Ttfgiac ABCD la hinh chỉ nhat c6 tarn OA ^ OA = OB = OC = OD.

Một phần của tài liệu luyện giải đề trước kì thi vào lớp 10 ba miền bắc trung nam môn tóan (Trang 147)

. Dovay dÚcJng tron (K) tiep xuc trong vdi dtfdng

a) Ttfgiac ABCD la hinh chỉ nhat c6 tarn OA ^ OA = OB = OC = OD.

Ma ABD = 30" nen ADO = 60° =^ AAOD deu => AOD = 60"

AAOD deu, AG la diTcfng trung tuyen ^ nen cung la dúdng cao, dúcJng phan giac.

Ta c6: DAE = ^ D A O = 30", A E 1 B D . Suy ra AED = 60". Ta c6: AED = AOD (= 60") => TuT giac AOED noi tiep diTdc. b) AADF = AODF (c.g.c) => AF = OF, DOT = DAF = 90"

AABD vuong tai A => A D = ABtg ABD = 3ạtg30" = 73 a AADF vuong tai A => AF = ADtg ADF = V3 atg30" = a

V3a

•=2a AADE vuong tai A => A D = AEcos ADE => AE =

cos30"

AE 1 BD, OF 1 BD => AE // OF =^ Ttf gidc AFOE la hinh thang.

Do vay: SAFOE = - ( O F + AE)OT = i( a + 2a) — = (dvdt) 2 2 2 4

Cty TNHH MTV DWH Khang Vỉt

c) ABOJ = ABCJ (c.g.c) (OB = EC, BJ canh chung, OBJ = CBJ) => BOJ = BCJ . Ma BCJ = - B C D = 45". Vay IOJ = 45". => BOJ = BCJ . Ma BCJ = - B C D = 45". Vay IOJ = 45". ADKI can tai D, K D I = 30" ^ D K I = 75".

Ma D K H = KHC + K C H nen KHC = 75" - 30" = 45".

AKJC vuong can tai K KJC = 45" . . . Ta c6: KHC = KJC (= 45") => TiJ gidc KHJC noi tiep => JHC = JKC = 90" BJ 1 OC, JH 1 OC => B, J, H th^ng hang => H la trung diem OC.

Ta c 6: 0 H = i 0 C = i A D = - ^ .

2 2 2

AAOE = AADE (c.g.c) => AOE = ADE = 90" ; OE = DE = AEsinDAE = a

'V3af

AOEH vuong tai O => EH^ = OÊ + O t f => E t f = â +

CO

Vay EH = .

Nhan xet: a) De thay AED = AOD = 60".

b) Cac so" do 30", 60" giup nghl den // soluang gidc ciia goc nhon.

c) Nhan ra IOJ= 45", hai tarn giac BOJ, BCJ b^ng nhau giup c6 difdc dieu do ; B, J, H thing hang giup c6 H la trung diem OC. Tuf do tinh dtfcJc do dai do ; B, J, H thing hang giup c6 H la trung diem OC. Tuf do tinh dtfcJc do dai doan HE theo ạ

O i THI TUY^'N SINH VAO LdP 10 CHUY^N, '

§ TRl/dNG PHd THONG NANG KHIEU, DAI HQC QUÓC GIA, TP.HCM

NAM HOC 2010 - 2011

B & i l: ( 2 d i e m ) '

a) Cho a, b, c la cdc so thiTc th6a man dieu kien: a + b + c = á + b ' + c' = 0. ChiJng minh r^ng trong ba so a, b, c CO It nhát mot so bkng 0. ChiJng minh r^ng trong ba so a, b, c CO It nhát mot so bkng 0.

'x + y + z = 3 . X 4 •

xy + yz + zx = - 1 . , , x^ + y3 + + 6 = 3(x^ + + z^) , :

Bai 2: (2 diem) , . < < > • a) Giai phiTdng tnnh: (2x - 1)^ = 12\/x^ - x - 2 + 1. ; b) Giai he phUdng trinh:

Luy$n giJi 6i truflc ki thi vao \dp 10 ba miSn BJc, Trung. Nam mSn ToAn _ Nguyjn Dtfc Ta'n

b) Cho tam giac ABC vuong tai A va c6 dien tich bang 1. Chtfng minh rang ta

CO bat dang thu-c: 2 < BC < V2 (AB + AC - V2) ; ^ ,. v j

Bai 3: (2 diem) •... . ^ v--

a) Hay chi ra mot bo 4 so nguyen diTcfng phan biet ma tong ba so baft ki trong chung la mot so nguyen tọ

b) ChiJng minh rKng khong ton tai 5 só nguyen diTcfng phan biet sao cho tong ba so bat ki trong chung la mot so nguyen tọ

Bai 4: (2 diem) Cho dúdng tron tam O, ban kinh R va day cung BC co dinh c6 do dai BC = RN/3 . A la mot diem thay đi tren cung Idn BC. Goi E la diem doi xiJng cua B qua AC va F la diem doi xtfng cija C qua AB. Cac diTdng

tron ngoai tiép cac tam giac ABE va ACFc^t nhau tai K(K^ A).

a) Chtfng minh K luon thuoc mot dúdng tron có dinh.

b) Xac dinh vi tri cua diem A de tam giac KBC co dien tich Idn nhát va tim gia '*' tri Idn nhat do theo R.

c) Gpi H la giao diem cua BE va CF. Chtfng minh tam giac ABH dong dang vdi tam giac AKC va difdng th^ng AK luon di qua mot diem co dinh.

Bai 5: (2 diem) Trong mot giai bong da co 12 doi tham diT, thi dau vong tron

mot liTdt (hai doi bat ki thi dáu vdi nhau dung mot trSn).

a) ChiJug minh r^ng sau 4 vong dáu (moi dpi thi dáu dung 4 tran) luon tim dúdc ba dpi bong doi mot chiTa thi dáu vdi nhaụ

b) Khing dinh tren con dung khong néu moi dpi da thi dáu dung 5 tran ?

Một phần của tài liệu luyện giải đề trước kì thi vào lớp 10 ba miền bắc trung nam môn tóan (Trang 147)

Tải bản đầy đủ (PDF)

(189 trang)