4.3.2.1. Biến lãi suất cho vay
Biến lãi suất cho vay có hệ số hồi quy là -0,611 và Sig.=0,005 cho thấy biến lãi suất cho vay tương quan có ý nghĩa và ngược chiều với khả năng trả nợ của KHDN;
hay nói cách khác, lãi suất cho vay càng tăng thì khả năng trả nợ của KHDN càng giảm. Kết quả này tương tự với nghiên cứu của Jiménez và Saurina (2003), Irakli Ninua (2008) và cùng đúng với kỳ vọng của học viên. Có thể nói rằng lãi suất cho vay tác động mạnh mẽ đến chi phí tài chính của doanh nghiệp. Lãi suất cho vay tăng, chi phí trả lãi hàng tháng, hàng quý cũng tăng theo, ảnh hưởng đến nguồn doanh thu và lợi nhuận dùng để trả nợ của doanh nghiệp. Bên cạnh đó, NHTM cũng có xu hướng áp dụng lãi suất cao đối với những KHDN được cho là có mức tín nhiệm thấp, hoạt động kinh doanh không ổn định hay thuộc các lĩnh vực kinh doanh nhiều rủi ro.
4.3.2.2. Biến tỷ lệ TSĐB trên tổng dư nợ
Với hệ số hồi quy là 0,016 và Sig.=0,001; biến tỷ lệ TSĐB trên tổng dư nợ cho thấy tương quan có ý nghĩa và cùng chiều với Biến độc lập; tức gia tăng tỷ lệ TSĐB sẽ làm tăng khả năng trả của KHDN. Điều này phù hợp với nghiên cứu của Jiménez và Saurina (2003), quan điểm về quản trị rủi ro của các NHTM và kỳ vọng của học viên. Thực tế tại các NHTM Việt Nam, các NHTM yêu cầu tăng cường các biện pháp đảm bảo để ràng buộc trách nhiệm về tài chính với KHDN, giảm thiểu tổn thất khi xảy ra rủi ro; qua đó làm tăng khả năng trả nợ của KHDN.
4.3.2.3. Biến quy mô của khách hàng doanh nghiệp
Biến quy mô KHDN có hệ số hồi quy là 1,686 và Sig.=0,001. Điều này cho thấy Biến quy mô KHDN có tương quan có ý nghĩa và cùng chiều với khả năng trả nợ của KHDN, hay KHDN có quy mô vừa và nhỏ có khả năng trả nợ cao và ngược lại. Trong thực tế, những KHDN vừa và nhỏ tại BIDV thường có dư nợ cho vay thấp và bị ràng buộc bảo đảm tối thiểu 100% dư nợ tại mọi thời điểm nên khả năng trả nợ tốt hơn. Trong khi đó, những KHDN có quy mô lớn tại BIDV thường là đối tượng được sự chào mời, lôi kéo bởi các NHTM khác. Do đó, BIDV thường áp dụng chính sách khách hàng ưu đãi hơn với các đối tượng này, nhất là việc giảm tỷ lệ TSĐB yêu cầu.
4.3.2.4. Biến thời gian quan hệ với ngân hàng
Qua kết quả hồi quy, biến thời gian quan hệ với ngân hàng có hệ số hồi quy là -0,041 và Sig.=0,004; cho thấy tồn tại tương quan có ý nghĩa với biến phụ thuộc. Điều này có nghĩa là thời gian quan hệ với ngân hàng càng dài sẽ làm giảm khả năng trả
nợ của KHDN. Điều này phù hợp với kỳ vọng ban đầu của học viên cũng như tình hình thực tế tại BIDV cũng như các NHTM tại Việt Nam. Thời gian quan hệ tín dụng phản ánh tương đối chính xác quan hệ giữa ngân hàng – khách hàng trong quan hệ tín dụng. Các KHDN có thời gian quan hệ dài thường là những khách hàng truyền thống và đem lại nhiều lợi ích nhiều cho ngân hàng. Do đó, các NHTM thường dựa nhiều vào những dữ liệu trong quá khứ cũng như thiếu khách quan trong quá trình xét duyệt hồ sơ qua đó có thể vô hình tạo điều kiện cho KHDN sử dụng vốn sai mục đích dẫn đến suy giảm khả năng trả nợ.
4.3.2.5. Biến lịch sử quan hệ tín dụng
Biến lịch sử quan hệ tín dụng có hệ số hồi quy là -1,784 và Sig.=0,001. Do đó, biến này có tương quan ngược chiều với biến phụ thuộc; nói cách khác, KHDN từng có phát sinh nợ quá hạn sẽ không có khả năng trả nợ và ngược lại. Kết quả này hoàn toàn phù hợp với thực tế cũng như kỳ vọng của học viên. Dữ liệu trong quá khứ không phải là tất cả nhưng ở một khía cạnh nào đó nó cũng thể hiện được những dấu hiệu có thể dẫn đến rủi ro trong tương lai. Một KHDN có lịch sử phát sinh nợ quá hạn trong quá khứ là dấu hiệu cho thấy KHDN đó có thể lại gặp khó khăn trong việc thanh toán các nghĩa vụ nợ đến hạn khi các yếu tố khác tác động làm ảnh hưởng đến hoạt động kinh doanh của doanh nghiệp.
4.3.2.6. Biến tỷ lệ Doanh thu thuần/Tổng tài sản
Sau khi thực hiện hồi quy, biến tỷ lệ Doanh thu thuần/Tổng tài sản có hệ số hồi quy là 2,646 và Sig.= 0,000; điều này thể hiện biến tỷ lệ Doanh thu thuần/Tổng tài sản tương quan có ý nghĩa và cùng chiều với khả năng trả nợ của KHDN. Cụ thể, tỷ lệ Doanh thu thuần/Tổng tài sản thì khả năng trả nợ của KHDN càng cao. Kết quả này phù hợp với nghiên cứu của Edward I. Altman (1968); Chiara Pederzoli, Costanza Torricelli (2010) và trùng khớp với kỳ vọng của học viên. Một doanh nghiệp sử dụng hiệu quả tài sản của mình nhằm tăng trưởng doanh thu là điều kiện cần để có thể làm gia tăng nguồn thu dùng để trả các khoản nợ đến hạn. Tuy nhiên, điều này có thể không hoàn toàn đúng với các KHDN chỉ có khoản vay trung dài hạn, bởi nguồn
trả nợ thường đến từ lợi nhuận và khấu hao – vốn phụ thuộc nhiều vào việc quản trị chi phí trong hoạt động kinh doanh, đầu tư tài sản.
Tóm tắt Chương 4
Chương 4 với nội dung chính là ứng dụng mô hình hồi quy Logit để tìm ra các yếu tố có tác động đến khả năng trả nợ của KHDN tại BIDV, qua đó đề xuất mô hình đánh giá khả năng trả nợ của KHDN và tạo tiền đề cho việc xây dựng những giải pháp nhằm tăng cường ứng dụng các mô hình định lượng nói chung và mô hình Logit nói riêng trong công tác đánh giá khả năng trả nợ của KHDN, quản trị rủi ro tín dụng tại BIDV và các NHTM Việt Nam
CHƯƠNG 5: KẾT LUẬN VÀ GIẢI PHÁP 5.1.Tóm tắt các kết quả nghiên cứu của đề tài
5.1.1. Những kết quả đạt được của nghiên cứu
- Luận văn đã tổng hợp và trình bày khái quát nền tảng lý thuyết về khả năng trả nợ và làm rõ mối quan hệ giữa khả năng trả nợ và rủi ro tín dụng của một khách hàng.
- Luận văn đã hệ thống những mô hình đánh giá khả năng trả nợ của KHDN được sử dụng trên thế giới; ưu và nhược điểm của từng loại mô hình. Từ đó, trình bày lý do lựa chọn Mô hình Logit và lược khảo một số nghiên cứu tiêu biểu đã ứng dụng Mô hình logit nhằm đo lường khả năng trả nợ của KHDN
- Dựa trên cơ sở các kết quả thực nghiệm từ các nghiên cứu trên thế giới, luận văn đã tập hợp và chọn lọc các yếu tố tiềm năng để đưa và mô hình nghiên cứu và tìm ra các những yếu tố có tác động đến khả năng trả nợ của KHDN tại BIDV.
- Đánh giá thực trạng công tác đánh giá khả năng trả nợ của KHDN tại BIDV thông qua phân tích hoạt động tín dụng doanh nghiệp tại BIDV; thành tựu và hạn chế của các phương pháp, công cụ đo lường khả năng trả nợ hiện đang được sử dụng trong tương quan với một số NHTM khác. Qua đó, tìm ra nguyên nhân gây nên những hạn chế trên.
- Kết quả từ mô hình nghiên cứu thông qua hồi quy Logit cho thấy lãi suất cho vay, tỷ lệ TSĐB trên tổng dư nợ, quy mô KHDN, thời gian quan hệ với ngân hàng, lịch sử quan hệ tín dụng và tỷ lệ doanh thu thuần trên tổng tài sản là các yếu tố có ảnh hưởng đến khả năng trả nợ của KHDN tại BIDV. Kết quả nghiên cứu của luận văn cũng đa phần khá tương đồng với một số nghiên cứu trên thế giới ở lĩnh vực này. Bên cạnh đó, luận văn cũng đã kết hợp phương pháp nghiên cứu định lượng nhằm hỗ trợ cho mô hình định tính thông qua việc phát triển các giả thuyết dựa vào các quan sát có được được cũng như tiến hành thống kê mô tả đặc điểm của dữ liệu từ 500 KHDN thu thập được.
- Từ kết quả nghiên cứu, luận văn cũng đề xuất một số giải pháp và khuyến nghị để nhằm ứng dụng mô hình Logit nhằm nâng cao hiệu quả công tác đánh giá khả năng trả nợ của KHDN tại BIDV cũng như các NHTM tại Việt Nam
5.1.2. Ý nghĩa khoa học của đề tài nghiên cứu
Nghiên cứu có một số ý nghĩa nhất định đối với lĩnh vực tài chính – ngân hàng nói chung và BIDV nói riêng, Thứ nhất, nghiên cứu đã làm rõ tầm quan trọng và mối quan hệ giữa công tác đánh giá khả năng trả nợ của KHDN đối với quản trị rủi ro tín dụng tại các NHTM. Bên cạnh đó, nghiên cứu đóng góp thêm dữ liệu tổng quan về các phương pháp đánh giá khả năng trả nợ của KHDN, nhất là các phương pháp định lượng, vốn dĩ rất cần được áp dụng nhiều hơn nữa trong ngành ngân hàng. Thứ hai, kết quả nghiên cứu cũng đã chỉ ra được các yếu tố có tác động đến khả năng trả nợ của KHDN tại BIDV. Từ đó, gợi mở cho các hướng nghiên cứu sử dụng thêm nhiều chỉ tiêu phi tài chính và yếu tố môi trường vĩ mô bên cạnh các chỉ tiêu tài chính sẵn có cũng như gia tăng hơn nữa số lượng quan sát để tăng độ chính xác khả năng dự báo của mô hình. Thứ ba, nghiên cứu kỳ vọng sẽ thúc đẩy hơn nữa công tác nghiên cứu khoa học tại từng Chi nhánh, Phòng ban của các NHTM để xây dựng những mô hình đánh giá cụ thể hơn, phù hợp cho tình hình thực tế của đơn vị mình, mang tính ứng dụng cao.
5.2.Giải pháp ứng dụng mô hình Logit nhằm đánh giá khả năng trả nợ của khách hàng doanh nghiệp tại BIDV khách hàng doanh nghiệp tại BIDV
5.2.1. Giải pháp nhằm nâng cao hiệu quả công tác đánh giá khả năng trả nợ của khách hàng doanh nghiệp tại BIDV khách hàng doanh nghiệp tại BIDV
Dựa vào kết quả mô hình nghiên cứu các yếu tố tác động đến khả năng trả nợ của KHDN tại BIDV, các nhà quản trị và điều hành có thể có những chính sách cụ thể như sau để từng bước nâng cao hiệu quả công tác đánh giá khả năng trả nợ của KHDN thông qua việc tác động có chủ đích đến các yếu tố trên, cụ thể như sau:
5.2.1.1. Đối với lãi suất cho vay
- Áp dụng cơ chế lãi suất linh hoạt, phù hợp với thị trường và chỉ đạo của NHNN vừa là công cụ để ngân hàng thu hút được khách hàng mới, duy trì khách hàng
hiện hữu, vừa là biện pháp để giảm thiểu nguy cơ mất khả năng trả nợ của khách hàng. Bên cạnh đó, mức lãi suất phù hợp với khả năng thanh toán của khách hàng sẽ đảm bảo hiệu quả của dự án/phương án sản xuất kinh doanh và mang lại doanh thu, lợi nhuận cho khách hàng
- Cán bộ quản lý khách hàng cần tư vấn rõ ràng, trung thực về chi phí trả nợ hàng tháng, đặc biệt là các chương trình lãi suất ngân hàng sẽ áp dụng cho khách hàng. Điều này sẽ giúp các KHDN chủ động hơn về nguồn thanh toán các nghĩa vụ định kỳ và giảm thiểu nguy cơ KHDN sử dụng vốn sai mục đích.
5.2.1.2. Đối với chính sách về tài sản đảm bảo
- Quan hệ tín dụng với khách hàng trên cơ sở tăng cường tối đa các biện pháp đảm bảo. Khuyến khích khách hàng cầm cố, thế chấp thêm tài sản nhất là các tài sản có pháp lý rõ ràng, tính thanh khoản cao nhằm nâng cao ý thức trả nợ của KHDN.
- Nâng cao công tác đào tạo trình độ của cán bộ thẩm định tài sản đảm bảo, thường xuyên kiểm tra thực tế và đánh giá lại giá trị tài sản đảm bảo để kịp thời đưa ra biện pháp quản lý trong trường hợp tài sản có rủi ro biến động giảm giá. - Xây dựng tiêu chí rõ ràng, cụ thể đối với những trường hợp trình vượt tỷ lệ cho
vay/TSĐB, tránh trường hợp cho vay tràn lan những phương án vượt tỷ lệ quy định, ảnh hưởng đến chất lượng tín dụng chung của ngân hàng.
5.2.1.3. Liên quan đến quy mô khách hàng
- Đẩy mạnh cho vay các doanh nghiệp vừa và nhỏ nhằm phân tán rủi ro, phù hợp với định hướng của Chính phủ và NHNN song song với việc sàng lọc, lựa chọn những khách hàng tốt, có khả năng tài chính lành mạnh
- Theo dõi chặt chẽ khoản vay của các KHDN có quy mô lớn, các tổng công ty tránh việc sử dụng vốn sai mục đích do các doanh nghiệp lớn thường có xu hướng mở rộng ngành nghề kinh doanh sang lĩnh vực khác khi phát sinh vốn nhàn rỗi tạm thời và chưa đến hạn trả nợ ngân hàng như. Việc đầu tư ngoài ngành, nhất là vào các lĩnh vực rủi ro như: đầu tư bất động sản, chứng khoán, cho vay nóng,… làm gia tăng rủi ro tín dụng
5.2.1.4. Về mối quan hệ giữa khách hàng – ngân hàng
- Nâng cao công tác tái thẩm định, XHTD và kiểm soát sau cho vay với khách hàng, không rút ngắn quy trình đối với các khách hàng truyền thống, hiện hữu bởi không doanh nghiệp nào có thể hoạt động kinh doanh tốt mãi mà phụ thuộc chu kỳ kinh doanh của bản thân doanh nghiệp đó.
- Xây dựng chính sách khách hàng phù hợp với các khách hàng hiện hữu và phù hợp với chu kỳ kinh doanh của khách hàng như:
Tăng cường quan hệ đối với KHDN có doanh thu và lợi nhuận tăng trưởng đều đặn, thanh toán nợ vay sòng phẳng
Duy trì quan hệ với những KHDN có kết quả hoạt động kinh doanh không ổn định, quy mô không tăng trưởng
Thoái lui quan hệ đối với những KHDN có dấu hiệu sụt giảm doanh thu, thường phát sinh nợ quá hạn, sử dụng vốn sai mục đích
5.2.1.5. Về lịch sử quan hệ của khách hàng
- Việc đánh giá uy tín trả nợ của KHDN cần phải được đánh giá qua nhiều nguồn thông tin bên cạnh thông tin do KHDN cung cấp (CIC, cơ quan thuế, đối tác của khách hàng, thị trường, Internet,…).
- Tránh trường hợp chỉ đánh giá thông tin qua bề mặt chứng từ dẫn đến từ chối những khách hàng tốt và đồng ý tài trợ những khách hàng không có uy tín thanh toán.
5.2.1.6. Về yếu tố doanh thu
- Đánh giá nguồn thu của khách hàng không chỉ đánh giá về mặt giá trị của nguồn thu nhập mà còn phải đánh giá cơ cấu nguồn thu nhập (chuyển khoản, nộp tiền mặt), tính ổn định và tính triển vọng của nguồn thu trong tương lai.
- Theo dõi chặt chẽ tình hình chuyển doanh thu của khách hàng, đảm bảo tỷ lệ doanh thu chuyển về tài khoản tương ứng với tỷ lệ tài trợ vốn.
- Khối thẩm định và tái thẩm định cần thường xuyên cập nhật các văn bản pháp luật có liên quan đến hoạt động tín dụng, hoạt động kinh tế để cập nhật thường
xuyên cho cán bộ nhân viên, thường xuyên tổ chức những buổi đào tạo chuyên môn, trao đổi kinh nghiệm.
- Thường xuyên tiến hành thẩm định thực tế tình hình sản xuất kinh doanh của KHDN, tránh việc đánh giá sơ sài, hình thức qua chứng từ do KHDN cung cấp.
5.2.2. Giải pháp ứng dụng mô hình Logit trong công tác đánh giá khả năng trả nợ của khách hàng doanh nghiệp tại BIDV nợ của khách hàng doanh nghiệp tại BIDV
- Đẩy mạnh công tác nghiên cứu về rủi ro tín dụng tại BIDV, từng Chi nhánh, phòng ban và bộ phận phải xây dựng mô hình đánh giá cụ thể, phù hợp với điều kiện thực tế của cơ quan mình.
- Xem xét đưa kết quả đánh giá khả năng trả nợ của KHDN theo Mô hình Logit vào làm tiêu chuẩn tham chiếu song song với kết quả XHTD nội bộ.