[1] Tạ Ngọc Ánh (2012), Một số vấn đề về phương trình toán tử ngẫu nhiên, Luận án Tiến sĩ, ĐHKHTN, ĐHQGHN.
[2] Đặng Hùng Thắng (2006), Quá trình ngẫu nhiên và tính toán ngẫu nhiên, Nhà xuất bản Đại học Quốc gia Hà Nộị
[3] Nguyễn Duy Tiến, Vũ Việt Yên (2000), Lý thuyết xác suất, Nhà xuất bản Giáo dục.
Tiếng Anh
[4] Abbas M. (2005), Solution of random operator equations and inclu- sions, Ph.D. thesis, National College of Business Administration and Economics, Parkistan.
[5] Anh T. N. (2010), Random fixed points of probabilistic contractions and applications to random equations, Vietnam. J. Math 38, pp. 227–235.
[6] Aubin J. P., Frankowska H. (1990), Set-valued analysis, Birkh¨auser Boston.
[7] Banach S., (1922) Sur les operations dans les ensembles abstraits et leur application aux equations itegrales, Fundamenta Mathematicae 3, pp. 133–181.
[8] Beg Ị, Azam Ạ (1992), Fixed points of asymptotically regular mul- tivalued mappings, Austral. Math. Soc. (Ser. A) 53, pp. 313–326. [9] Beg Ị, Shahzad N. (1993), Random fixed points of random multival-
ued operators on Polish spaces, Nonlinear Anal. 20(7), pp. 835–847. [10] Beg Ị, Shahzad N. (1993), Random fixed points and approximations in random convex metric spaces, J. Appl. Math. Stochastic Anal. 6(3), pp. 237-246.
[11] Beg Ị, Shahzad N. (1994), Random fixed point theorems for non- expansive and contractive-type random operators on Banach spaces, J. Appl. Math. Stoc. Anal. 7(4), pp. 569–580.
[12] Beg Ị, Abbas M. (2006), Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. 315 (1), pp. 181–201.
[13] Beg Ị, Abbas M. (2008), Random fixed points of asymptotically non- expansive random operators on unbounded domains, Math. Slovaca 58 (6), pp. 755–762.
[14] Benavides T. D., Acedo G. L., Xu H. K. (1996), Random fixed points of set-valued operators,Proc. Amer. Math. Soc.124 (3), pp. 831–838. [15] Bharucha-Reid Ạ T. (1972), Random integral equations, Academic
[16] Bharucha-Reid Ạ T. (1976), Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82(5), pp. 641–657.
[17] Chandra M., Mishra S. N., Singh S. L., Rhoades B. Ẹ (1995), Co- incidence and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math. 26 (5), pp. 393–401. [18] Choudhury B. S. (1995), Convergence of a random iteration scheme to a random fixed point, J. Appl. Math. Stochastic Anal. 8 (2), pp. 139–142.
[19] Choudhury B. S. (2003), Random Mann iteration scheme, J. Appl. Math. Stochastic Anal. 16 (1), pp. 93–96.
[20] Chouhury B.S., Metiya N. (2010), The point of coincidence and com- mon fixed point for a pair mappings in cone metric spaces, Comput. Math. Appl., 60, pp. 1686-1695.
[21] Ciric L. B. (1993), On some nonexpansive type mappings and fixed points, Indian J. Pure Appl. Math. 24 (3), pp. 145–149.
[22] Ciric L. B., Ume J. S., Jesic S. N. (2006), On random coincidence and fixed points for a pair of multivalued and single-valued mappings, J. Inequal. Appl. (Hindawi Publ. Corp.) Article ID 81045, 2006, pp. 1–12.
[23] Deimling K. (1985), Nonlinear functional analysis, Springer-Verlag, Berlin.
[24] Engl H. W. (1978), Some random fixed point theorems for strict contractions and nonexpansive mappings, Nonlinear Anal. 2 (5), pp. 619–626.
[25] Fierro R., Martínez C., Morales C. H. (2011), Random coincidence theorems and applications, J. Math. Anal. Appl.378(1), pp. 213-219. [26] Hadzic Ọ, Pap Ẹ (2001), Fixed point theory in probabilistic metric
spaces, Kluwer Academic Publishers.
[27] Hadzic Ọ, Pap Ẹ, Budincevic M. (2005), A generalization of Tardiff’s fixed point theorem in probabilistic metric spaces and applications to random equations, Fuzzy Sets and Systems 156, pp. 124–134. [28] Hans Ọ (1957), Random fixed point theorems, Trans. 1st Prague
Conf. on Information Theory, Statist. Decision Function, and Ran- dom process (Liblice, 1956), Czechoslovak Acad. Scị, Prague, pp. 105–125.
[29] Himmelberg C. J. (1975), Measurable relations, Fund. Math.87, pp. 53–72.
[30] Itoh S. (1977), A random fixed point theorem for a multivalued con- traction mapping, Pacific J. Math. 68(1), pp. 85–90.
[31] Itoh S. (1979), Random fixed-point theorems with an application to random differential equations in Banach spacess, J. Math. Anal. Appl. 67(2), pp. 261–273.
[32] Joshi M. (1980), Nonlinear random equations with P-compact op- erators in Banach spaces, Indian J. Pure Appl. Math. 11 (6), pp. 791–799.
[33] Khan Ạ R., Hussain N. (2004), Random coincidence point theorem in Frechet spaces with applications, Stoch. Anal. Appl. 22 (1), pp. 155–167.
[34] Khan Ạ R., Akbar F., Sultana N., Hussain N. (2006), Coin- cidence and invariant approximation theorems for generalized f- nonexpansive multivalued mappings, Internat. J. Math. Math. Scị, Hindawi Publ. Corp., Article ID17637, 2006, pp. 1–18.
[35] Khan Ạ R., Domlo Ạ Ạ, Hussain N. (2007), Coincidences of Lipschitz-type hybrid maps and invariant approximation, Numer. Funct. Anal. Optim. 28 (9-10), pp. 1165–1177.
[36] Latif Ạ, Al-Mezel S. Ạ (2008), Coincidence and fixed point results for non-commuting maps, Tamkang J. Math. 39 (2), pp. 105–110. [37] Lin T. C. (1988), Random approximations and random fixed point
theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (4), pp. 1129–1135.
[38] Mann W. R. (1953), Mean value methods in iteration, Proc. Amer. Math. Soc. 4, pp. 506–510.
[39] Matkowski J. (1977), Fixed point theorems for mappings with a con- tractive iterate at a point, Proc. Amer. Math. Soc. 62 (3), pp. 344–348.
[40] Mustafa G. (2003), Some random coincidence point theorems, J. Math. Res. Exposition 23(3), pp. 413–421.
[41] Mustafa G., Noshi N. Ạ, Rashid Ạ (2005), Some random coin- cidence and random fixed point theorems for hybrid contractions, Lobachevskii J. Math. 18, pp. 139–149.
[42] Nashine H. K. (2010), Random coincidence points, invariant approxi- mation theorems, nonstarshaped domain and q-normed spaces, Ran- dom Oper. Stoch. Eqụ 18, pp. 165–183.
[43] Saha M., Anamika G. (2012), Random fixed point theorem on a ´Ciri´c- type contractive mapping and its consequence, Fixed Point Theory Appl. 2012:209..
[44] Shahzad N. (1995), Random fixed points and approximations, Ph.D. thesis, Quaid-I-Azam University, Islamabad Parkistan.
[45] Shahzad N., Latif Ạ (2000), A random coincidence point theorem, J. Math. Anal. Appl. 245, pp. 633–638.
[46] Shahzad N. (2000), Random approximations and random coinci- dence points of multivalued random maps with stochastic domain, New Zealand J. Math.,29(1), pp. 91–96.
[47] Shahzad N. (2004), Some general random coincidence point theorems, New Zealand J. Math. 33(1), pp. 95–103.
[48] Shahzad N. (2005), On random coincidence point theorems, Topol. Methods Nonlinear Anal.,25(2), pp. 391-400.
[49] Shahzad N., Hussain N. (2006), Deterministic and random coinci- dence point results for f-nonexpansive maps, J. Math. Anal. Appl., 323, pp. 1038–1046.
[50] Shahzad N. (2008), Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2), pp. 263– 271.
[51] Schauder J.(1930), Der Fixpunktsatz in Funktionalr¨aumen, Studia Math., 2, pp. 171–180.
[52] Singh S. L., Ha K. S., Cho Ỵ J. (1989), Coincidence and Fixed points of nonlinear hybrid contractions, Internat. J. Math. Math. Scị 12 (2), pp. 247–256.
[53] Spacek Ạ (1955), Zufallige Gleichungen (Random equations), Czechoslovak Math. J. 5 (4), pp. 462–466.
[54] Tan K. K., and Yuan X. Z. (1993), On deterministic and random fixed points, Proc. Amer. Math. Soc. 119(3), pp. 849–856.
[55] Thang D. H., Thinh N. (2004), Random bounded operators and their extension, Kyushu J. Math. 58, pp. 257–276.
[56] Thang D. H., Cuong T. M. (2009), Some procedures for extending random operators, Random Oper. Stoch. Eqụ 17(4), pp. 359–380. [57] Thang D. H., Anh T. N. (2010), On random equations and appli-
cations to random fixed point theorems, Random Oper. Stoch. Eqụ 18(3), pp. 199–212.
[58] Thang D. H., Anh T. N. (2010), Some results on random equations, Vietnam J. Math. 38 (1), pp. 35–44.
[59] Tsokos C. P., Padgett W. J. (1971), Random integral equations with applications to stochastic sytems. Lecture Notes in Mathematics, Vol. 233, Springer-Verlag, Berlin-New York.
[60] Xu H. K. (1990), Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (2), pp. 395–400.
[61] Xu H. K. (1993), A random fixed point theorem for multivalued nonexpansive operators in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 117 (4), pp. 1089–1092.
[62] Xu H. K., Beg Ị (1998), Measurability of fixed point sets of multi- valued random operators, J. Math. Anal. Appl. 225 (1), pp. 62–72.