn nhất của các phương pháp trên mô hình EX1
Phƣơng pháp
Sai số lớn nhất của mô
hình EX1
Phương pháp của Cao-Kandel với toán tử kéo theo 5*
[11] 200
Phương pháp của Cao-Kandel với toán tử kéo theo 22*
[11] 300
Phương pháp của Cao-Kandel với toán tử kéo theo 8 [11] 300
Phương pháp của Cao-Kandel với toán tử kéo theo 25 [11] 300 Phương pháp của Cao-Kandel với toán tử kéo theo 31 [11] 300
Phương pháp lập luận xấp xỉ dựa trên ĐSGT 292
Phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng RBF 33.096833
Nhận xét:
- Từ hình 3.5 ta thấy phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng mạng RBF bám rất sát đường cong thực nghiệm của Cao - Kandel.
- Mặt khác từ bảng 3.9, sai số lớn nhất của mô hình xấp xỉ EX1 sử dụng phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng RBFlà nhỏ nhất.
2. Bài toán con lắc ngược
Đầu vào: Mô hình mờ như trong bảng 3.3 bao gồm các luật trong đó các biến ngôn ngữ x1, x2 và u tương ứng với một ĐSGT.
Đầu ra: Tính giá trị đầu ra u tương ứng với giá trị đầu vào x1, x2.
Thực hiện:
Bước 1) Xây dựng các ĐSGT AX1 , AX2 cho các biến ngôn ngữ x1, x2 và AU cho biến ngôn ngữ ụ
Bước 2) Sử dụng các ánh xạ ngữ nghĩa định lượng X1 , X2 và u chuyển đổi mô hình mờ về mô hình định lượng ngữ nghĩạ
Bước 3) Xây dựng cấu trúc mạng nơron RBF dựa trên mô hình định lượng ngữ nghĩa với n mốc nội suy mạng.
Dựa vào mô hình định lượng ngữ nghĩa, xây dựng mạng nơron RBF gồm 2 đầu vào và 1 đầu ra, các điểm của mô hình định lượng ngữ nghĩa được sử dụng làm tâm và tập mẫu huấn luyện mạng. Mạng được huấn luyện theo thuật toán huấn luyện đề cập trong mục 2.4 với các tham số được chọn như sau:
r = 1, tốc độ học 0.8 sai số 0.0001.
Bước 4)Ứng với giá trị đầu vào thực hoặc mờ, xác định giá trị định lượng tương ứng, thực hiện phương pháp nội suy sử dụng mạng RBF và xác định đầu ra tương ứng của phép nội suy trên bề mặt mô hình định lượng ngữ nghĩa, việc giải định lượng đầu ra của phép nội suy sẽ cho kết quả lập luận.
Qua một số lần chạy mô phỏng trên Matlab, ta xác định được sai số được so sánh như trên bảng 3.10
Bảng 3.10. Sai số các phương pháp của hệ con lắc ngược
Phƣơng pháp Sai số
Phương pháp lập luận xấp xỉ mờ dựa trên ĐSGT [10] 15.48957
Phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng RBF 4.643746
Nhận xét:
Với tiêu chuẩn so sánh này, qua đồ thị ở hình 3.6 ta thấy phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng mạng nơron RBFcho kết quả tốt hơn so với các phương pháp lập luận xấp xỉ dựa trên ĐSGT thông thường[10].
Hình 3.6.Đồ thị lỗi của hệ con lắc ngược
3.3. Tổng kết chƣơng 3
Chương 3 mô tả, cài đặt thử nghiệm một số bài toán mô hình mờ, áp dụng phương pháp lập luận xấp xỉ dựa trên ĐSGT và phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng mạng nơron RBF. Qua kết quả tính toán, so sánh và đánh giá thấy phương pháp lập luận xấp xỉ dựa trên ĐSGT sử dụng mạng nơronRBF cho sai số nhỏ và tốc độ học nhanh hơn so với phương pháp lập luận xấp xỉ dựa trên ĐSGT thông thường.
KẾT LUẬN
Nghiên cứu về lý thuyết tập mờ và logic mờ là một mảng rất rộng mà thế giới đang nghiên cứu và phát triển.Nếu tìm hiểu tất cả các vấn đề đó là lượng kiến thức khổng lồ. Trong luận văn học viên đã chú trọng nghiên cứu, trình bày những kiến thức cơ bản về tập mờ và lý thuyết logic mờ và mạng nơron RBF từ đó áp dụng vào phương pháp lập luận xấp xỉ dựa trên đại số gia tử giải một số bài toán mô hình mờ. Qua đó luận văn đã đạt được một số kết quả như sau:
Về lí thuyết:Luận văn tập trung nghiên cứu các kiến thức chung nhất về tập mờ, logic mờ, phương pháp lập luận xấp xỉ dựa trên đại số gia tử. Luận văn đã phân tích kỹ về phương pháp lập luận xấp xỉ dựa trên đại số gia tử.
Về ứng dụng:Luận văn đã phân tích và cài đặt mô hình một số bài toán mờ: Bài toán Cao Kandel và bài toán con lắc ngược.
Phạm vi và khả năng áp dụng:Luận văn là một tài liệu tham khảo tốt cho cho những người đang tham gia vào việc nghiên lý thuyết tập mờ và đại số gia tử.
Hƣớng nghiên cứu tiếp theo: Hoàn thiện và tối ưu phương pháp lập luận xấp xỉ dựa trên đại số gia tử, áp dụng mạng nơron RBF vào các bước lựa chọn của phương pháp.
TÀI LIỆU THAM KHẢO Ị Tiếng Việt
[1] Đặng Thị Thu Hiền (2009), Bài toán nội suy và mạng nơron RBF, Luận án tiến sĩ chuyên ngành khoa học máy tính cấp nhà nước, Trường Đại học công nghệ, Đại học quốc gia Hà Nộị
[2] Nguyễn Cát Hồ, Trần Thái Sơn (1995), ―Về khoảng cách giữa các giá trị của biến ngôn ngữ trong đại số gia tử‖, Tạp chí Tin học và Điều khiển học, Tập 11(1), tr.10–20.
[3] Nguyễn Cát Hồ (2006), ―Lý thuyết tập mờ và Công nghệ tính toán mềm‖, Tuyển tập các bài giảng về Trường thu hệ mờ và ứng dụng, in lần thứ 2, tr.51-92.
[4] Nguyễn Cát Hồ, Nguyễn Văn Long (2004), Cơ sở toán học của độ đo tính mờ của thông tin ngôn ngữ, Tạp chí Tin học và Điều khiển học, T.20(1) 64-72.
[5] Vũ Như Lân (2006), Điều khiển sử dụng logic mờ, mạng nơron và đại số gia tử, NXB Khoa học và kỹ thuật.
[6] Vũ Minh Lộc (2005), Phương pháp lập luận xấp xỉ và ứng dụng vào một số bài toán trợ giúp quyết định trong giáo dục, Luận án Tiến sỹ Toán học, Viện Công nghệ thông tin.
[7] Nguyễn Duy Minh (2012), Tiếp cận đại số gia tử trong điều khiển mờ, Luận án tiến sĩ toán học, Viện Công nghệ thông tin.
[8] Trần Thái Sơn, Nguyễn Thế Dũng (2005), ―Một phương pháp nội suy giải bài toán mô hình mờ trên cơ sở đại số gia tử‖, Tạp chí Tin học và Điều khiển học, Tập 21(3), tr. 248–260.
[9] Nguyễn Đình Thúc (2000), Trí tuệ nhân tạo Mạng nơron phương pháp và ứng dụng, NXB Giáo dục.
IỊ Tiếng Anh
[10]Ho N. C., Lan V. N., Viet L. X. (2008), ―Optimal hedge-algebras-based controller: Design and application‖, Fuzzy Sets and Systems, 159(8), pp. 968–989.
[11] Cao Z. and Kandel Ạ (1989), ―Applicability of some fuzzy implication operators‖, Fuzzy Sets and Systems , 31, pp. 151-186.
[12] Ross T. J. (2004), Fuzzy logic with Engineering Applications, Second Edition, International Edition. Mc Graw-Hill, Inc.
[13] Zadeh L. Ạ (1965), ―Fuzzy sets‖, Inform. and Control 8, pp. 338–353. [14] Zadeh L. Ạ (1975), ―The concept of linguistic variable and its