Tiếng Việt

Một phần của tài liệu Điểm bất động và điểm trùng nhau của toán tử hoàn toàn ngẫu nhiên và ứng dụng (Trang 78)

[1] Tạ Ngọc Ánh (2012), Một số vấn đề về phương trình toán tử ngẫu nhiên, Luận án Tiến sĩ, ĐHKHTN, ĐHQGHN.

[2] Đặng Hùng Thắng (2006), Quá trình ngẫu nhiên và tính toán ngẫu nhiên, Nhà xuất bản Đại học Quốc gia Hà Nộị

[3] Nguyễn Duy Tiến, Vũ Việt Yên (2000), Lý thuyết xác suất, Nhà xuất bản Giáo dục.

Tiếng Anh

[4] Abbas M. (2005), Solution of random operator equations and inclu- sions, Ph.D. thesis, National College of Business Administration and Economics, Parkistan.

[5] Anh T. N. (2010), Random fixed points of probabilistic contractions and applications to random equations, Vietnam. J. Math 38, pp. 227–235.

[6] Aubin J. P., Frankowska H. (1990), Set-valued analysis, Birkh¨auser Boston.

[7] Banach S., (1922) Sur les operations dans les ensembles abstraits et leur application aux equations itegrales, Fundamenta Mathematicae 3, pp. 133–181.

[8] Beg Ị, Azam Ạ (1992), Fixed points of asymptotically regular mul- tivalued mappings, Austral. Math. Soc. (Ser. A) 53, pp. 313–326. [9] Beg Ị, Shahzad N. (1993), Random fixed points of random multival-

ued operators on Polish spaces, Nonlinear Anal. 20(7), pp. 835–847. [10] Beg Ị, Shahzad N. (1993), Random fixed points and approximations in random convex metric spaces, J. Appl. Math. Stochastic Anal. 6(3), pp. 237-246.

[11] Beg Ị, Shahzad N. (1994), Random fixed point theorems for non- expansive and contractive-type random operators on Banach spaces, J. Appl. Math. Stoc. Anal. 7(4), pp. 569–580.

[12] Beg Ị, Abbas M. (2006), Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. 315 (1), pp. 181–201.

[13] Beg Ị, Abbas M. (2008), Random fixed points of asymptotically non- expansive random operators on unbounded domains, Math. Slovaca 58 (6), pp. 755–762.

[14] Benavides T. D., Acedo G. L., Xu H. K. (1996), Random fixed points of set-valued operators,Proc. Amer. Math. Soc.124 (3), pp. 831–838. [15] Bharucha-Reid Ạ T. (1972), Random integral equations, Academic

[16] Bharucha-Reid Ạ T. (1976), Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82(5), pp. 641–657.

[17] Chandra M., Mishra S. N., Singh S. L., Rhoades B. Ẹ (1995), Co- incidence and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math. 26 (5), pp. 393–401. [18] Choudhury B. S. (1995), Convergence of a random iteration scheme to a random fixed point, J. Appl. Math. Stochastic Anal. 8 (2), pp. 139–142.

[19] Choudhury B. S. (2003), Random Mann iteration scheme, J. Appl. Math. Stochastic Anal. 16 (1), pp. 93–96.

[20] Chouhury B.S., Metiya N. (2010), The point of coincidence and com- mon fixed point for a pair mappings in cone metric spaces, Comput. Math. Appl., 60, pp. 1686-1695.

[21] Ciric L. B. (1993), On some nonexpansive type mappings and fixed points, Indian J. Pure Appl. Math. 24 (3), pp. 145–149.

[22] Ciric L. B., Ume J. S., Jesic S. N. (2006), On random coincidence and fixed points for a pair of multivalued and single-valued mappings, J. Inequal. Appl. (Hindawi Publ. Corp.) Article ID 81045, 2006, pp. 1–12.

[23] Deimling K. (1985), Nonlinear functional analysis, Springer-Verlag, Berlin.

[24] Engl H. W. (1978), Some random fixed point theorems for strict contractions and nonexpansive mappings, Nonlinear Anal. 2 (5), pp. 619–626.

[25] Fierro R., Martínez C., Morales C. H. (2011), Random coincidence theorems and applications, J. Math. Anal. Appl.378(1), pp. 213-219. [26] Hadzic Ọ, Pap Ẹ (2001), Fixed point theory in probabilistic metric

spaces, Kluwer Academic Publishers.

[27] Hadzic Ọ, Pap Ẹ, Budincevic M. (2005), A generalization of Tardiff’s fixed point theorem in probabilistic metric spaces and applications to random equations, Fuzzy Sets and Systems 156, pp. 124–134. [28] Hans Ọ (1957), Random fixed point theorems, Trans. 1st Prague

Conf. on Information Theory, Statist. Decision Function, and Ran- dom process (Liblice, 1956), Czechoslovak Acad. Scị, Prague, pp. 105–125.

[29] Himmelberg C. J. (1975), Measurable relations, Fund. Math.87, pp. 53–72.

[30] Itoh S. (1977), A random fixed point theorem for a multivalued con- traction mapping, Pacific J. Math. 68(1), pp. 85–90.

[31] Itoh S. (1979), Random fixed-point theorems with an application to random differential equations in Banach spacess, J. Math. Anal. Appl. 67(2), pp. 261–273.

[32] Joshi M. (1980), Nonlinear random equations with P-compact op- erators in Banach spaces, Indian J. Pure Appl. Math. 11 (6), pp. 791–799.

[33] Khan Ạ R., Hussain N. (2004), Random coincidence point theorem in Frechet spaces with applications, Stoch. Anal. Appl. 22 (1), pp. 155–167.

[34] Khan Ạ R., Akbar F., Sultana N., Hussain N. (2006), Coin- cidence and invariant approximation theorems for generalized f- nonexpansive multivalued mappings, Internat. J. Math. Math. Scị, Hindawi Publ. Corp., Article ID17637, 2006, pp. 1–18.

[35] Khan Ạ R., Domlo Ạ Ạ, Hussain N. (2007), Coincidences of Lipschitz-type hybrid maps and invariant approximation, Numer. Funct. Anal. Optim. 28 (9-10), pp. 1165–1177.

[36] Latif Ạ, Al-Mezel S. Ạ (2008), Coincidence and fixed point results for non-commuting maps, Tamkang J. Math. 39 (2), pp. 105–110. [37] Lin T. C. (1988), Random approximations and random fixed point

theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (4), pp. 1129–1135.

[38] Mann W. R. (1953), Mean value methods in iteration, Proc. Amer. Math. Soc. 4, pp. 506–510.

[39] Matkowski J. (1977), Fixed point theorems for mappings with a con- tractive iterate at a point, Proc. Amer. Math. Soc. 62 (3), pp. 344–348.

[40] Mustafa G. (2003), Some random coincidence point theorems, J. Math. Res. Exposition 23(3), pp. 413–421.

[41] Mustafa G., Noshi N. Ạ, Rashid Ạ (2005), Some random coin- cidence and random fixed point theorems for hybrid contractions, Lobachevskii J. Math. 18, pp. 139–149.

[42] Nashine H. K. (2010), Random coincidence points, invariant approxi- mation theorems, nonstarshaped domain and q-normed spaces, Ran- dom Oper. Stoch. Eqụ 18, pp. 165–183.

[43] Saha M., Anamika G. (2012), Random fixed point theorem on a ´Ciri´c- type contractive mapping and its consequence, Fixed Point Theory Appl. 2012:209..

[44] Shahzad N. (1995), Random fixed points and approximations, Ph.D. thesis, Quaid-I-Azam University, Islamabad Parkistan.

[45] Shahzad N., Latif Ạ (2000), A random coincidence point theorem, J. Math. Anal. Appl. 245, pp. 633–638.

[46] Shahzad N. (2000), Random approximations and random coinci- dence points of multivalued random maps with stochastic domain, New Zealand J. Math.,29(1), pp. 91–96.

[47] Shahzad N. (2004), Some general random coincidence point theorems, New Zealand J. Math. 33(1), pp. 95–103.

[48] Shahzad N. (2005), On random coincidence point theorems, Topol. Methods Nonlinear Anal.,25(2), pp. 391-400.

[49] Shahzad N., Hussain N. (2006), Deterministic and random coinci- dence point results for f-nonexpansive maps, J. Math. Anal. Appl., 323, pp. 1038–1046.

[50] Shahzad N. (2008), Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2), pp. 263– 271.

[51] Schauder J.(1930), Der Fixpunktsatz in Funktionalr¨aumen, Studia Math., 2, pp. 171–180.

[52] Singh S. L., Ha K. S., Cho Ỵ J. (1989), Coincidence and Fixed points of nonlinear hybrid contractions, Internat. J. Math. Math. Scị 12 (2), pp. 247–256.

[53] Spacek Ạ (1955), Zufallige Gleichungen (Random equations), Czechoslovak Math. J. 5 (4), pp. 462–466.

[54] Tan K. K., and Yuan X. Z. (1993), On deterministic and random fixed points, Proc. Amer. Math. Soc. 119(3), pp. 849–856.

[55] Thang D. H., Thinh N. (2004), Random bounded operators and their extension, Kyushu J. Math. 58, pp. 257–276.

[56] Thang D. H., Cuong T. M. (2009), Some procedures for extending random operators, Random Oper. Stoch. Eqụ 17(4), pp. 359–380. [57] Thang D. H., Anh T. N. (2010), On random equations and appli-

cations to random fixed point theorems, Random Oper. Stoch. Eqụ 18(3), pp. 199–212.

[58] Thang D. H., Anh T. N. (2010), Some results on random equations, Vietnam J. Math. 38 (1), pp. 35–44.

[59] Tsokos C. P., Padgett W. J. (1971), Random integral equations with applications to stochastic sytems. Lecture Notes in Mathematics, Vol. 233, Springer-Verlag, Berlin-New York.

[60] Xu H. K. (1990), Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (2), pp. 395–400.

[61] Xu H. K. (1993), A random fixed point theorem for multivalued nonexpansive operators in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 117 (4), pp. 1089–1092.

[62] Xu H. K., Beg Ị (1998), Measurability of fixed point sets of multi- valued random operators, J. Math. Anal. Appl. 225 (1), pp. 62–72.

Một phần của tài liệu Điểm bất động và điểm trùng nhau của toán tử hoàn toàn ngẫu nhiên và ứng dụng (Trang 78)

Tải bản đầy đủ (PDF)

(85 trang)