Giá trị sai số khi tối ưu hoá thay đổi số lần tính lặp, nhưng kết quả tối ưu sai số
giảm không đáng kể. Từ 3,79% giảm còn 3,77%.
Kết luận:Để dự báo cho Pmax, ta cần 22 phần tử cho lớp Nn và với 50 lần tính lặp sẽ
¾ Quá trình luyện mạng với 22 phần tử lớp ẩn 50 lần lặp
Hình 6.4: Quá trình huấn luyện mạng với 22 phần tử lớp ẩn 50 lần lặp
(b) Sau 50 vòng lặp
Hình 6.5: Sai số luyện mạng giảm sau mỗi chu kỳ tính lặp với thuật toán L - M
Sau một số chu kỳ luyện mạng, trả lời của mạng tốt hơn so với trạng thái ban đầu. Có thể thấy rằng, lỗi MSE được giảm sau một thời gian huấn luyện.
Qua thí nghiệm thấy rằng: Toàn bộ các khoảng vòng lặp hàm chất lượng mạng MSE giảm khá nhanh (Giảm nhanh khi độ lớn của vec tơ gradient lớn). Với thuật toán L-M điểm tìm kiếm không bị rơi vào vùng bằng phẳng của mặt lỗi, còn gọi là vùng hội tụ chậm.
Quá trình huấn luyện sẽ dừng lại khi số lần lặp được chọn là 50 lần. Sai số huấn luyện khi đó là 1,02.10-3.
Kết thúc quá trình huấn luyện ta thu được bộ trọng số mới gọi là bộ trọng số sau khi huấn luyện và dùng bộ trọng số này để dự báo. Bộ trọng số W sẽ là ma trận 22x16 và V sẽ là ma trận 22x1.
6.3.2 Xây dựng mạng dự báo đáy BĐPT
Tương tự như xây dựng MNR dự báo Pmax việc xây dựng MNR dựng báo Pmin
• Mạng MLP
• Giải pháp lan truyền ngược sai số
− Thuật toán Levenberg - Marquart
• Số phần tửđầu vào 16 phần tử:
− Pmax(d-1), Pmax(d-2), Pmax(d-3), Pmax(d-4), Pmax(d-5), Pmax(d- 6),Pmax(d-7), Pmin(d-1), Pmin(d-2), Pmin(d-3), Pmin(d-4), Pmin(d-5), Pmin(d-6),Pmin(d-7),Tmin(d),Tmax(d)
• Số phần tửđầu ra 1 phần tử:
− Pmin(d)
• Số phần tử lớp Nn
− Được xác định dựa trên phương pháp sai số trên tập kiểm tra là thấp nhất.
Cũng tương tự về cách thức huấn luyện mạng của Pmax, số nơ ron lớp Nn cho
Pmin cũng được tìm tương tự theo hai bước nhưđã thực hiện với Pmax.
Bước 1: Cố định số lần tính lặp là 200. Thay đổi số phần tử của lớp Nn từ 8 đến 28 phần tử. Kết quả tốt nhất là với 9 phần tử lớp Nn, ứng với sai số trung bình 3,34%.
Bước 2 (Tối ưu hoá sai số): Bước tiếp theo ta cốđịnh số phần tử lớp Nn, tiến hành thay đổi số lần tính lặp, kết quả với số lần tính lặp 15 cho sai số giảm xuống còn 3,29%.
Hình 6.7: Sai số phần trăm khi thay đổi số lần tính lặp với 9 phần tử cốđịnh
Giá trị sai số khi thay đổi khi tối ưu sai số từ3,34% giảm còn 3,29%.
Kết luận: Để dự báo cho Pmin, ta cần 9 phần tử cho lớp Nn và với 15 lần tính lặp sẽ cho sai số trên tập kiểm tra là bé nhất có thể.
Tương tự ta cũng xây dựng cho các mô hình còn lại (mô hình 1,2). Các mô hình sau khi được xây dựng sẽ tiến hành so sánh với nhau để lựa chọn mô hình tốt nhất.
6.4 Xây dựng mạng cho mô hình 1
Mô hình 1 bao gồm 14 thông số đầu vào bao gồm các phụ tải trong quá khứ ta cũng xây dựng hai mạng riêng biệt để dự báo đỉnh BĐPT và dự báo đáy BĐPT.
6.4.1 Các mô hình dự báo đỉnh BĐPT:
Các đầu vào cho mạng là: Pmax(d-1), Pmax(d-2), Pmax(d-3), Pmax(d-4), Pmax(d- 5), Pmax(d-6),Pmax(d-7), Pmin(d-1), Pmin(d-2), Pmin(d-3), Pmin(d-4), Pmin(d-5), Pmin(d-6), Pmin(d-7).
Cốđịnh số lần tính lặp là 200, ta thay đổi số nơ ron lớp Nn từ 8 đến 30 kết quả khi
Hình 6.8: Sai số phần trăm Pmax khi thay đổi số phần tử lớp ẩn với số lần tính lặp 200
Khi số lần tính lặp là 200, thay đổi số nơ ron lớp Nn từ 8 đến 30 ta sẽ có 23 mô hình nhỏ khác nhau tiến hành đánh giá sai số thì mô hình con với số nơ ron lớp Nn là 18 sẽ cho sai số là 3,75% thấp nhất.
6.4.2 Các mô hình dự báo đáy BĐPT:
Các đầu vào cho mạng là: Pmin(d-1), Pmin(d-2), Pmin(d-3), Pmin(d-4), Pmin(d-5), Pmin(d-6),Pmin(d-7), Pmax(d-1), Pmax(d-2), Pmax(d-3), Pmax(d-4), Pmax(d-5), Pmax(d-6),Pmax(d-7).
Cốđịnh số lần tính lặp là 200, ta thay đổi số nơ ron lớp Nn từ 8 đến 30 kết quả khi
Hình 6.9: Sai số phần trăm Pmin khi thay đổi số phần tử lớp ẩn với số lần tính lặp 200
Khi số lần tính lặp là 200, thay đổi số nơ ron lớp Nn từ 8 đến 30 ta sẽ có 23 mô hình nhỏ khác nhau tiến hành đánh giá sai số thì mô hình con với số nơ ron lớp Nn là 26 sẽ cho sai số là 3,96% thấp nhất.
6.5 Xây dựng mạng cho mô hình 2
Mô hình 2 bao gồm 15 thông sốđầu vào là các phụ tải trong quá khứ kết hợp với yếu tố thời tiết Tmin, ta cũng xây dựng hai mạng riêng biệt để dự báo đỉnh BĐPT và dự
báo đáy BĐPT.
6.5.1 Các mô hình dự báo đỉnh BĐPT
Các đầu vào cho mạng là: Pmax(d-1), Pmax(d-2), Pmax(d-3), Pmax(d-4), Pmax(d- 5), Pmax(d-6),Pmax(d-7), Pmin(d-1), Pmin(d-2), Pmin(d-3), Pmin(d-4), Pmin(d-5), Pmin(d-6),Pmin(d-7), Tmin.
Cũng với số lần tính lặp cốđịnh là 200, thay đổi số nơ ron lớp Nn từ 8 đến 30 ta sẽ
có 23 mô hình nhỏ khác nhau tiến hành đánh giá sai số thì mô hình con với số nơ ron lớp Nn là 22 sẽ cho sai số là 4,07% thấp nhất.
Hình 6.10: Sai số phần trăm Pmax khi thay đổi số phần tử lớp ẩn với số lần tính lặp 200
6.4.2 Các mô hình dự báo đáy BĐPT:
Các đầu vào cho mạng là: Pmin(d-1), Pmin(d-2), Pmin(d-3), Pmin(d-4), Pmin(d- 5), Pmin(d-6),Pmin(d-7), Pmax(d-1), Pmax(d-2), Pmax(d-3), Pmax(d-4), Pmax(d-5), Pmax(d-6),Pmax(d-7), Tmin.
Cốđịnh số lần tính lặp là 200, ta thay đổi số nơ ron lớp Nn từ 8 đến 30 kết quả khi
đánh giá sai số cho ở hình 6.11.
Khi số lần tính lặp là 200, thay đổi số nơ ron lớp Nn từ 8 đến 30 ta sẽ có 23 mô hình nhỏ khác nhau tiến hành đánh giá sai số thì mô hình con với số nơ ron lớp Nn là 9 sẽ cho sai số là 3,46% thấp nhất.
Tổng kết các mô hình trên:
Các mô hình 1,2,3 sau khi chọn được số nơ ron lớp Nn của mình sao cho sai số
trên tập kiểm tra là thấp nhất, bước tiếp theo sẽ so sánh và chọn mô hình có sai số thấp nhất.
Bảng 6.3 Tổng kết giá trị sai số của 3 mô hình chưa tối ưu hoá Mô hình 1: Không có yếu tố thời tiết Mô hình 2: Có yếu tố thời tiết Tmin Mô hình 3: Có yếu tố thời tiết Tmax và Tmin
Pmax Pmin Pmax Pmin Pmax Pmin 3,75% 3,96% 4,07% 3,46% 3,79% 3,34% Sai số Trung bình: 3,86% Sai số Trung bình: 3,77% Sai số Trung bình: 3,57%
Đồ thị trên biểu diễn 3 mô hình với sai số thấp nhất cho từng mô hình với số lần tính lặp không thay đổi là 200 lần.
Nhận xét:
Có thể nhận thấy rằng đối với mô hình 1: Sai số trung bình là cao nhất so với hai mô hình còn lại. Tuy nhiên mô hình này có sai sốPmax là thấp nhất trong các mô hình. Mặt khác mô hình này không sử dụng yếu tố thời tiết do đó sai số của mô hình không phụ thuộc vào sai số dự báo thời tiết.
Đối với mô hình 2: Sai số trung bình vẫn cao hơn so với mô hình 3, tuy nhiên mô hình này chỉ có 1 yếu tốđầu vào cần dự báo là nhiệt độ thấp nhất Tmin.
Đối với mô hình 3: Mô hình tốt nhất trong ba mô hình vì cho sai số trung bình
Pmax và Pmin thấp nhất, mô hình dự báo cho Pmin cũng có sai số thấp nhất trong cả
ba mô hình, tuy nhiên mô hình này đòi hỏi nhiều đầu vào nhất và yêu cầu phải có dự
báo nhiệt độ cao nhất và thấp nhất thật chính xác.
Qua phân tích trên luận văn sẽ chọn mô hình 3 sẽ là mô hình tốt nhất để làm mô hình dự báo Pmax và Pmin.
Kết luận: Để dự báo Pmax và Pmin ta sử dụng mô hình 3, ta cần 16 thông sốđầu vào cho cả hai mô hình, 22 nơ ron lớp Nn và 50 lần tính lặp cho mô hình dự báo Pmax sai số trung bình trên tập kiểm tra 3,77%; 9 nơ ron lớp Nn và 15 lần tính lặp cho mô hình dự báo Pmin sai số trung bình trên tập kiểm tra là 3,29%. Vậy sai số trung bình cả
Pmax và Pmin của mô hình 3 khi đã tối ưu là 3,53%.
6.6 Tiến hành dự báo Pmax Pmin và đánh giá sai số:
Đối với bài toán dự báo phụ tải Pmax và Pmin của hệ thống điện tỉnh Sóc Trăng, các giá trị Pmax nằm trong khoảng 37,5 – 55,9 MW ta sẽ chuNn hóa Pmax theo công thức 3.1 để giá trị Pmax nằm trong khoảng [0 1]. Tương tự ta cũng xét cho Pmin nằm trong khoảng 17,3 - 36,7 MW ta cũng chuNn hóa Pmin theo công thức 3.1 để Pmin
nằm trong khoảng [0 1] (các công đoạn này được xử lý tự động trong chương trình). Giá trị đầu ra của mạng sẽ được nhân với 55,9 để thu được giá trị thực dự báo cho
Pmax và nhân với 36,7 để thu được giá trị thực dự báo cho Pmin.
Sai số phần trăm của giá trị thật và giá trị dự báo được tính theo công thức sau: 100 . max max max % thucte P dubao P thucte P e − =
Ví dụ: Tháng cần dự báo giảđịnh là từ 1/7/2006 đến 31/7/2006, số liệu Pmax và Pmin
thật sựđược xây dựng như sau:
Bảng 6.3 Kết quả dự báo Pmax và Pmin từ 1/7 đến 31/7
Ngày Pmax thật Pmax dự báo Sai số % Pmin thật Pmin dự báo Sai số %
1/7/2006 43,8 43,356 1,0137 26,1 25,555 2,0881 2/7/2006 39,9 43,966 10,1905 25 25,644 2,5760 3/7/2006 41,6 42,056 1,0962 24,1 23,529 2,3693 4/7/2006 43,2 40,152 7,0556 25 24,297 2,8120 5/7/2006 42,1 43,75 3,9192 26,8 25,138 6,2015 6/7/2006 43,6 43,42 0,4128 26,7 25,991 2,6554 7/7/2006 46 43,627 5,1587 26,6 26,665 0,2444 8/7/2006 43,8 44,885 2,4772 28,6 27,438 4,0629 9/7/2006 42,6 44,609 4,7160 25,5 27,765 8,8824 10/7/2006 45,3 43,198 4,6402 29,7 25,951 12,6229 11/7/2006 45,5 45,375 0,2747 28,6 28,84 0,8392 12/7/2006 45,7 45,562 0,3020 28,2 28,498 1,0567 13/7/2006 44,8 45,098 0,6652 28,1 27,896 0,7260 14/7/2006 44,8 45,261 1,0290 27,3 28,385 3,9744
15/7/2006 43,9 45,168 2,8884 27,2 27,358 0,5809 16/7/2006 44,9 44,306 1,3229 28,1 26,804 4,6121 17/7/2006 46,1 45,153 2,0542 26,8 27,257 1,7052 18/7/2006 47,5 45,464 4,2863 27,1 27,505 1,4945 19/7/2006 48,7 46,486 4,5462 27,9 27,964 0,2294 20/7/2006 48,3 47,427 1,8075 29,4 28,684 2,4354 21/7/2006 45,6 47,835 4,9013 28,3 29,131 2,9364 22/7/2006 43,8 46,184 5,4429 27,4 27,089 1,1350 23/7/2006 45,9 45,042 1,8693 27,8 26,157 5,9101 24/7/2006 45,6 46,031 0,9452 26,6 27,279 2,5526 25/7/2006 45,3 45,806 1,1170 27,9 27,081 2,9355 26/7/2006 48,7 46,029 5,4846 29 27,925 3,7069 27/7/2006 46,6 47,777 2,5258 29,4 29,713 1,0646 28/7/2006 45,9 46,949 2,2854 28,2 28,528 1,1631 29/7/2006 46,9 46,093 1,7207 28,6 28,567 0,1154 30/7/2006 47,1 46,679 0,8938 27,5 28,6 4,0000 31/7/2006 44,3 46,434 4,8172 26 27,699 6,5346
Hình 6.13 Biểu đồ phụ tải dự báo và thực tế của Pmax và Pmin từ 1/7 đến 31/7 năm 2006
Giá trị sai số khi tính toán cho một khoảng thời gian dài (1 tháng) cho kết qua dự
báo chấp nhận được. Tuy vẫn có một số ngày dự báo có sai số cao, nhưng số ngày gây sai số lớn không nhiều. Đối với tháng 7 dự báo Pmax sai số trung bình 2,96% và Pmin
sai số trung bình 3,04%.
6.7 Dự báo phụ tải cho 24 giờ sau:
Nhưđã đề cập ở những phần trước cần giải quyết bài toán dự báo BĐPT theo hai bước: 1. Ước lượng hình dạng (đã chuNn hóa) của biểu đồ phụ tải ngày hôm sau; 2.
Ước lượng giá trị Pmax và Pmin của ngày hôm sau, từđó biến đổi tuyến tính hình dạng biểu đồ phụ tải chuNn hóa sao cho các giá trị min và max phù hợp với Pmin và Pmax
để có được biểu đồ phụ tải dự báo cho ngày hôm sau. Sau đây là các kết quả tính toán ví dụ cho các ngày trong một tuần (thứ hai đến chủ nhật) từ 13/2 đến 19/2 năm 2006. Bảng 6.5 Kết quả dự báo Pmax và Pmin từ 13/2 đến 19/2
Ngày Pmax thật Pmax dự báo Sai số % Pmin thật Pmin dự báo Sai số %
13/2/2006 39,4 40,008 1,5434 19,6 21,193 8,1295
15/2/2006 40,6 40,95 0,86147 20,8 21,08 1,345
16/2/2006 40,9 41,226 0,79828 21,9 21,614 1,3073
17/2/2006 40,3 41,652 3,3546 22 22,064 0,29076
18/2/2006 39,7 41,537 4,6266 22,8 22,127 2,9503
19/2/2006 38,7 41,343 6,8303 21,8 22,468 3,0622
Bảng 6.6 Kết quả dự báo phụ tải 24 giờ, ngày 13/2/2006, sai số trung bình 6,99%
Giờ Pmax thật MW Pmax dự báo MW Sai số tuyệt đối Sai số %
1 20,8 22,1465 -1,3465 6,473558 2 19,6 21,4874 -1,8874 9,629592 3 19,7 21,1974 -1,4974 7,601015 4 20,2 21,7096 -1,5096 7,473267 5 22,1 24,1827 -2,0827 9,423982 6 28,3 30,0036 -1,7036 6,019788 7 31 30,5057 0,4943 1,594516 8 28,9 30,3618 -1,4618 5,058131 9 33,7 31,1125 2,5875 7,678042 10 34 31,505 2,495 7,338235 11 31,4 28,5699 2,8301 9,013057 12 28,9 27,8062 1,0938 3,784775 13 29,5 28,1599 1,3401 4,542712 14 31,7 29,2026 2,4974 7,878233 15 34,6 31,1385 3,4615 10,00434 16 37,7 34,9176 2,7824 7,380371 17 35 33,5319 1,4681 4,194571 18 31,5 33,0651 -1,5651 4,968571 19 39,4 40,0081 -0,6081 1,543401 20 37,1 37,2086 -0,1086 0,292722
21 32,3 33,6175 -1,3175 4,078947
22 28 28,8126 -0,8126 2,902143
23 25,4 28,1599 -2,7599 10,86575
24 22,8 29,2026 -6,4026 28,08158
Bảng 6.7 Kết quả dự báo phụ tải 24 giờ, ngày 14/2/2006, sai số trung bình 4,5%
Giờ Pmax thật MW Pmax dự báo MW Sai số tuyệt đối Sai số %
1 21,1 21,5585 -0,4585 2,172986 2 20,5 20,7368 -0,2368 1,155122 3 20,4 20,6207 -0,2207 1,081863 4 20,5 20,897 -0,397 1,936585 5 22,8 23,3921 -0,5921 2,59693 6 28,2 30,2664 -2,0664 7,32766 7 31,6 31,2223 0,3777 1,195253 8 32 32,0606 -0,0606 0,189375 9 32,9 32,6842 0,2158 0,655927 10 33,6 33,4474 0,1526 0,454167 11 26,7 29,2254 -2,5254 9,458427 12 23,8 27,9025 -4,1025 17,23739 13 27 28,5694 -1,5694 5,812593 14 32,7 30,35 2,35 7,186544 15 35 32,8541 2,1459 6,131143 16 38,5 36,8768 1,6232 4,216104 17 34,6 34,7345 -0,1345 0,388728 18 31,6 31,9524 -0,3524 1,11519 19 40,7 40,3332 0,3668 0,901229 20 37,4 37,3968 0,0032 0,008556 21 33,7 33,7961 -0,0961 0,285163 22 28,8 28,6675 0,1325 0,460069
23 26,7 28,5694 -1,8694 7,001498
24 23,5 30,35 -6,85 29,14894
Bảng 6.8 Kết quả dự báo phụ tải 24 giờ, ngày 15/2/2006, sai số trung bình 6,67%
Giờ Pmax thật MW Pmax dự báo MW Sai số tuyệt đối Sai số %
1 22 22,1274 -0,1274 0,579091 2 21,7 21,28 0,42 1,935484 3 20,8 21,4948 -0,6948 3,340385 4 21,9 21,8017 0,0983 0,448858 5 24,1 23,9871 0,1129 0,468465 6 28,6 30,3481 -1,7481 6,112238 7 32,5 30,8318 1,6682 5,132923 8 33,4 30,3475 3,0525 9,139222 9 34,5 30,2051 4,2949 12,44899 10 35 31,2818 3,7182 10,62343 11 33,3 28,1008 5,1992 15,61321 12 30,9 26,1931 4,7069 15,23269 13 31 27,742 3,258 10,50968 14 32,9 29,482 3,418 10,38906 15 36,3 32,0476 4,2524 11,7146 16 39,5 36,6835 2,8165 7,13038 17 35,8 35,0734 0,7266 2,029609 18 34,5 34,1491 0,3509 1,017101 19 40,6 40,9498 -0,3498 0,861576 20 37,7 37,304 0,396 1,050398 21 35,5 33,2424 2,2576 6,359437 22 30,7 29,1933 1,5067 4,907818 23 27,8 27,742 0,058 0,208633 24 24 29,482 -5,482 22,84167
Bảng 6.9 Kết quả dự báo phụ tải 24 giờ, ngày 16/2/2006, sai số trung bình 4,49%
Giờ Pmax thật MW Pmax dự báo MW Sai số tuyệt đối Sai số %
1 22,4 22,3768 0,0232 0,103571 2 22,1 21,8128 0,2872 1,299548 3 21,9 21,7095 0,1905 0,869863 4 22,9 22,0355 0,8645 3,775109