phim du hành xuyên thời gian

Tình hình lạm phát ở Việt Nam trong thời gian qua – Dự báo trong thời gian tới và đề xuất một số giải pháp.doc

Tình hình lạm phát ở Việt Nam trong thời gian qua – Dự báo trong thời gian tới và đề xuất một số giải pháp.doc

... hình lạm phát ở Việt Nam trong thời gian qua – Dự báo trong thời gian tới và đề xuất một số giải pháp” cho khóa luận tốt nghiệp của mình. Khóa luận được hình thành trên cơ sở xác định: ♦ Mục ... làm gia tăng lạm phát trong thời gian qua. Thứ tư, luồng vốn nước ngoài vào Việt Nam gia tăng mạnh: bắt đầu từ cuối năm 2006 khi Việt Nam chính thức trở thành thành viên của Tổ chức thương ... lớn khoảng thời gian 1976 - 1986 lạm phát vẫn âm ỷ, như chờ cơ hội để bùng phát vào thời kỳ sau (1986 - 1988). Và quả thực, trong ba năm từ 1986 đến 1988, siêu lạm phát đã hoành hành ở nước...

Ngày tải lên: 27/10/2012, 16:54

72 6,5K 37
NGHIÊN CỨU HỆ ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FREERTOS

NGHIÊN CỨU HỆ ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FREERTOS

... Hệ Điều Hành Nhúng Thời Gian Thực PHẦN II: GIỚI THIỆU HĐH NHÚNG THỜI GIAN THỰC FREERTOS VÀ VI ĐIỀU KHIỂN ATMEGA 128 II.1 TỔNG QUAN HỆ ĐIỀU HÀNH II.1.1KHÁI NIỆM VỀ HỆ ĐIỀU HÀNH Hệ điều hành là ... Nguyên 39 Tìm Hiểu Hệ Điều Hành Nhúng Thời Gian Thực Hình 1.6 Bộ định thời 16 bit Bộ định thời 1 và 3 là bộ định thời 16 bit, bộ định thời 1 sử dụng 13 thanh ghi lien quan, còn bộ định thời 3 sử dụng ... ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FREERTOS Thành viên tham gia : Phạm Ngọc Thạch Ngô Hữu Hưng Giáo viên hướng dẫn : Phạm Quốc Thịnh Thái nguyên, tháng 11 năm 2009 Tìm Hiểu Hệ Điều Hành Nhúng Thời Gian...

Ngày tải lên: 26/04/2013, 14:13

49 1K 11
MÔ HÌNH CHUỖI THỜI GIAN MỜ  TRONG DỰ BÁO CHUỖI THỜI GIAN

MÔ HÌNH CHUỖI THỜI GIAN MỜ TRONG DỰ BÁO CHUỖI THỜI GIAN

... hình chuỗi thời gian mờ liên tiếp được đưa ra. Chen sử dụng mô hình bậc cao của chuỗi thời gian mờ để tính toán. Sah và Degtiarev thay vì dự báo chuỗi thời gian đã sử dụng chuỗi thời gian là hiệu ... của chuỗi thời gian. Huarng đã sử dụng các thông tin có trước trong tính chất của chuỗi thời gian như mức độ tăng giảm để đưa ra mô hình heuristic chuỗi thời gian mờ. Trong thời gian gần đây, ... các kiến thức cơ bản về chuỗi thời gian. Chương 2: trình bày Lý thuyết tập mờ và chuỗi thời gian mờ. Chương 3: trình bày một số thuật toán cơ bản trong chuỗi thời gian mờ và một số thuật toán...

Ngày tải lên: 27/04/2013, 11:57

68 1,4K 6
THỰC TRẠNG VẤN ĐỀ ĐỊNH GIÁ PHÁT HÀNH IPO THỜI GIAN QUA

THỰC TRẠNG VẤN ĐỀ ĐỊNH GIÁ PHÁT HÀNH IPO THỜI GIAN QUA

... http://www.cophieu68.com/chartindex.php?stcid=1 ) 2. Thực trạng phát hành IPO tại Việt Nam 2.1 Tổng quan về các đợt IPO thời gian qua Từ khi thị trường chứng khoán Việt Nam thành lập (năm 2000) cho đến năm 2004, thị trường ... giới chuyên gia và trở thành điểm sáng ấn tượng khi có tốc độ phục hồi nhanh nhất châu Á. Biểu đồ Vn index HOSE năm 2009 THỰC TRẠNG VẤN ĐỀ ĐỊNH GIÁ PHÁT HÀNH IPO THỜI GIAN QUA 1. Tổng quan thị ... Việt Nam thời gian qua. 1.1 Giai đoạn 2000-2005: Giai đoạn chập chững biết đi của thị trường chứng khoán. Sự ra đời của thị trường chứng khoán Việt Nam được đánh dấu bằng việc đưa vào vận hành Trung...

Ngày tải lên: 30/09/2013, 12:20

15 220 0
Tác động của nhà nước trong hoạt động du lịch trong thời gian qua

Tác động của nhà nước trong hoạt động du lịch trong thời gian qua

... về tổ chức không gian lãnh thổ du lịch. Quy hoạch tổng thể phát triển du lịch nước ta được chia thành 3 vùng du lịch với những chỉ tiêu và sản phẩm du lịch đặc trưng. *Vùng du lịch Bắc Bộ. ... và nhân dân đi du lịch trong và ngoài Tài nguyên du lịch nước ta được phân bố thành từng cụm, hình thành các môi trương du lịch điển hình trong toàn quốc. Mỗi vùng, mỗi khu vực du lịch có một ... trong đó ngành du lịch là nòng cốt, phải có nhận thức và tư duy mới nhằm huy động tối đa mọi nguồn lực của đất nước để “phát triển mạnh du lịch, hình thành ngành công nghiệp du lịch có quy...

Ngày tải lên: 08/10/2013, 20:20

21 311 0
Kỹ thuật khai phá dữ liệu chuỗi thời gian áp dụng trong dự báo chứng khoán

Kỹ thuật khai phá dữ liệu chuỗi thời gian áp dụng trong dự báo chứng khoán

... thời gian. Trong các dạng dữ liệu được phân tích thì dữ liệu chuỗi thời gian luôn thuộc tốp đầu về tính phổ biến. 2.2.1. Chuỗi thời gian thực 2.2.2. Thành phần xu hướng dài hạn 2.2.3. Thành ... phần xu hướng dài hạn 2.2.3. Thành phần mùa 2.2.4. Thành phần chu kỳ 2.2.5. Thành phần bất thường 2.3. Mô hình ARIMA cho dữ liệu chuỗi thời gian 2.3.1. Các công cụ áp dụng trong mô hình 2.3.1.1. ... phá dữ liệu chuỗi thời gian trong dự báo tài chính, chứng khoán Sử dụng phần mềm Eviews để thi hành chương trình. Đánh giá kết quả dự báo được. 5. Kết cấu luận văn Nội dung chính của luận...

Ngày tải lên: 13/02/2014, 12:55

26 1,2K 5
Đề tài: NGHIÊN CỨU HỆ ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FREERTOS pot

Đề tài: NGHIÊN CỨU HỆ ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FREERTOS pot

... Điều Hành Nhúng Thời Gian Thực II.3 GIỚI THIỆU HỆ ĐIỀU HÀNH NHÚNG THỜI GIAN THỰC FreeRTOS II.3.1 THỜI GIAN THỰC Hệ thời gian thực/ hệ nhúng được thiết kế sao cho các dáp ứng về mặt thời gian ... Tìm Hiểu Hệ Điều Hành Nhúng Thời Gian Thực Khoa Công Nghệ Thông Tin-Đại Học Thái Nguyên 42 Tìm Hiểu Hệ Điều Hành Nhúng Thời Gian Thực • Kiểm soát lỗi • Quản lý nhập xuất – ... đầu dùng cho bộ định thời 0, các bit còn lại dùng cho bộ định thời 1. Khoa Công Nghệ Thông Tin-Đại Học Thái Nguyên 22 Tìm Hiểu Hệ Điều Hành Nhúng Thời Gian Thực Hình 1.7. Hành vi của các chân...

Ngày tải lên: 21/03/2014, 01:20

49 770 1
Bài giảng sử dụng mô hình arima trong dự báo chuỗi thời gian  - cao hào thi

Bài giảng sử dụng mô hình arima trong dự báo chuỗi thời gian - cao hào thi

... TÍNH MÙA VỤ Tính mùa vụ là hành vi có tính chu kỳ của chuỗi thời gian trên cơ sở năm lịch Tính mùa vụ có thể được nhận ra dựa vào đồ thị SAC = f(t). Nếu cứ sau m thời đoạn thì SAC lại có giá ... src=" +du3 z8fGoyaVcdbUce6X7p8UBHrcXGZzoAAKh09HEAAFB6kpGZS2+e9dRXtX66Qw162o48IiKjp29Ezt/UNZ36AACAysR/8wEAoFQlIzOX3vyt2dMhIuGe1oPf+FTjoy30dAAAgMpEHwcAAKXNTDo89VWtn25Xg55wT2u4pzU2EL156no2MUt9AABA5SDjAACgHCxKOgIddYGOuthA9OapQZIOAABQIcg4AAAoH2bS4fA6mg5tN2OOQEddfGRq9Dc3kpE49QEAAOWNjAMAgHKTTcwO9n5y89T1pkPbAh11vma/r9mfmkzceP8qSQcAAChjzEkGAEB5MpOOC8dOxQYmREQNenc/u3/P8wd9LX5RKA8AAChD9HEAAFDOsonZwd6Pb54aajq0PdARUoPenU935VLZkY8GYlejYlAhAABQPujjAACg/JlJx0JPh111tB3p7H7pU4GOEAvNAgCAskEfBwAAlWJRT4dddbQd2SMio6eHIueHdU2nRAAAoKTxn24AAKgs8z0dH5k9HSIS7tl+8BufaXx0Gz0dAACgpPFVBgCASpRNZAZ7L5195b3R00Pmb8yko25vmBlJAQBAiSLjAACgcumaPnbm+rlXTy70dLQe3mnO00HSAQAASg4ZBwAAlU7L5AZ7Ly2MXjHn6SDpAAAAJYeMAwAAiMzN07Eo6eicTzqIOgAAQAkg4wAAAHcsmXTse+kpf0c9SQcAAChyZBwAAGCxe5IOZ9uRvSQdAACgyJFxAACApZlrr1w49lFsYFxIOgAAQNEj4wAAACvJJjJDvf0Xj51cIukAAAAoJmQcAADg/haSjtRkQuaTjj3PH/LUV1McAABQJMg4AADAamUTmctvnvr4+G/MpEMNVu1+9nGSDgAAUCTIOAAAwNokI7fnk44ZmUs6ekg6AADAliPjAAAADyIZuX3pzVOXj/+apAMAABQJMg4AAPDg5pOO0wVJx+N7nn/SHfBSHAAAsMnIOAAAwMO6N+nofOFTbUe6HF4XxQEAAJvGRgkAAMC6MJMOT72v/fe77aoz0NEY6GicuHjj5qkruqZTHwAAsNHo4wAAAOspGbl9/uh7g70XcqlZEQl1tR78xu82PrpDFIXiAACADUUfBwAAWG+GERsYj12NBNrrm5/cZVed4Z72us7mkY8+jl0dF8OgQgAAYCPQxwEAADaGYcQGxs8ffW/09ICI2FVn25Hu7pc+66mvoTYAAGAj0McBAAA2kmGMnbkWOX+9vntbuKfDrjp3P/tEanJm6Jfn07EE5QEAAOuIPg4AALDhdE0fO3P17Cu/mLh4XeYWXjncdqSbhVcAAMA6oo8DAABsEl3LD5+8HDk/1HRol7nqSqCjceLi9ZunruhanvoAAICHRB8HAADYVNlEZrD3/IVj78YGxkQk1LXt4Dd+r/HRdhZeAQAAD4mMAwAAbAEz6bh8/J9SkzMiEu7p6H7pc4GORpIOAADwwMg4AADAlklGpi+9edJMOlh4BQAAPCQyDgAAsMXMpOPK26dzqVlz4ZU9zx92B7xUBgAArAkZBwAAKArx4Vvnj7472Hs+l5pVg1WdL3ym7ch+h9dNZQAAwCqxrgoAACgahhEbGItdHQ+01zc/uTvQEQ50hCcuDt089QkLrwAAgPsi4wAAAEXGMGIDY8A7jzkAACAASURBVNNDkfrutnDPzlDX9lDX9hsf9EX7h8WgOgAAYFmMVQEAAMVI1/JjZwbOvvKziYtDItJ6eG/3S58PdISpDAAAWA4ZBwAAKF66lh8+eenCsXdiA6N21dl25OCe5z7j9ldRGQAAcC8yDgAAUOyyifRg77nLxz9MTcbVoK/zhd9p+/wBpiMFAACLkHEAAIDSkIxMX3rr/cHes7lUJtDRtO9rRxoP7rTYrFQGAACYyDgAAEDpMIzY1dHzx3pHT38iIuGeXV3/4nOB9rAoCrUBAABkHAAAoNQYxtjZK+de+3ls4KZddbUdObjnud/x1PspDAAAFY6MAwAAlCQtkx385W8vfLvXnKRj97Of3vnMk0zSAQBAJSPjAAAAJSybSF96670rb/9TLpXxNdfte/H3Wp7qYpIOAAAqExkHAAAoefHhifNHf3HjgwsiEuracfAbz9Tt3c4kHQAAVBoyDgAAUBYMI9o3dPaVExMXr4lI6+F93S/9nq8lRGEAAKgcZBwAAKB86Fp++OTFC8d+ER+J2lXXzqef2PP8Z92BKioDAEAlIOMAAADlJptIXznx0eXj75vTkXa+8Lm2I4/aXA4qAwBAeSPjAAAA5SkZmbr01q8Ge8/kUplAR9P+l7/Y+OguJukAAKCM2SgBAAAoW4YRG7g5PTRe390e7nkk3PNIXee2kY/6YgPD1AYAgPJDHwcAAChzupYfO/PJuVd/Ghu4aVddbUce2/P855mkAwCA8kPGAQAAKoKWyQ72nul/453U5G01WN35wpG2I49ZbFYqAwBA2SDjAAAAFSQdm7n01q8Ge0+LSKCj+eA3/qhubxuTdAAAUB7IOAAAQIUxjNjAyNlXfhQbGBGR1sPd3S99wVMfoDAAAJQ6Mg4AAFCJdC0/2Pub/jd6U5O37apr97Of2fnMYYdXpTIAAJQuMg4AAFC50rGZS2+9e+OD8yLiaw7te/GLjY/uZpIOAABKFBkHAACobIYR7Rs89+rb5oKy4Z49XV/9QqCjmcIAAFByyDgAAADMVVdOXz7+bi6VsauutiOP73n+dxm6AgBAaSHjAAAAmJOMxM4f/cmND86JiBqs3vfiF9uOPM7QFQAASgUZBwAAQAHDiPZdO/fqj82hK4GOloPf+GeBjhbWlwUAoPiRcQAAACymZbKDvb82h66ISNuRQ90vPeOpD1IZAACKGRkHAADA0pKR2Pmjb9/44LciYlddu5/9XNuRQ0zSAQBA0bJRAgAAgGUZRrTv6tTV4ZanDgQ6Wsz/jZ7uHzt7ScSgPAAAFBX6OAAAAO5Dy2QHe09defsDc+hKuKez+6U/DLS3UBkAAIoKGQcAAMCqxIfHzx89MXq6X0TsqqvtyBN7nv99hq4AAFA8yDgAAABWzTDGzly6cOzt+EhERNRgzb6vPdPy1AFWXQEAoBiQcQAAAKxNNpG6cuK9Kz953xy6Eura2f3SH/laGqgMAABbi4wDAADgQcSHx88f/dHExSsiYlddO5/+TNuRJ2wuJ5UBAGCrkHEAAAA8KMMY/vDchWM/Tk1Oi0igo3X/y18KdLQydAUAgC3B2rElQzc4WAAAlIQnRJ6gCgCw5RTLYYpQaejjAAAAAAAA5YCMAwAAAAAAlAMyDgAAAAAAUA6Y4qEkWRRtubsMMRRRCn9ceiu571xohdsYsj77WdM2+iY+1qKXuQGPpejLbGLcf166JbcxjHue+UM+Z30tr8tYj/roqzjZ77sfQ+S+9bnvfoy11FDu9/Lv2o+y1Mtc9D5dsrbLb1O49brUUDeMdhFRlKsrHuUV92Oe4as7n5WVrk6rv/6s6bWvcBGbe86KohiGcc+ZU7iflc/8e+ujL3n+KCueP/cc92XOH0UMY+H5KPd7PsvVKr/q64ahLLMTY+n3znLnj76W03X5Q7/0K9bXeOnQV/3Rs/z5o8yf9kufOeLwqu1fPKwGa8wfb3zwm2j/1UUXcPOUWO2hX6L+i2q1mkO/ZH0Wvcz5be79/DKMRR89hvHnIqIo/2Pth34tHz1K4UMvWau7zp8l32uG6Mr9PpIKjoUhS7/X1nb+rPCuX3gsY6XPl5XvWrkmy9VwuUP/wJeO5c4fY6kP5eXOw6XPH2XF8+ee987CUVvlV5elz5+5Z77EV7KVv28U7kdf43twmevPvc/EWOEr65o+eub2s7iGBY849+EoYhj6Gr/+LX/+LPW1rfAZFrwvVjj0K50/hvEe/2Cs6H8sUwIAAICNkE2kLr3588Hej8wfWw8/tue5L7gD1VQGAIANQsYBAACwgWIDN86+8mZs4LqIqMGazhf+oOWpgxablcoAALDuyDgAAAA2lq7lB3s/unz8H3OptIiEunZ1ffUPfS2NVAYAgPVFxgEAALAZkpFb54/+cPT0BRGxq+6dT//Ozmc+Z3M5qQwAAOuFjAMAAGCzGMbYmf4Lx36YmpwWEV9zQ/fLz9Xt3Xn/+XoBAMAqkHEAAABsqmwidenNnw72fmj+2HK4Z89zf+BiLlIAAB4aGQcAAMAWiA3cOPvK92IDQyKiBv2dLzzT/NSjzEUKAMDDIOMAAADYGrqWH+r9sP+NE/NzkT6y96t/zFykAAA8MDIOAACArZSJ3T5/9PvDH5wWEbvq7nj6c9uPHKahAwCAB0DGAQAAsNUMI9p35eKxH6Qmp0Qk0LF971ef9bWEKQwAAGtCxgEAAFAUsonk5bd+WtDQ8XkaOgAAWBMyDgAAgKIx19Dx/YWGjgPf+Kq/YzuFAQBgNcg4AAAAiks2kbz85onB3g/MH9uOHO545ojN5aQyAACsjIwDAACgGE0NDJ1/9Y34yJiI+Job97/8ZRo6AABYGRkHAABAkdIyswMnegsaOj7d8czv0tABAMByyDgAAACK2qKGju6Xv1y3d5coCpUBAGARMg4AAIBip2Vmr5z4x4G3e3OptIi0HD60+7lnHF4PlQEAoBAZBwAAQGmID4/2fef7sYFBEVGD/n0vPle39xEaOgAAWEDGAQAAUDJ0LT/U+8FCQ0fr4UN7nvsjGjoAADCRcQAAAJSYexo6Xmh8tJuGDgAAyDgAAABKj67lB3vfv3z8J2ZDR7jnYPdLX3YHaqgMAKCSkXEAAACUqmQkev7oGxMXL4mIXXV3vvDPWp46REMHAKBikXEAAACUMsMYPnmq/43jZkNHqGsPDR0AgIpFxgEAAFDy0rHp80e/N3GxX+YaOp5teeoJGjoAAJWGjAMAAKAszDd0pCZjIhLq6tzz3JccXi+FAQBUDjIOAACA8pGOTV9660fmDB1qMLDvxS/X7d1DWQAAFYKMAwAAoLzMNXR8P5dKiUjr4Sd3PvNFm8tJYQAAZY+MAwAAoAylY1Pnj37XnKHD1xze//KLvpYmygIAKG9kHAAAAGXKMIZP/tNCQ8fOp7+w4wuHLTYbhQEAlCsyDgAAgHJmNnTEBq6JiH/7rn0vPafWVlEWAEBZIuMAAAAod4Yx2Pvulbd/nkulbE7vnudeaDuyX1hYFgBQdsg4AAAAKkJ8eOTid96MDVwVkUDHo/u+9rQ76KAsAIByQsYBAABQKXRNW2jocHgbOp9/qfXTYcWiUxkAQHkg4wAAAKgsZkNHfGRUROo6v7j3y5/11OdEDCoDACh1ZBwAAAAVR9e0Kyd+Otj7rog4qzt2P/vnzU84rfYclQEAlDQyDgAAgAoVG7h27tVjZkNH/f5/ueuPn6xumWboCgCgdJFxAAAAVC4tM3vlxE8He98REbX2QNvv/tvwoxlXzQyVAQCUIjIOAACAShcbuHbu1aPxkZtWR1XDo/9+2+8cCrSPMnQFAFByyDgAAAAgWiZz5e2f3vjgpIh4Gw43P/mnDQdue0Ix5iIFAJQQMg4AAACIiIhhRPsuXTj2empy0u5pbDj4Xxr37wntueGsSlEbAEBJIOMAAADAHdlE4tJb3zcbOqq3fym0709qd84E2sYs1jzFAQAUOTIOAAAA3M0won2X+t94K5dOOqs76vb9x6rGUP3e62rwNkNXAADFjIwDAAAAS0jHps4f/Xbs6oDVUVW799/5tv2RLxwLdQ7b1QzFAQAUJzIOAAAALMMwBnt/eeUnPxERb8Ph0L5/7/BU1e4cq2mNMnQFAFCEyDgAAACwkvjw8LnXXpsZHbZ7GusP/hd3cL/bn6zvGnHVJBi6AgAoKmQcAAAAuA8tk/nkxE9HT58WEX/HV4O7/41isfu33ardNUpxAADFg4wDAAAAq2AYY2fP9r/xhjkRaWj/39jc9XZ3zrxTsehUCACw5cg4AAAAsFrpWOzit1+fuvaJ1VEV6v5Lb9MR8/cN+2+6/SnqAwDYWmQcAAAAWANd06794peDvb8QEV/z7y/83t82Vbs7YnVolAgAsFXIOAAAALBmsYGBc69+MzMdNX90B7pFxO7W6jrHfU3TDF0BAGwJMg4AAAA8CC2T6fveP5i3/e1fqW57wTAUEVHrErV7xh1VaUoEANhkZBwAAAB4UMbc2rFaJqEG9zcc/M82d72iKDaHEeyIBdpvMXQFALCZyDgAAADwsC4cez0xfsNqr6rf9x88oSfML5lOXza0N+JtmBExKBEAYBOQcQAAAOBh6Zr28Q9ODL3zMxGp3vbHwV0vW2yqeVdVYyLUNeH0ZagSAGCjkXEAAABgfUx+cvXCsde0TMJZ3dFw8P9xVu8yf2+164H2qZptU4o1T5UAABuHjAMAAADrJptInHvtW5OfnBWR4K6Xfa1/uPCF0x3IhPZF3LUJhq4AADYIGQcAAADWlWEMvfPR1Z/9MJ+d8dZ/qv7A31gdNQt3VjXHa7sm7J4sdQIArDsyDgAAAKy/6aGRi9/5bjI6ZLVX1e//T+5A98JdVrse2DVZvf22YqGhAwCwnsg4AAAAsCG0zOzlf3j75q97RcTf/pWaHV8u/PLpDszWH4i6/BmGrgAA1gsZBwAAADbQ+NlLn/zoe9psQg3ubzzwnwvHrYhITdtMcHfM5tIoFADg4ZFxAAAAYGPNjE70vf6dZHTI6qgKH/ibwnErImJX87WdU9Xb4wxdAQA8JDIOAAAAbDgtM3v5+yfGz50UkWD7VwJ3j1sREXdgtnbvpMufoVYAgAdGxgEAAIBNYRg3/+nswE+Pi4ga3N+w/z8tGrditRvm0BWrI0+1AAAPgIwDAAAAm+f29ZFzr/5vLZOw2qsauv/a5d9n3M3m1mr3TlY1zTB0BQCwVmQcAAAA2FRaZvbca69ODV6WuXErX1EUq3I3T32mtnPSWZWlXACA1SPjAAAAwKYzjGs///ngOz8RETXY3bD/rxeNWxERq90ItMeD7XGGrgAAVomMAwAAAFsj9smV/je+NT9u5a/cgX33buP05er33q5qSIswdAUAcB9kHAAAANgy6VjswrHXEuPXRSSw48v+theW/ILqa8w07Is7PBoVAwCsgIwDAAAAW0nXtI9/8IPRMx/K8uNWRMRqN+oeSfi3pyw2naIBAJZExgEAAICtN3b69OXj39NmVxq3IiJqINfQHVfrZhm6AgC4FxkHAAAAikIyMt73+reTE0NijlvZ8cJyX1arW9Oh7rjNzVykAIC7kHEAAACgWGiZzOXjP7p1+YyIqMHu+gN/teS4FTGHrnTOVG9PKRYaOgAAc8g4AAAAUEwM4/qvPhj42XERsTqqQvv/0rXMuBURcQdyDQdnXIEcQ1cAAELGAQAAgCJ0e+jGhWN/r2USIuJvf7667TkRZbmN/W3p2j0phq4AAMg4AAAAUIyyicS51/7v9PVLIuIO7qvb/1dWR/VyG9tVva4z6WvJMHQFACoZGQcAAACKlWFc/ekvRj7qFRGr3VvX/ZcOX4chxgKRgh8MQ62brd074/LnqBwAVCYyDgAAABS1yPmL/W98S5tNiEhg10tVjZ9VFIuiKIqiiIhyN5tD/DsytZ0pq0OndABQacg4AAAAUOzSU7G+14+Zy8pWNX0+uPPrisW+wvZ21Qh1p30ts8xFCgAVhYwDAAAAJUDLpC8f/8Gty78REadvR6jrP6wwPYfJU6+F9qedPuYiBYBKQcYBAACAEmEY13/13tWf/YOIWO3e+n1/6V5+WVmT1W4Edmb9HRmGrgBAJSDjAAAAQCmZHrpx4dgrc9Nz7Hje1/IHKywra3L69NC+WW+jxtAVAChvZBwAAAAoMdnEzIWj30yMXxcRb+iJ4M6vW2zqff/KF86HurN2Dw0dAFC2yDgAAABQenRN+/gH3x87+4GIOH076jr/wuYO3fevrHap3Z2radMsNho6AKAMkXEAAACgVI3++tTl498REavdG+r8C3egazV/pQb1+gOaGtIZugIAZYaMAwAAACUsGRk79+rfZW5PiIi/7fmatufuOz2HqXqbXrs3b3MTcwBA+SDjAAAAQGnTMum+7x6dGrokImpgX92eP1/N9BwiYlelritfs0NXLCQdAFAOyDgAAABQ+gzj2s9+MvzhP4qIXa2v3fPv7J6WVf6pOyiNPeIKGAxdAYBSR8YBAACAMjFx4fzl49/RZhNWu7f2kX+t1vYYhmEYhogY88zbBb+Y+42/3ajda1gdxBwAUMLIOAAAAFA+kpGxvtdfS0SGRKS69Rl/2/OKYhERZZ55u+AXC78Rh0dpOKD4Wg2GrgBAiSLjAAAAQFnRMulPfvBWtP83IuIOdIW6/+Mqp+cweRsk1C3uIIUEgNJDxgEAAICyYxjD778z9MsfiYjV7m048Nd2T/Pq/9rqEH+71O0Vq4NSAkApIeMAAABAeYpd+fjisf+lZRIiUrv7T7yNn1nTn9tVaTigVDUpVBIASgUZBwAAAMpWNhG/eOz/JMaGRKQq/NnAzhdF1pZZVDdbGg9aXNUkHQBQAsg4AAAAUM50TfvkR2+NnflARJy+HbV7/lRZy/QcImJ1KLWPWGsfsTB0BQCKHBkHAAAAyp1hjJ3+6Mrbb4iIXa2v3fNnNlfdWvfhqrY07Ld6Qnx/BoDixTUaAAAAFSE+PNj/xt9rmYTV7q3r/DO7p+kBduLfbm084HB4GboCAMWIjAMAAACVIhO71f/d/zszOiQitbte9jYcfoCdWB1KqNMeaLdabFQUAIoLGQcAAAAqiJZJX/nxG1NX+0WkqvF3arZ9aa2zkJrUoLXxUYc7yNdpACgiXJQBAABQYQxj8B9/PHr6fRFxB/YG2v+FYrE/2J4CHfbQPrvNzdAVACgKZBwAAACoRONnPvz4+FERcfraavf8ucXmfrD92FVLw35noMOh8M0aALYaV2IAAABUqGRk9OKx/2HOQlq7+09tathYkYgsd5c7aA0/7nYHrVQVALYQGQcAAAAqVzYR7//uK4nxIavdW7vrZbd/r7I8EVFWFNzpDO1zWR0MXQGArUHGAQAAgIqmZdKf/PC7U9f6RaRm+5c89YcfZm8Oj6XhoKt6G0NXAGALcOkFAABAxTOMwV/8cOzMeyJS1fgZf/tXH2yxlQVVjfaGAwxdAYDNRsYBAAAAiIiMnT55+fhrIuKs2h585F8rVvfD7M3qUII7XcE9LquToSsAsEnIOAAAAIA5ycjNi8f+VptN2N2h2t3/xuqofsgduqptDQc9VU12agsAm4CMAwAAALgjm4hfPPo/k9Ehq91b1/kXdrXp4ffpa3E2PKo6q22UFwA2FBkHAAAAcBddy338/dcnPzktIoGdX/fUP/Xw+7Q6LLW71do9HouNoSsAsFHIOAAAAIB7GMb1d38xevpnIuJt+ExV05GHnIXU5Kq2hXt83gYHBQaAjUDGAQAAACxt7MxvPvnRqyKi1j1W0/7CusQcIuJvUxsfrXJUseoKAKwzMg4AAABgWTOjIxeO/dd8NuGs2l7X9RcPudjKAqvD0tDlC+xUGboCAOuIjAMAAABYSTaROv+tv0tPDVnt3uDuP7F7mtZrz55aR9PjNWqtkyIDwLog4wAAAADuQ9dy/W98Z2rwtNXuDex80aaGjeWJiHE/C9uISO1Ob0N3tV1l6AoAPCwyDgAAAGAVDOPaz38evfSeiAR3veRteEpZhogo97OwjXnD6bWHDwRqd1YpfD0HgIfARRQAAABYrRvvvXf1Z98UEW/jp9drsZUFnjpX06NBhq4AwAMj4wAAAADWYHpo+MqJb+azCU/dY/4dL6xvzGF1WOp2+Rr3+61OvqgDwJpx6QQAAADWJj4y0v/G/8pnE86qbcFdL6/XYisLHB5b02PB6u0ehq4AwJpw1QQAAADWLJtInf/W/5eeGrK764K7/pXF7lv3h6gKuxsfC7r8DqoNAKtExgEAAAA8CF3L9b9xLDU5ZLV76vb8mV0Nr/tDWB3Wus6aur01DF0BgNXgWgkAAAA8KMO49ObRW5+8JyKBjq+5anZvxIO4apzhnjpfi4d6A8DKyDgAAACAh3L9nV+NfPR9Ealu/UNP6MkNepSabVVNh+pcflZdAYBlkXEAAAAADyty/sLcmrINh/07vry+i60ssDqsob3B4CM1Fhtf4wFgCVwcAQAAgHUwPXSj77v/LZ9LOqu21bQ9L4ptgx7IU6c2P9ngbWToCgAsRsYBAAAArI/M9O2+1/8um5hwVm2r3f2n676mbKFAe03ToUZHFauuAMAdZBwAAADAusmlUhe+/T/TU0NWuye4619txGIrC6wOa8P+UPCRgGJRqDwACBkHAAAAsM4Mo/+N16YGf221ewIdX7O5G417iMiiG/dssfxdd/PUeVqealbrVAoPAGQcAAAAwHozjGs//8lE/7siEtz5orf+U8rdRGTRjcVk+bvu2ZUoUru7tuFgg121U3sAlYyMAwAAANgQw++/e+1nfy8i3obDVeHPb9BiKwscXke4J1y7u46hKwAqFhkHAAAAsFGmh25cOfH3+VxCrX20Zsc/3+iYQ0Q8IW/ToWa1jlVXAFQiMg4AAABgA82M3Oj/3t/mswln1bbAzhc3dLEVk9Vhq9sTany0yeq0UX8AFYWMAwAAANhYuUTqwrf+W3pqyOauC+z6+ibEHCLi8Dqan2jxtweoP4DKQcYBAAAAbDhdy11649XU5JDV7gnsfGlzYg4R8TVVNz/Z4vKz6gqAikDGAQAAAGwKw7j81qvTg6ctdk9g19dtauPmPKzVYQt1NYa6Ghm6AqDskXEAAAAAm8Uwrv38x5Hz71rtHn/7VzYt5hARV43afKi9ujXIQQBQxsg4AAAAgE1186N3IuffFZFNjjlEpGZbbfOTHU6fm6MAoCyRcQAAAACb7eZH7wx/eEJE/O1fdlbv2syHtjlsDftba3eHLXYrBwJAmSHjAAAAALbAxIVTn/zwFRGpavmCu+7xTX50b8jX+qmdVWE/BwJAOSHjAAAAALZGYmz44+OviIin/gl3XY9RSAwRMVZBRMQQ88ZK28jibUQk2NHQ/OQuu+rkWAAoD2QcAAAAwJZJRoYvH/8/IuKpf1INHVIWiCIiyiqIiChi3lhpG1m8jXnb7rQ3P95Rt6dJsSgcDgCljowDAAAA2ErJyPCFY/81n0166p/wbX9WZAuyBm+oZttn9qqhaiHoAFDKyDgAAACALZZNTF/8zn/PzyYd3hbf9i/JFiUNdZ2tjY912D0MXQFQqsg4AAAAgK2nZVIXX//v2mxia2MOh9cdfnyXvyOsWPiXAoDSw5ULAAAAKApaJtX3+v87G59weFuqt39Jsbq26pn4muuantzjCdVwUACUFjIOAAAAoFhomdTF1/82dWvI4W0Jdry4hTGHzWmv27s9/PgjNpeD4wKgVJBxAAAAAMXE0C/9wzdTt4asdk+g/WtbGHOIiMPrbn6ys3pbA3ORAvj/2bvvODnKM8Hjz9tdHSfnqJFGMwozCggEiGCQECabDAbjvME+3955d2/3fOf1587nXeeweM3aBptg1jgt4IADFpiMBQYEmCwURjmgONKMJnXXe3/UdKlDdU33qGemw+/7hz6lt59637eeqp7R+6iquyBQ4wAAAADyjDbf/MXdg7Eyh8dXMbPTqelsaT9jcai2kjMDIM9R4wAAAADyjzbf+vldBzY85fWV1c//sC/UPLPTMQK+pqVdjUvn8egKgHxGjQMAAADIU1see/jAhqdEpGbudcZMlzlEJFRT2X7Gkoq2Rh5dAZCfqHEAAAAA+WvLYw+/8/rjIlLTeW0+lDlEpH5+x6wzTwpUlXN2AOQbahwAAABAXtv+x0e2rf25iNR0XhusWaQTiYhosTZ0GlY/STFJ8WlfSmy3XjICvtZTeht6uzw+gxMEIH/wIwkAAADId/tee2lssL/rgo9WtJzr8QaP7V+X8LISJUpElHJ+hsSqTlivpv45HpP41+PbWiS2bZU57H0rmusrmuv3r+87smuPaM4SgJnHfRwAAABAATjct3nTw3eJSFnj6eH65fkzsfoFnW2nLfWXhTlHAGYcNQ4AAACgMORtmSNQXta+4qTGRfOUh/UFgJnEzyAAAACgYORtmUNEKpob5p53RnlTA9+6AmCmUOMAAAAACkl8maOi7d2SZxWFxsUL205bZgQDnCkA048aBwAAAFBg7DJHsGpeVcd78q3M4S8v6zj7tLp5c3l0BcA043tVCpKpOXEAckzrLpIA4AR+hnycJMycdhHyDwAi3McBAAAAAACKA7cDFCSPiqR7SYtWEv8959o5auIbGuNjtOSmn6xizGkcK+kwp2AsZaYJ0aIm6scxRuuUmZ/gnM1sjkvnIj9mBhf7hP1okQnzM2E/OpscykSHn9CPcjrMpPepY27Tx8RH5ySHpnUHh1KbXM+yaz/WFZ7Z9azcfjpl/vMnq2N3+SE2PmellNY65cqJ78f9yk/Nj+l4/SjX6yflvKe5fpRobc9HTTSfdLmKZvxzQ6s0nWjn906668fM5nJNf+qdj9jM8keHmfGvnvTXj4pd9lpP9keHti6JTE+9Q/6TcpXJqXfMT9JhxmJSf39pnfSrx7qDQ6nbsj/12fzqUfFDO+Yq4fpxfK9pMdVEv5LizoUW5/dadtePo28bGgAAIABJREFUy7veHku7XiSuL2kR8ZeX9V7/t15f2ejgjiPbH3QMtn76KvHaP/FU7KdfQnfq+P+AHn9JHz98a8fYvt7k3wbKOhyP3X9cuzq4acuhLVvTnMe0PzqU6/WT8t6xz1qG/3Rxvn5E6TT/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf+V4/TP9viZxj3vnA59W7Xj9ZPsWAs6cUyKQAAAAAK1+jAwBv3fis6dsxf1l456xLlDebnPGu7Ouecc1a4vo5TBmDqUOMAAAAACtvowMAb9/6bVeao6bwub8scRiDQdsqy1lOWeXw+zhqAqUCNAwAAACh4dpnDY4TzucwhIuG62rmrzq1sb5v4CUcAyBI1DgAAAKAYxMocg1aZQzwBHWMFxD5b4XijjpP2pcT21H5SOXaVtNGwcP7sd50ZqKrkxAHIIWocAAAAQJEYHRh4/WffjI4Oeoxw7dzrPUbI/ohQiX0mqIqJ33Z7KbE9tZ9Ujl0lbYiILxhsO31545JeHl0BkCvUOAAAAIDiMXZs4LWf3myVOWo6r/MGavN8whUtzZ3nnVPe0syjKwBOHDUOAAAAoKhEhgfjyxxGqCn/59y8dPGsM1f4y8s5fQBOBDUOAAAAoNjYZQ4RqZ59ZUGUOQIVFR1nn9m0dLHyskgBMEn8+AAAAACKUGR48OW7vzh8eJuI1My5oiDKHCJS0dLS9e7zy5tbOIMAJoEaBwAAAFCktPn6vbfFlTkaC2XizUtPmnXm2UYwxDkEkBVqHAAAAEDxiitzVM95TwGVOQIVlZ0rV9Uv7FVeL6cRQIaocQAAAABFTZuv33vr0KGtUmhlDhGpnt05+5xV5S2tnEYAmaDGAQAAABQ7bb5x/23H9m8RkarZlxVWmcMIBJuXntx66goeXQEwIWocAAAAQAnQ5pu/GC9zFNzdHCISrqufvfL86q75ohQnE0A61DgAAACA0hBX5ii4uzkstd0LZq+6IFzfyMkE4IgaBwAAAFAyEssc3mCDjhERx22d2G69lBCQwrGrpI20wyWOlfqS1x9oXr6i5dSzPD4/5xNAEmocAAAAQClJLHP4wk1KKaWUiKiY+G2V2G69lBCQwrGrpI20wyWOlW6gcH1j5/mXVnXM5dEVAPGocQAAAAAlJq7MUdlxaSE+tGJp6D1p9qqLAtW1nFIAFmocAAAAQOmxyhwHtkiBlzmMQLBtxcrGpacpr5ezCoAaBwAAAFCStPnmz28d2LtZCrzMISIVrbO6LryqvGUWj64AJY4aBwAAAFCqtLn+gdsG9mwSkaqOS41gQ0EfTfOyFbPOOt9fXsWJBUoWNQ4AAACghGlz/a+/Z5U5qjsuKfQyR6CievY5FzYvW8GjK0BposYBAAAAlDZtrv/19wb39UlRlDlEpLJ1dueqSytaOzi3QKmhxgEAAACUPG2+9cvvWh9BWhxlDiMQaj75jI5zLjRCYU4vUDqocQAAAACwPoK0qMocIhKorO5cfXlD7yk8ugKUCGocAAAAAETE+kLZ7w73bxeRqlkXF0eZQ0SqO+fPXnVZuKGFMwwUPWocAAAAAGJM8/V7/734yhxGINR2+sq2FecZoTJOMlDEqHEAAAAAiGOar9/7reIrc4hIWUNz5+orauctFqU4z0BRosYBAAAAIJFpvvmLb48M7BSRqo6LvcF6rbXW2nrR2tDpxb9qbydtOMYkdWIPl+EQ7lMaH1dL3bylnauvKmto5TwDxYcaBwAAAIBk5ujYG/fdYpU5qjsu9oUaVezeB2tDpRf/qr2dtOEYk9SJPVyGQ7hPaXxcJUopXzDcvmJ1y8nneP0BzjVQTKhxAAAAAHBglTlGB3eLSFXHRcX00Iqlsq2z+8Ibqucs4NEVoGhQ4wAAAADgzBwde/s3tx0vc4Qaiu8Ymxav6Dr/en9FNacbKALUOAAAAACkNdJ/1C5zVHdcXHx3c4iIEQx1rryy5eRzlNfgjAMFjRoHAAAAADcj/Uc3PXSXGRkSkaqOi5S3OD/DorJt7oJLP1DZNpdHV4DCRY0DAAAAwASO7Tuw5ck7YmWOy4q1zCEiraesnP2uKwIVNZx0oBBR4wAAAAAwsUMb+7Y8+X0zMuQxQlUdlylP0ZY5gpW1nSuvbly0gkdXgIJDjQMAAABARg5t3Lz9mR+IiMcIVXZcXMRlDhGp7VzUvfr6irYuzjtQQKhxAAAAAMjU/rfe3vf6L0TEY4TKms8UKeaPrjCC4dZTVs9eeY0RKufUAwWBGgcAAACAjGnZtvZJq8zhCzeXt64s7jKHiAQr67re/b7GxWfxWaRA/qPGAQAAACAbWratffLQ5gelZMocIlIzd3HXu99f1jiL8w/kM2ocAAAAALKkZcsTjx7d9ScR8YWbw00rdBwRSd1O2nCMSepkfCgnE+7u2JvWWnS6DifuxxsIta+4pP2MS32hCi4BgBoHAAAAgCJhjkU2rrlv8J2XRSRQMSdUu1jFiEjqdtKGY0w8eyDlZMLdHXtTSolK12Gm/ZQ1tHdd8P66+ct5dAWgxgEAAACgiMocv//J0IFXRSRUtyRQ01s6x96w8PTuCz8cqm3mMgDyCjUOAAAAAJMUGR7d9IefjZc5akurzGEEw7PPuaZ1+QVef5ArAcgT1DgAAAAATN5I/8CmR+4dO7ZHREK1S7zBupI6/Mr2efMu+YvqzsU8ugLkA2ocAAAAAE7IyOH+LY//wCpzVLatNkqszCEizUvPnXfRhwOVdVwMwMyixgEAAADgRB3ZsXv72nvGyxzt53tLr8xhBMs6V9/UeuqFymtwPQAzhRoHAAAAgBw4tHn79rX3mJFhEalsW+31V5VgEirbFyy4/BOV7Qt4dAWYEdQ4AAAAAOTGoc3b9776n2ZkSETKW85VnkBp5qH11Is7z/uAL1zJJQFMM2ocAAAAAHJm1wsv7H3lXjMy7DGClbMuLNkyR7Cqofuiv2pauopHV4DpRI0DAAAAQO5o2bVu3d5X48sc/pJNRm3XKd0X/mVl+0KuC2B6UOMAAAAAkFNadq97sX/7kyLiMYLlLeeKlO6HUxjBsrbTLutc/SEeXQGmATUOAAAAADmmTXPLE78/tHmNiHgD1WXNZ4sorbXWWkTsP+NbkhzvysmEuzv2prUWna7DLPpJjYx1njBWvEBlfdeFf1W34Aw+ixSgxgEAAACgwJhjkS1PPnSo7yER8YWbyprPVkoppUTE/jO+JYndj3Iy4e6OvSmlRKXrMIt+UiNjnSeMlaqx9+x5F/+XsqZOLg+AGgcAAACAwipzjO187olj+18SEV+4MVDNx1KIESzrOOuajnddz6MrwFSgxgEAAABgqoz0H+l75L6hg2+ISLCmx1+1gJyISHnj7O6LPlYz92QeXQFyixoHAAAAgCk03H9k88M/GunfKCLBmh5fWTs5sTQvu2DeJZ8I1bWRCiBXqHEAAAAAmFrD/Ud2Pv9AZOgdEQk3nuYN1JITixEs71z1gbbTr/D6Q2QDOHHUOAAAAABMuUOb+7atvccqc5S3rqTMEa9q1qIFl/9dTddyHl0BThA1DgAAAADT4dCmvu1rf2RGhkWkom2V8vjJSbyWZRfOPf8vApUNpAKYNGocAAAAAKbJwc19+1673ypzlLedT5kjSbCqce67/6r1tKuU10c2gEmgxgEAAABgumi94/k/WWUOjxGsbHs3ZY5UVbMW9Vz1qapZi3l0BcgWNQ4AAAAA00jrHc8/e2jTQyLiMYLhhtNEWMk7aF9xddf5H/OFq0gFkDlqHAAAAACml9bb1j7ev/UPIuILNZY1nUWZw1GwqmnexZ9sPukiHl0BMkSNAwAAAMB0M8fGNj/6u0NbHxYRX6gxVL+cnKRT171i3sX/vWrWElIBTIgaBwAAAIAZYI6NbXn0waFDb4iIv6zdX7lAx7HDtJP49nQxqb1prUWn6zCLflIjY50njDVhV+5TjQ8zAmVtp13T8a4P+sLVXDkANQ4AAAAA+Vjm2Pzwj4cOvSkioZqeYPVCFWPHKCfx7elikuKtMFHpOsyin9TIWOcJY03YlftUU8MqmrrmX/r3DT2rRLGOA6hxAAAAAMgzw4f7Nz/8o9HBHSISrO4xgk3kxF3jotUL3vOP5c3zSQWQihoHAAAAgJk0fLi/77G7I0PviEhZ05neQC05cecLVsw550Nzzv2INxAmG0A8ahwAAAAAZtjArt3bnrnHKnOUN5/rDdSQkwmVN3X1XPHpmq4VPLoC2HgzAAAAAJh5hzZu2v7sT8zosIiEG05VHj85yUTzyZfNu+wfQnUdpAIQahwAAAAA8sTBDW/veeknZnTYYwTLW1dS5siQEazoXP3XbStu8AbKyAZKHDUOAAAAAPli90vr9r1+vxkZ9hjBcNMZ1tedIBPVs09aeOVnqjpO4tEVlDKufgAAAAB5Q+sdf3rm4MZHRMTrrww3nk5KstJ+xg1dF/xNoIqvp0GJosYBAAAAIJ9ovfWpB4/seFpEjFCDv2oeKclKsLql+6K/a1txo/L6yAZKDTUOAAAAAHlG600P33ds/xsiEqxeYIRbSUm2qmcv673281Udy0gFSgo1DgAAAAB5xxwbffvX3x8b3Csi4YZT+DbZyZl15k1dF/29L0z2UCqocQAAAADIR9Gx0fUP3BwdPSIiofrlonw6RkQct9OxOtRai5Y0AVn0kxoZ6zxhrAm7cp/qJI7OcYhAVcu893y6adkVPLoCahwAAAAAMGNGj/ZvfPAW69tkK9rOVcqjlFJKiYiKid9Ox+pNKSVK0gRk0U9qZKzzhLEm7Mp9qpM4Opch6ua/a95l/7u8ZSEXFahxAAAAAMDMGNy7Y9OD3xIRjzdY1nga3yY7ab5QZce5f9Wx8mM8uoIiRo0DAAAAQF47uqtv57M/FBFfqD5Yw50IJ6S8ef68yz9T33uBKBaDKEJc1gAAAADy3d5X1h7avFZEAhVz/OUdJOQENS65eP4Vny1v6SEVKDLUOAAAAAAUgL4//LB/+0siEqpd5PVXk5AT5AtVzl75sfYzP+gNlJENFA1qHAAAAAAKw6Y1d4wc2SUi5c1nKm+IhJy46tnLF179+dp55/DoCooD1zEAAACAAmFG37z/q9GxIbHKHB4/KcmJluXXzb/ic+H6TlKBQkeNAwAAAEDBMMdGXv/pZ6NjQx5vIFx/El+zkiu+UOXcC/6+7YwPKy+VIxQwahwAAAAACklk6Ojmh24VESNYX9Z4KgnJoerZyxdd/42q2ct5dAUFigsXAAAAQIE5uvOtLU/8QESMYH2gqouE5NasMz/SfdGnAlUtpAIFhxoHAAAAgMJzcP0zu1/8rYiEqucZwXoSklvB6rbuiz/dfiaPrqDAGKQAAAAAQCHate7XFW0Lypu6yxqXH939R3NsIP5VnRKvtRattMMropSIKK31eNjxTnRimDreVWL7+L6xmKQAJypNTPLusW3nDrXW6Ua0Z2VHpp9T6nAiIlUdy8MN8/a8/PP+rc9zvaEgcB8HAAAAgMKkzbcf+Mbw4d0iUtZ4qsfrV2nYa35RkiZAWQHu4ssHSe1KjXftGODYlftU3cNcdnHcN5N+HMP84aqOsz7affE/+cpqueJAjQMAAAAAprTM8fXI8FGPN1DWfBZfszJFgtVtC6/4fMsp1/PoCvIcNQ4AAAAABSwyPPD2b24WEY83EG44hTLH1KlfcN7CK/65vGUxqUDeosYBAAAAoLANH9y5/ldfFREjWOev7CQhU8cXqpqz6r/NWf13vrI6soE8RI0DAAAAQMEb3Ltp1wsPiEiwqtsINZOQKVXe3LPgyi82LL5MFCtK5BeuSAAAAADFYM+Lvzmy800RCdUt8fqrSMhUa1p6xfwrvxSu7yIVyB/UOAAAAAAUiY0P/tvY0BERCdadpDw+EjLVfKGquRd+qv2sv/QGyskG8gE1DgAAAADFQptv3PtZsT5/tH45nz86ParnnN573c1181fz6ApmHJcgAAAAgOIRGR5461dfFhGvryJcdzIJmTatp9208OqvBarbSAVmEDUOAAAAAEVlcO+mXet+LdbXrFTMJSHTxheqmn/Z52ad/THl9ZMNzAhqHAAAAACKze51DwzseVtEgpVdfP7oNKuec8aiG75bNWcFj65g+nHNAQAAAChC63/9jcjIgIiUNZyuvEESMs06zv549yWfDVTx6AqmFTUOAAAAAMVIm6//7P9Ym+WNK5THp7UWLdqJiBZxfikxLNZ3SrvW4107Bjh25TLEhGEuuzjum0k/7rNyiUnXEqxun3fZP7csfx+ProAaBwAAAACckMjwwFsPfFlEPN5AqGaJUh5RopxY38CiJmL3nNqu1HjXjgGOXbkMMWGYyy6O+2bSj/usXGJcWkRU3YILFlz51ao5Z3BBghoHAAAAAEze4J6Ne17+nYgYwbpA5TwSMiN8oaqOsz8+77Iv+MrqyQamFDUOAAAAAMVs53P3D+7bLCL+8g5fWTsJmSmhmo6eq/61dfkH+CxSTB2uLQAAAABF7q1ffik6ekxEQtUL+ZqVmVW/8MKeq79Z0XoSqcBUoMYBAAAAoNhp87Wf/ZO1GW5Yrjw+UjKDfKHqOef9Q+fqT/HoCnKOGgcAAACA4hcZOrrh9zdb2+HG060PGcUMKm9Z3HP1zY1LrubRFeQQFxMAAACAknBk22v71z8uIh5vIFi3lDJHPmhedu3Ca28JN8wnFcgJahwAAAAASsXWJ344fHi7iBiBWl/5bBKSD3yh6q6LPzvrXX/jDVSQDZwgahwAAAAASsjr9/2LGRkWkUBlpzdQS0LyRHXnWb3vvbVuwUU8uoITwdUDAAAAoJSY0dfv/b/WZqjuJI9RRkryR9vpH+2+7IuB6lmkApNDjQMAAABAaRk9emDrk9+3toN1Jwlfs5JPQjWz51/+1Vnv+qQyAmQD2aLGAQAAAKDk7H/r2cNb/yQiHm8gVLfMatQTsXdPbddaS1xMJl25DDFhmMsujvtm0o/7rFxiXFpEYslJjBHt3G6rnnPW4hvvrppzNo+ugBoHAAAAAExg00O3jQ6+IyJeX7m/sltE1ETsfVPblVISF5NJVy5DTBjmsovjvpn04z4rlxiXFuvLa1JjRDm3J5l9zie7L/2Sr6yByxXUOAAAAAAgPa3fuO//mdEREfGXtxuhRlKSh0I1s3uu+ffW0z7i4dEVZIAaBwAAAIASFR0Z2rTmG9Z2sKZXeVlF56mGnksXXn1Ldee7SAXcUeMAAAAAULqO7Niw+8WfWtvBulNISN7yhapnn/PJ+Zd/nUdX4IIaBwAAAICStmvdmoE9r4iIx+sPVPeQkHwWqpnTe+2tTUuv47NI4YjLAgAAAEBp03rjmlvHju0XESPUyAdz5L/mZTf2XndbRRv33SAZNQ4AAAAApS46MrTx9zeb0VHhgzkKhC9U03n+Zzov+CyPriAeNQ4AAAAAkGP7d+1+8WfWdrDuFB6FKAgVrSf1XHdb3YJLOF+wcB0AAAAAgIjInpcf69+2VkQ8Xn+wZjEJKRStK/669/o7w40LSQWocQAAAACAiIho3ffo3SP9W0TEG6gxwq2kpFD4wjXzLv1Kx7n/QCpKHDUOAAAAABgXHR3Z9IfvmmMDIuKv7PYYYXJSQGrmnksSShw1DgAAAAA4bujgnq1/vCP2+aOL+aAHoIDwdgUAAACABAc3vHi473GxPpijukfH2AE6kdUicTF6IuliknbPsCvHsGz7cZ+VS4xLi0gsOYkxop3bMz86q3PH6dlmnfMPyuArcqhxAAAAAEBp2/Lkz4YPbRARI1DjL+9QSiml7FdVIqtF4mLURNLFJO2eYVeOYdn24z4rlxiXFpFYchJjRDm3Z350VueO07PVzl219P33VXeu5HqmxgEAAAAApUtHIxvXfDsyclhEAhWzPb4KclKgZp/7jwuuuMVX1kgqSgE1DgAAAABwMHL00Nanvjf+wRzVPaIMclKgQrWdvdfd2Xb6xz08ulLsqHEAAAAAgLPDfa8f2LBGxj+YYyEJKWgNPVf2XHNHdecqUlHEqHEAAAAAQFrb1/5yYO+LImIEqn1ls0hIQfOFauec+6muC77o59GVIkWNAwAAAADS0tFI32P/MTq4S/hgjmJR0Xpy73V3N530fr4YuPhwRgEAAADAzejRQ1ueuMP6/NFw3Ul8MEdxaDn5Q4uuv6ei7TRSUUyocQAAAADABI7u2LD/rQetzx8N1SwiIcXBF67tuuDzXRd+2RuoIhvFgRoHAAAAAExs5/O/H9jzgoh4fGX+ijkkpGhUtJ6y5H331i+8kkdXigCnEAAAAAAyoHXfY/eMHNkkIr5wi9dfTUqKSfsZ/633+p+EG7hJp7BR4wAAAACAjESGBrY+/aPI0D4RCdb08MEcRcYXqp136Tdnn/tPBo+uFCxqHAAAAACQqaM7N+57Y/yDOQJV87TWWmsR0VpLbNv6q7t0MUm7Z9iVY1i2/bjPyiXGpUUklpzEGNHO7ZkfndW54/RsmRxa6lg1c1cvft/91Z2reXSFGgcAAAAAFLldLz0yuPdFETEC1b5wi1JKRJRSopS1bf3VXbqYpN0z7MoxLNt+3GflEuPSIhJLTmKMKOf2zI/O6txxerZMDi11LCuyc9VnFl5xa7CmkwueGgcAAAAAFC+t+x794ciRPhEJVHYqI0xKilKotqvnqjtmr/yMxwiSjUJBjQMAAAAAsjM2dLTv0dujI4dFJFjdw8KqiNXOXd177Q9r5q4mFQWBtyIAAAAAZG3wnW27X7rfjI56vP5AZRcJKWK+cO2clZ9ZeOX3/OVNZCPPUeMAAAAAgMnY++oTR7avFREjVO8N1JGQ4haq7Vp0/Y/bVvwNj67kM2ocAAAAADApWm95/EfjH8xRNY+vki0Fjb3X9FzzH5Xtp5OK/ESNAwAAAAAmKTo63PfYndYHc4RqekhIKfCFa7su+FLXhV/j0ZU8RI0DAAAAACZvcO+WPX/+lY6Oeoywv7yDhJSIitblvdf9pPmkD4nyko38QY0DAAAAAE7Inj8/cnTX8yLiCzd7fOUkpHS0nPLRJTfcW9m+glTkCWocAAAAAHBitN78yA9GB3aISKCymw/mKCm+cF33BV+Zs/L/GIEqsjHjqHEAAAAAwImKjg5vXHNLdLTf4/UHq/gq2ZJTO/fdS296oKHnGh5dmVnUOAAAAAAgB4YO7Nz5wn+KiNdf5Q02aFcikq49/qV0YS67OO6bST/us3KJcWkRGd9OihHt3J750VmdO07PlsmhpY6VyZSSJxbbaF/xt4uvv6+scTFvh5nCPVQAAAAAkBv7Xn+qsrWnes67AhVzzNF+bY6KiIhKClNKaS1KKWs7cVk+HmC1a61jASp+9+PbTo0iynrFboz149yJHRw3nCQVC+zZ2jOP7yepczvePpykEbU4t6fmyqomOM9KUrOUnOfUhKdG2YPalYs0kQlHZ09MKSVaJLaLv6x+wWXfPbDp4e1rv2pGhnlTTDPu4wAAAACAHNF6y+N3jxzdLiLBml7yUbJq57572Qcfrp77bh5dmWbUOAAAAAAgZ6Kjw5seusWMHFMen79iLgkpZXNWfXbBlbcHa7gMpg81DgAAAADIpaEDO3c+f4+IGME6j5/v2ihpodruhVffPXvlZz1GkGxMA2ocAAAAAJBj77z2eP/Wp0UkWDWfr5JFTdcFPdf+rHruBaRiqlHjAAAAAIBc07rvsTvHBveKSKCSRxUgvnDdnFX/b8FVd/vLm8nG1KHGAQAAAAC5Fx0d2vD7r2tzzOuvNMItJAQiEqrt7n3v/W1n/B2fRTpFqHEAAAAAwJQYOrBj+9rbRcRf1qa8IRICS+Oi9y6+8ZeV7WeSipyjxgEAAAAAU2XfG08e2fGciASr55MN2Hzhuq6LvtF10b/5y7nHJ5eocQAAAADAFNq45pbI8CHl8fnKZpENxKtoO33RDb9oXvYXPLqSK9Q4AAAAAGAK6Whkw4NfFRFfuMljlJMQJGlZ/rHFNz5Q1riUVJw4ahwAAAAAMLWO7dvyzmu/FpFAVRerMKTyhevmX3777FX/YgSrycaJ4IuaAQAAAGDKbV/74+o5p/vLm/wVs0eP9okorbVToBKR+Jdi247BorVWKnmX8Y6USupHp51d6nAOA9kd29vWRmwg7RKfNBlrfk7tE46ekCq72TEgsVG5JSCT4ZwCYhtxU8ko4c5j1cy9sGbuhTue+dr+t+4XHeVdMwlUEAEAAABgOrz1q8+JiBGs8/qrrNJAKrs8Yf9VTSRpF8d9M+nHJcy9K5cWq2STGiPKuT3zo7M6d5xefJVnEpnMZErJE8sgJ5knfNZZn1p842+DNd28ZahxAAAAAECeGhs8tO3p20XEXzGHtRhc+ML1Pdf8dPaqz3uMINnICu8rAAAAAJgm+974w7H9m5XH56+YTTbgrrbr4pM+/HT13Iv41pXMUeMAAAAAgOmz4XdfFhEjWOvxVZINTGjOqs8vvOoeHl3JEDUOAAAAAJg+keGjfY/+u4gEq7pE8S0QmFiodl7PNT9tO+MfeXRlQtQ4AAAAAGBaHdz4x6O73xSRAE+sIGONi97Xe/2vq+deTCpcUOMAAAAAgOm2+eGbRcTrr/T6q8kGMuQL188574sLrv6pv7yFbDiixgEAAAAA081+YsVfMYdPlERWQrXze2/4bdOyv+bKSaVEzIlitPWdxoUQo0VpERGtRU3UT5YxVsdOQ2o10ZwziNETxpiaR/UAAAAAIFPLPnpwfDWnlNainP+PX9kLTK21Faxcl4paa6VUQrCWpFWqFWOm6cbu3wpLnUlqV479jB3bv/3pfz6y/cnU5acWLaLTLKi107LadIp0Wglra3fTaXluph8x/fp9vE87CzqxNzMWHVWirLWz3aeVMi2mFlPE7OvbwH0cAAAAAAAUHl+4vuuiW7ouuc1f3ko2LNwaUJA8KpLupaT7QXTa0l1W98uQlTX4AAAgAElEQVS4lACn7t4ccxrHSjrMKRhLpblhatL3HGmdMvMTnLOZzXHpXOTHzOBin7AfLTJhfibsR2eTQ5no8BP6UU6Hmf6+reO5zewesZzk0NS6S0SU2uR6ll37sa7wzK5n5fbTKfOfP1kdu+v/Yygl4/+9o1OunPh+3K/8TP8zRLlePynnPc31o6z/aNLjV9kE80mXq2jGPze0StOJdn7vpLt+srp1NP2pdz5iM8sfHWbGv3pc/vcpdtlrPdkfHdq6JDI99Q75T8pVJqfeMT9JhxmLSf39pXXSrx6tPy4iSt2W/anP5lePih/aMVcJ14/je01Luv9SNZ3ehlqc32vZXT8u73p7LO16kbi+5J6TdDlMd+on/aMj3fWjnX4pp7sOna8f5Xr9pLx37LOW4T9dnK8f51u4tU6Zsk5/XGbm78Haeed2nvcJERk+9IY2R+NuDrDeYvb/4R///+n4/9WPOt96MH5HQNL9AvHHkBjvsX8bOt4yYLcrpUytJOU2BKVU/AztditJcTEJV7bTWB7HoZ1nJeMz0Vp7POM7vnxXbaktDyvbzui94Xc7nvny/jfvFR0t9cUy9QIAAAAAmCkHNzw5+M5GEfFXdNoFGh0Tv51O0i6O+2bSj0uYe1cuLVY1IzVGtHN75kdnde44vfj6yCQymcmUkieWQU6ySniGMfEzaT/zfy+6cU1Z4zJqHAAAAACAGbPx918WEY8RMkINVotSx2/lUBNJ2sVx30z6cQlz78qlJf52koQA5dye+dFZnTtOz5bJoaWOlcmUkieWQU6ySniGMUkz8Zc1zL/i7jnnfdkI1lDjAAAAAADMgMjw0S1P3Coi/rJ25fGTEJyI2q5Ll3zg8YbeG0vzW1eocQAAAADADDuw/rFjB7eISKCyk2zgxM06658WXvWzYM28UjtwahwAAAAAMPM2/PYLMv7EShPZwIkL1y3ovfbnc877iscIlc5RU+MAAAAAgJkXGTqy/ZkfiIi/rFl5gyQEOVHbdemyjzxX03VpiTy6Qo0DAAAAAPLCO68+ONy/U3hiBbnWed5XF151r7+8teiPlBoHAAAAAOSLt3/zeRFRHp8RbiEbyKFw3YJFNzzUfsani/vRFWocAAAAAJAvxgYP7nrhpyJiBOuVN0BCkFuNiz+46L1rarreU6wHSI0DAAAAAPLI7hd/HhnuFxF/BU+sIPd84YbO877ec82v/OVtxXd01DgAAAAAIL+8/Zt/ERHl8fnCrWQDUyFct2DJ+x5pPvm/FtlnkVLjAAAAAID8MnRw+/71D4uIEeKJFUyh1lM/ueSmxytnnVs0R0SNAwAAAADyztan7oyOHhWeWMEU84Ubui/+XveldxnBmiI4HGocAAAAAJB/zOjGNV8V6ztWQi06PSvcsd1x272rCdtTY1xaRMa3k2JEO7dnfnRW547Ts2VyaKljZTKl5IllkJOsEp5hjMNMJttVRetZSz7wbH3v+wv90RWDHx0AAAAAkIcG9rx1dM9rFc2LjVB9dPSwjo5Y7UopO8beim8UUdYrdqPWWikVF54aL0qpWFgyu10ppXXiBJQ9kEqNtxbgcTGxAHFuj+/E7iolxu5ExUZxnrbdmDrt1FzF1wvSRCYcnT0xpZRokcRdrJh03aScl+SZOCbfvSv3OVudx3flGN9x9mebl32i75FPDu59sUDfNdzHAQAAAAB5asODXzajoyLir5hNNjANfOGGBVf8dM553zCCtYU4f2ocAAAAAJCndGRk61PfEeuJlXAzCcH0qO2+fOkH/1TTdXnBPbpCjQMAAAAA8tfBDX8c6d8hIkawju9YwXTqXP2vC6/6VbBmfgHNmRoHAAAAAOS19b/5nDbHhCdWMO3CdQt7r/3dnPNu9hihgpgwNQ4AAAAAyGtjxw7vffVXwhMrmCG1XZcv+8irNV1X5P9UqXEAAAAAQL7b+fy9owN7hCdWMHM6z7t54dW/9Ze35fMkqXEAAAAAQN7T5obff8Xa9JXzxApmRriuZ/H7nm474//m7aMr1DgAAAAAoAAMH9pxcONjIqI8hjfUREIwUxoXf3TRDU/VdF2Zh3OjxgEAAAAAhWHLE9+LjPQLT6xgpvnCjZ2rb+m+9Mf+8va8mhg1DgAAAAAoDDo6tuWxb40vMnliBTOtsu2cxe9b23zy34ry5smUDM4KAAAAABSK/m0vH925rqJtufXESmRwt1JKRLTWSZFKqfhGnRpxXEKYc8Tx9uPdWhuxgbRLfNJkrPk5tU84enwPYjc7BiQ2KrcEZDKcU0BsI24qGSU8i7FcYlQshxn2kxqmczGlluX/o77nA9ue+tSR7Y/M+BuE+zgAAAAAoJBseuRbZmRYRIxgnccI2svdJPGNjgHuu2TelUuLyPh2Uowo53bHodPPynl68SWArDLguGO6bCREZpCTrBKeYYzDTKZyOJcYf1lT98V3d1/6EyNYS40DAAAAAJCp6PDAzufusraDFTyxgnxR2XbO0g++0tD7kRl8dIUaBwAAAAAUmHdef2Ro/3oRUR6fL9xMQpA/Zp39+SU3PV/WdOqMjE6NAwAAAAAKjTY3PXqLNiMi4gvWKY+PlCB/+MKNC6745ezzbvEYoWkemhoHAAAAABSekcO7973+gLXtL5tFQpBvaruuWvbRDTVdV03noyvUOAAAAACgIO147j9HBnaLiMcIenyVJAR5qHP1txdevSZUu3B6hqPGAQAAAAAFSUfHtq+9U5tjIuILNZEQ5KdwXW/vdY91rv7ONDy6Qo0DAAAAAApV/5YXj+xYJyLKY3gD9SQEeau2++rFNz5b2331lI5CjQMAAAAACtjWJ78fHRsQEV+ogQ8fRT7zhRs7V3+n59pH/OXtUzQENQ4AAAAAKGBjxw5vf/Yua9sItZAQ5LlwXe+Sm56fdda/eIxwzjunxgEAAAAAhe3AW08O928REa+vzGOUkRDkv8bFf734hj9Vzjo/t90aZBYAAAAACps2N675au81/+oxgr5w63D/BhFRSmmtj4fE/yVl//gw54jj7ce7tTZiA2mX+KTJiIgox/YJR4/vQexmx4DERuWWgEyGcwqIbcRNJaOEZzGWS4yK5TDDflLDdK6n5BjmcPatekSoofuiHx3Z+eS2J//H6MB2ahwAAAAAABGRkcO7D256rH7BJcpjGMH66MhBa21pLzWVUiIqfnmcUC1IXDCnrlStdqWU1gn72u3xncctvJNiEpbWqe3xnSQtkh1mJcpe3jsG2I2p004cUSWt29NEJhydPTGllGiRxF2smHTdpJyX5Jk4Jt+9K/c5W53Hd5Uu3nW48Rm6T8mxK5fhqtpXLrlp3a4XvrL7pW+Kjp7gG4FnVQAAAACgGGx7+q7RwT0i4gs1iPKSEBSQ1lP/19L3v3zij65Q4wAAAACAYqCjY9vX3qHNiIj4Qo0kBIXFF26ad8lP5qy+1QjWTboTahwAAAAAUCQO971wZNc6EfH6K5U3REJQcGq7r136obcaFv3l5O5FosYBAAAAAMVj6+O3RscGRcRf1ko2UKBmnf3lJe9/NVjbk+2O1DgAAAAAoHiMHTu849k7RUR5DI+/moSgQPnCTb3XPT1n9fc9RjjzvahxAAAAAEBR2f/W48P922T8UzkUCUHhqu2+7qSP7qjpvi7DR1eocQAAAABAcdHmxjVfMaPDImKEmsgHCl3n6u/3XPNUsLZ3wkhqHAAAAABQbEYO7zq48XGxPnzU4ychKHThusW91z3TftZX3B9docYBAAAAAEVo29N3jA6+IyJGuIVsoDg0Lv7E4htfqe1+b7oAahwAAAAAUIR0dGz72u9rM+LxBjy+ChKC4uALN3WuvrPn2mf95R2pr1LjAAAAAIDidLjv+aO7XpTx75Hlw0dRPMJ1S5bc9Gb7WV9L+ixSg9QAAAAAQLHa+vh3em9Y5PWVGaGm0WN70kTp41taO0ccb1f2trWhlNWiXeJjMXGUY/uEo8f3IHazY0Bio0p3aJkO5xQQ24ibSlyMzsVYLjEqlsMM+0kN07mekmOYw9nP0XANiz5R3XnNtif/S//2B60WahwAAAAAULTGjh3a+ewdHed80uuv9Awf0DpiL48TqgWJC+bUFabVrpTSOmFfuz3+PpG4hXdSTMLSOrU99WYTe5HsMCtR9vLeMcBuTJ124ogqaSGdJjLh6OyJKaVEiyTuYsWk68Z+IXHmyvFem3RHl3qMrheCsotN7vGuw43P0H1Kjl1NariMYvxlzd2X/PLVH88fHegTnlUBAAAAgOK2/63HRvq3iYivrJVsoLhR4wAAAACAoqbNjWu+ZEZH+PBRFD1qHAAAAABQ5EYO7zrc97SI+IL1ZANFjBoHAAAAABS/rU98NzJyRHkMb6CWbKBYUeMAAAAAgOKno2M7nr1TRHzBOqX49gkUJ2ocAAAAAFASDq5/bOhQn4gYPLGCIkWNAwAAAABKxabff0lEvP4K5Q2SDRQfahwAAAAAUCpGj+7dv/5hETGCDWQDxYcaBwAAAACUkG1P3WpGxzzegMcoJxsoMtQ4AAAAAKCUmJFdz90tIr5ws4giHygmfJouAAAAAJSWd159oGnZdb5QtTdQFxneJ6Ltl7TWjrvEtSt729pQymrRLvGxmDjKsX3C0eN7ELvZMSCxUaU7tEyHcwqIbcRNJS5G52IslxgVy2GG/aSG6VxPyTHM4exPzXBCjQMAAAAAStDGBz/Xc83NRqA6OnpYtJm0YE5dYVrtSimtJT7Gbo+/JSRu4Z0Uk7C0Tm1Pva/EXiQ7zEqUvbx3DLAbU6edOKJKWkiniUw4OntiSinRIom7WDHpurFfSJy5crytJt3RpR6j6wlXdrHJPd51uPEZuk/JsatJDZdFjI1nVQAAAACg5Azt3zi4b72I+MItZANFgxoHAAAAAJSiLY/eLCIeb8BjhMgGigM1DgAAAAAoRSP9Ow9ve1b4HlkUEWocAAAAAFCi+h75hogoj+HxVZINFAFqHAAAAABQosyxob2v3CcivlC9KJaHKHhcxAAAAABQunY+9yMzOiYi3kAd2UCho8YBAAAAACXMjOx+4T9ExOsrVx4/+UBBo8YBAAAAACVt7ysPREcHRMQI8eGjKGzUOAAAAACgtGmz79Gvy/j3yJaRDxQuahwAAAAAUOqObFs3NrhPRLyBWhFFQlCgqHEAAAAAAGTLYzeL9T2y/iqygQJlkAIAAAAAwNFdrw7sfb28aZERqBkZPSo6Ev+q1jq2qexta0Mpq0W7xMdi4ijHdu04t+R9x3sQu9kxILFROXeS+XBOAbGNuKnExehcjOUSo2I5zLCf1DCd6yk5hjmc/akZTqhxAAAAAAAsfY98bfGNtyuPYQRro8P74leY1kJaKaW1WNv2Mjv2p0qNt1amcTEJS+vU9tTHZOxFssO6V5S9vHcMsBtTp504okpaSKeJTDg6e2JKKdEiibtYMem6sV9InLlyfEoo3dGlHqPruVV2sck93nW48Rm6T8mxq0kNl0WMjWdVAAAAAAAiImOD+4/sXCfW98h6AyQEBYcaBwAAAABg3Lanv6vNiIh4A/VkAwWHGgcAAAAAYNzYwP4Db68REY/Xz60cKDjUOAAAAAAAx21fe4cZHRURI9hINlBYqHEAAAAAAI7T0dF3Xr1frO+RNcpICAoINQ4AAAAAQILdL94bHRsQEW+glmyggFDjAAAAAAAk0NHRnc/cLtatHP5qEoJCQY0DAAAAAJDswIbHIsOHRMQI1IgoEoKCQI0DAAAAAJBCm9v++G1r0+uvIh8oCNQ4AAAAAAAODvc9NzqwR0SMYK0og4Qg/3GZAgAAAACcaHPrU7fMu+QLIuIN1ESG3hEREaW1Hn9daxFRymrRCbtq+69Kax2LiaMc27XzRLRTuxK72TEgsVE5d5L5cE4BsY24qcTF6FyM5RKjYjnMsJ/UMJ3rKTmGOZz9qRlOqHEAAAAAANI5uuPPx/avD9cv8PrKoyOHlES1FmtRbS+zY3+q+BVpbOGdFJOwtE5tT/3gD3uR7LDuFWUv7x0D7EalVNK0E0dUSQvpNJEJR2dPTCklWiRxFysmXTf2C4kzV46fe5Lu6FKP0fVMKrvY5B7vOtz4DN2n5NjVpIbLIsbGsyoAAAAAgLS2PvVtbUZExAjWkw3kOWocAAAAAIC0ju3bOHRwo4h4jJDyBEgI8hk1DgAAAACAm40PfcGMjoqIN1BHNpDPqHEAAAAAANyMDezv3/KUiCiv3+MNkhDkLWocAAAAAIAJbH/2TutWDj6VA/mMGgcAAAAAYAJjgwcPbnhIRJTH6zHCJAT5iRoHAAAAAGBiO/50tzk2ICKGv8bxW06BGUeNAwAAAAAwsejIwJ5X7hMR5fF6fRUkBHmIGgcAAAAAICN7Xv5FZPSIiBiBam7lQB6ixgEAAAAAyIiOju5e92Nr2+uvJiHINwYpAAAAAABk6J3Xft245KpAebPhr4iM9GsdVUpprUV0fJjW9l+V1joWE0c5tmvHQZP3He9B7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjIrlMMN+UsN0rqfkGOZw9qdmOKHGAQAAAADIgjZ3PHv73NWfVh6vL1gTGTlgLWLjH12JW3hL7NXxP+OX1qntqc+/2Itkh4mIspf3jgF2o1JKa+dORI7P3F5Ip4lMODp7Ykop0SKJu1gx6bqxX0icuXJ8/Cfd0aUeo+tpU3axyT3edbjxGbpPybGrSQ2XRYyNZ1UAAAAAAFk43PfMyMBOEfH6ykR5SQjyBzUOAAAAAEA2tLnj2bu0GRURg0/lQD6hxgEAAAAAyE7/1ueGDm0SbuVAnqHGAQAAAADIkja3Pvnv3MqBfEONAwAAAACQtWP7Nhw7uFG4lQP5hBoHAAAAAGAytj55ixkdFRGvv4psIB9Q4wAAAAAATMbQ/k1Hd78kIl6DWzmQF6hxAAAAAAAmaesT9q0clWQDM44aBwAAAABgksYGDxze+kcR8RphbuXAjKPGAQAAAACYvB3P3GGa3MqBvECNAwAAAAAweWODBw6+/QfhVg7kAYMUAAAAAABOxLY/3lrTtcrrC3t9lZGRgyKitY69qLTWSqm4FqvZsV079p+873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADACdLR0b2v3N+6/INeXzg6dkSbkdjCe3wpbv8Zv7RObRdR6RbJDoOKspf3jgF2o1JKa+dORJQ9qL2QThN5fEr2ol0ppZQSLZK4ixWTrhv7hcSZq9TDdzm61GN0PUXKLja5x7sONz5D9yk5djWp4bKIsfGsCgAAAADgRO15+b5o5JjwqRyYUdQ4AAAAAAAnSkdHd7/wQ+FTOTCjqHEAAAAAAHJg76sPREb6RcTwV5ENzAhqHAAAAACAXNDmjj/dJSJeH7dyYGZQ4wAAAAAA5MaB9Q+PDR0QPpUDM4QaBwAAAAAgR7S55fFvCJ/KgRlCjQMAAAAAkDNHtq8b7t8u3MqBmUCNAwAAAACQS1se/1fhVg7MBGocAAAAAIBcGtz7hnUrh8GtHJhe1DgAAAAAADm26Q9fEL5gBdPOIAUAAAAAgNwaPtB3ZNfLla3LDH9lZOSQUkprnRChlNY6pV079pa873gPYjc7BiQ2KudOMh/OKSC2ETeVuBidi7FcYlQshxn2kxqmcz0lxzCHsz81wwk1DgAAAADAVNjy+NeX3Hi31xeOjh0VHbWW4vFLa6slvl1EpVskO6x7RdnLe8cAu1EppbVzJyLKHtReSKeJPD4le9GulFJKiRZJ3MWKSdeN/ULizFXq4bscXeoxup4NZVV5Jox3HW58hu5TcuxqUsNlEWPjWRUAAAAAQO6NDewb3LdeRDxGiGxgelDjAAAAAABMic1/+IKMf/KoIhuYBtQ4AAAAAABTYmxw/+FtfxIRj6+MbGAaUOMAAAAAAEyVbU99S/gSWUwXahwAAAAAgKkyNrh/cN/bIqK8QbKBqUaNAwAAAAAwhfoe/YqIeLmVA1OPGgcAAAAAYAqN9O8YOrhFKa/yBMgGphQ1DgAAAADA1Nr2x++IiNdfQSowpahxAAAAAACm1sDuP48dO6g8PuXxkQ1MHWocAAAAAIApt/2Z74qI119FKjB1DFIAAAAAAJhqhzY/Ya76nx6vX4tHdFSU0lorpbTWcVHacd/EmBgldrNjQGKjcu4k8+GcAmIbcVOJi9G5GMslRsVymGE/qWE611NyDEs5y1M1nFDjAAAAAABMB23ufeXelpPfb/grI6OHraWv/ae9bE+3SHboT5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2v2lVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAANNh14v3aDPiMUKivGQDU4EaBwAAAABgWpiRIzvXiYjHGyIZmArUOAAAAAAA02TrU98UEcNf4fhcBnCCqHEAAAAAAKbJ2OD+gXfeEBGPUUY2kHPUOAAAAAAA02fXCz+Q8Vs5gByjxgEAAAAAmD5Hd740emy/iChvkGwgt6hxAAAAAACm1a51/yEiXh+3ciDHqHEAAAAAAKbVwQ2PmNERpbzK4ycbyCFqHAAAAACAaaWjo/ve/I1wKwdyjRoHAAAAAGC67X3lPm2OKY9PeXxkA7lCjQMAAAAAMN3GBvcf3f2yiHh9lWQDuWKQAgAAAADA9Nv5wt0Vracoj0+LR3RURES0Y6TWTu1K7GbHgMRG5dxJ5sM5BcQ24qYSF6NzMZZLjFJKa62UyrCf1DCd6yk5hlnznIoMpKLGAQAAAACYAcf2bRgd3BsobzV8FdGx/vFiQZpFssO6V5S9vHcMsBuVUlo7dyKi7EHthXSayONTshftSimllGiRxF2smHTd2C8kzlylHr7L0aUeo2uylVXlmTDedbjxGbpPybGrSQ2XRYyNZ1UAAAAAADNBm7vX3SMiHiPkuLwHskWNAwAAAAAwMw5ueiI6dlREPEaYbODEUeMAAAAAAMwMHRnZz5fIIneocQAAAAAAZsz+t9aYkSERUd4g2cAJosYBAAAAAJgxI4e3Dx3uE27lQC5Q4wAAAAAAzKRdz96uzTGlvMrjIxs4EXx3bEEyNScOQI5p3UUSAJzAz5CPkwQAuVBDCnAiuI8DAAAAAAAUA24HKEgeFUn3khat4r5ZWot2jpr426fjY7Tkpp+sYsxpHCvpMKdgLGWmCdGiJurHMUbrlJmf4JzNbI5L5yI/ZgYX+4T9aJEJ8zNhPzqbHMpEh5/Qj3I6zKT3qWNu08fER+ckh6Z1B4dSm1zPsms/1hWe2fWs3H46Zf7zJ6tjd/khNj5npZTWOuXKie/H/cpPzY/peP0o1+sn5bynuX6UaG3PR000n3S5imb8c0OrNJ1o5/dOuuvHzOZyTX/qnY/YzPJHh5nxr57014+KXfZaT/ZHh7YuiUxPvUP+k3KVyal3zE/SYcZiUn9/aZ30q8e6g0Op27I/9dn86lHxQzvmKuH6cXyvaTHVRL+S4s6FFuf3WnbXj8u73h5Lu14kri+55yRdDtOd+kn/6Eh3/WinX8rprkPn60e5Xj8p7x37rGX4Txfn62d85g7/JHP/90Z8P2aW78E0P39SZ6Jd/sma1a+e8X6Scxg34vgvRxGtzSz/+Zf++nH6Z5s1Q2+gYvFNP/T6KszIcHTsSNzrWimlnP6NoUVZHWqtPZ7x/79/+a5aFowlvVgmBQAAAACAmRUdOXpw46Mi4jH4dhVMHvdxAAAAAABm3oG3Hqydd6HXCClv2IwMxr+kHW8IiruRzjEgsVFprTOcyYSRdkBsw+GePp3ZeJlEpYux7rVRsZtZJnFoOtdTcgyz7wmSKR5OqHEAAAAAAPLBsX0bhg5uKm9cbPjLx6LHkhbJDuteUfby3jHAblRKae3ciYiyn7KxF9LK9fFbazh7Ykqp8SerUmLSdWO/kDhz5fjsXrqjSz1G1+wqq8ozYbzrcCr2lKJWEz6hnBg2qeGyiLHxrAoAAAAAIC/sffln2oyIiPIGyAYmgRoHAAAAACAv9O94ITo2ICJeo4xsYBKocQAAAAAA8oKOjOx58cdaR5XHUB4fCUG2qHEAAAAAAPLFoc1PmJEhEfFwKweyR40DAAAAAJAvxgb3D+5fLyIer18UK1ZkhysGAAAAAJBHdj17uxkZFhGPESYbyAo1DgAAAABAHjm2f+PI4B4R8VLjQJaocQAAAAAA8ok29778U+tLZPlUDmSFGgcAAAAAIL8c3PT4+JfI+kJkA5mjxgEAAAAAyC86MnJw0+NaR5XyKm+AhCBD1DgAAAAAAHln32s/N8eOiYiXx1WQMYMUAAAAAADyzfDh7QP711e1nqo8hihDm2PJEUq0Ht/U9lacxEblGONowkg7ILYRN5W4GJ2LsVxilFJaa6VUhv2khulcT8kxzJrnVGQgFTUOAAAAAEA+2vvij8sber2+sMcImWOR5HWvKHt5b22klgDiagHiGCOiRFTSQjpN5PH1tr1oV0oppUSLJO5ixaTrxn4hcebHZ5LaVbrJxB+jay6VVeWZMN51uPEZuk/JsatJDZdFjI1nVQAAAAAA+ejo7j+bkSER8XiDZAOZoMYBAAAAAMhL2tzz8k+0joqIosyBDFDjwP9v725+HMvO+wC/L6tmRlYsKbYTOIplR0Ccz0ViIPHCSOxlECCbbIMAcTZBEO+yyz+RRTZeBHAWDmAEsBHFEawgsmVbVixL1owsWx8z0sxoer66p7+ruqq7WFUkTxaXdZtVvPcWWU2yiuTzQBBuky/fc+qQXT33B95zAQAAbqiHP/hitfNoz86jzEDGAQAAwA01PD54+PYfRERmL9KGklxCxgEAAMDN9fCNL4yG/Yjo7f6I1aCbjAMAAICb69n9758+vR92HmUGMg4AAAButA++/l9LGYWdR7mMjAMAAIAb7cn736/Wk0kAAB+MSURBVBgNnoadR7mMjAMAAIAbbTQ4/ujPfiPsPMplZBwAAADcdA/f/NLZzqO+ykErARgAAAA33enT+0eP3/lLf+Xv9XZeHp5ERImMUsbPlvpowvkHs7Gm0aWVdcHZwcRUJmrKIsbqqMnMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArIH3vvJf/u6//NXMXm/342X4rETWp/fVwXQEMJEFRGNNREbkhRPplsrn59v1SXtmZmaUiPMvqWra2tRPnJ/585lMt2qbzOTP2Ll4WaU8l9Z3DjeeYfeUGltdabg5amquVQEAAGANPHvw5unRg4jo7f6I1aCRjAMAAIB1UEZ3Xvv1sPMo7WQcAAAArIdHb35xNDwJO4/SQsYBAADAehgNjvff/2pE9HZebty9gi0n4wAAAGBt3P7GfytlFBG9nY9ZDS6QcQAAALA2+o9vnRzeCTuP0kTGAQAAwDr54Gu/GhGZvbTzKOfJOAAAAFgne7e+erbzqK9ycI6MAwAAgLVSRg9e/98R0eu97KyWST4NAAAArJnb3/zvZzuPvmI1qLl4CQAAgDUz7O89ffDGj/7Vv7+z+/Hh4FkpZbrm/IPZWNPo0sq64OwgY+olZbbxZqlqq8nMUkpmzthnuqwsekqNZdU8l7EC02QcAAAArJ/bf/prf/tf/OeIyN5LGcPGCGAiC3j+xwtVEXnhRLql8vn5dn3SnpmZGSXi/EuqmrY29RN1QnFhJtOt2iYz+TN2rlZWKc+l9Z3DjWfYPaXGVlcabo6ammtVAAAAWD8HH746PH0WETs7dh5lTMYBAADAWrr3nd+KiN7Oy5aCiowDAACAtXT3279VHWRPzEGEjAMAAIA1Nezv9/ffj4he72NWg5BxAAAAsL7uffdzEZG93cYNO9k2Mg4AAADW1YPvf6E6yN4rVgMZBwAAAOuqnB49e/TDiOjtuFwFGQcAAADr7N53fjMiMnuRO1Zjy8k4AAAAWGOP3vq9UkYRkfmS1dhyMg4AAADWWBkc9/duRcTO7setxpaTcQAAALDebr/6axaBiNi1BAAAAKy1/fe/XkaD7J07wy2lTPwpz/+xy6WVdcHZQcbUS8ps481S1VaTmaWUzJyxz3RZWfSUGsuqeS5jBabJOAAAAFhvZXB89Pjtj//E37kQAUxkAc//eCEoiMgLJ9Itlc/Pt+uT9szMzCgR519S1bS1qZ+oE4oLM5lu1TaZyZ+xc4WySnkure8cbjzD7ik1trrScHPU1FyrAgAAwNr78BsuV0HGAQAAwPo7vP3N0ejUOmw5GQcAAABrbzQ43nvny9Zhy8k4AAAA2AR3v/ObFmHLyTgAAADYBM/uvWERtpyMAwAAgI1QRtZgy8k4AAAAgE0g4wAAAAA2gYwDAACATZQ71mDbyDgAAADYxNPd3isWYdvsWgIAAAA2T2/nY8PB07M/ZSllxhdeWlkXnB1kTL2kzDbeLFVtNZlZSsnMGftMl5VFT6mxrJrnMlZgmowDAACAzZS9l6IMMrOUqLKA6ZKIvHAi3VL5/Hy7PmnPzMyMEnH+JVVNW5v6iTqhuDCT6VatP+DZU91zrppPtmqr7xxuPMPuKTW2utJwc9TUXKsCAADAZur1XrYI2/WOWwIAAAA284x352MWYbvecUsAAADAxkpbNGwRGQcAAAAbaDQ6DZerbBkZBwAAABuoDPvhcpUtI+MAAABgA91/47fHR7ljNbaEjAMAAIAN9PCNL1SXq2S6XGVbyDgAAADYQP29d0+PHoTLVbaJjAMAAIDN9OB7/2t85HKV7SDjAAAAYDPt3fqKu6tsFRkHAAAAm8nlKttm1xIAAACwqe5/73Of+flfiYgSvSjDWV5SSpmx4OwgY+ol5dIus43VUZOZpZTMnLHPdFlZ9JQay6p5LmMFpsk4AAAA2Fj7t/7fT/2jf5e9l3o7L5dhfzooiMgLJ9JVatBxvl2ftGdmZkaJOP+SqqatTf1EnVBcmMl0q7bJ1E91z7lqPtmqrb5zuPEMu6fU2OpKw81RU3OtCgAAABtr4nKVV6zGxpNxAAAAsMnuv+7uKttCxgEAAMAm23vnK6PhSURk7yWrsdlkHAAAAGyy/t67p0f3w+UqW0DGAQAAwIa7/93PjY9crrLRZBwAAABsuP33vjoaHofLVTadjAMAAIAN19979/ToYbhcZdPJOAAAANh8LlfZBjIOAAAANp/LVbaBjAMAAIDN19+75XKVjbdrCQAAANgGd77565/9pf8UESV6UYZtZaWU7j51wdlBxtRLyqVdZhuroyYzSymZOWOf6bKy6Ck1llXzXMYKTJNxAAAAsBX2bn159E/+Y2/nld7Oy2XYr4KCiLxwIl2lBh3n2/VJe2ZmZpSI8y+patra1E/UCcWFmUy3aptM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsBWGx0/6e++Fy1U2l4wDAACAbXH/e/9zfOTuKptIxgEAAMC2ePzOH7q7ygaTcQAAALAthsdPjvc/CBnHhpJxAAAAsEXuv/65iMjsNe7xyVqTcQAAALBFHr39pTIahK9ybCIZBwAAAFtkeLx/cngnIrL3stXYMDIOAAAAtsv9Nz4fEdlza5VNI+MAAABguzx44/OljCIictdqbBIZBwAAANtleLx/cng3bMmxcURWAAAAbJ1Hb3/x0z/3y72dlwaDowtPlVK6X1sXnB1kTL2kXNpltrE6ajKzlJKZM/aZLiuLnlJjWTXPZazANBkHAAAAW+fuX/yPT//cL0e1K0cZTZ5IV6lBx/l2fdKemZkZJeL8S6qatjb1E3VCUT3ceC/b8zWtrbrnXDWfbNVW3znceIbdU2psdaXh5qipuVYFAACArTPsPz49ehQRaUuODSLjAAAAYBs9eut3IyJ3bMmxOWQcAAAAbKN73/6NiMjsNV4kwjqScQAAALCNTg7vDU8OIyJ7LlfZEDIOAAAAttT+e18NGccGkXEAAACwpR58/3dCxrFBZBwAAABsqYMP/7SUUURE7liNDSDjAAAAYHv1H98KX+XYFDIOAAAAtld1B9nezsuWYgPIOAAAANheD9/8wvgonSCvPW8hAAAA2+v06b3h6VG4XGUjeAsBAADYak8+fPXHPvuLvd5Lw+FJRJRSuuvrgrODjKmXlEu7nG91hZrMLKVk5ox9psvKoqfUWFbNcxkrME3GAQAAwFZ79Ob/+bHP/mL2diKyOifvPt+uT9ozMzOjRJx/SVXT1qZ+ok4oqoer0RuHa5tM/VT3nKvmk63a6juHG8+we0qNra403Bw1NdeqAAAAsNWevP8nZTSMiOy5g+x6k3EAAACw1UaD/snT+xGR7q6y5mQcAAAAbLvH7/xBRPRsO7rmZBwAAABsu713fn985A6y68ybBwAAwLZ7eu+7o+FpRGT6Kscak3EAAACw9cro6OGbEZEuV1lnMg4AAACIh29/MdxaZc3JOAAAACAO3v9aKaOIiBRzrCsZBwAAAER//90y3pJDxrGuZBwAAAAQUUb7H3w9IsKWHGvLOwcAAAAREY/f/r0f++wvZfZGJSJKW1kp5fxBRinTNWWGEWepaqvJzFJKZs7YZ7qsLHpKjWXVPJexAtNkHAAAABARcfjRt8pomL2d7O1GGbSdb9cn7ZmZmVEiMqdrzj/2XP1EnVBUD0dk23BtE66f6qipm0+2aqvvHG48w+4pNba60nBz1NRcqwIAAAAREadP7w76++EOsmtLxgEAAABj++99JWQca0vGAQAAAGOPfvj7zpfXl/cMAAAAxp7df72MTiMieu4gu35kHAAAADA2PN4/PrgdLldZTzIOAAAAeO7xW78bEZm+x7F+ZBwAAADw3P77Xy1lFBEh5lg3Mg4AAAB47ujR2zEahK9yrCEZBwAAADw3GvQP7383IsKWHOtGxgEAAADnPH77SxGR2YtIq7FGZBwAAABwzsHtV0sZRtiSY8344g0AAACc0997twxPc3cne7ujwemFZ0sp5w8yzh6ZrCkzDDRLVVtNZpZSMnPGPtNlZdFTaiyr5rmMFZgm4wAAAIALZ9Wjw3vf+eRf/8fZ261ChMnz7fqkPTMzM0pEU022XOZSP1EnFNXDjdfFnK9pbdVRUzefbNVW3znceIbdU2psdaXh5qipuVYFAAAALnrw+uecOK8dbxUAAABc9PTut8voNCKiZ0uOtSHjAAAAgItODu+W0TAi0h1k14eMAwAAABo8/MHvRES6tcr6kHEAAABAg71bfzg+SufO68H7BAAAAA2e3X9jvCWHr3KsCRkHAAAANBgc7w/6++FylfUh4wAAAIBmD7//O2Hb0fUh4wAAAIBme+9+2enzGvEmAQAAQLOjR2+X0SAioudylTXg+zYAAADQbDTonxx+9MonPxPRK6VUD04dZJw9Uitl6qEms1S11WRmKSUzZ+wzXVYWPaXGsmqey1iBaTIOAAAAaLV36ys/+Q/+VW/npdHouDrfrk/aMzMzo0RkXjgnr55pVD9RJxTVwxHZeHrf2miiVUdN3XyyVVt953DjGXZPqbHVlYabo6bmWhUAAABo9eAHn584yedGk3EAAABAq/7jd0oZRkS4g+yNJ+MAAACAdmXU338/ItK2ozeejAMAAAC67L/7RxG+x7EG7Dm6lkbFGwcsWCl/0yIAL/A75N9bBGCDPXjj83/tH/6bzF6xFjeb73EAAABAl+P990oZRfgqx00n4wAAAIBL9PduRUTKOG42GQcAAABc4tFb/zciomffgBvN27M2ejkoUfKyGzJfqClRmqsuv7HzZE2JxfSZq2a0wrEu/JhLGCtHLSUl8rI+jTWlTM38Bec8mufnKotYn9EMH/xL+5SIS9fn0j5lnjWMy378c32y6cds/7v8fG1n+/u+kDUcNdVMv8udfapP+Gyf5+z67TT775+5fvaOX2LjOWdmKWXqkzPZp/uTP70+o8bPT3Z+fqbe95bPT0Yp9Xzysvm0rdVw5t8bJVualOa/O22fn9E8H9f2t775Jx7N+atjNPM/Pe2fnzz72Jdy1V8dpfpIzPrWN6z/hbWa5a1vXJ8LP+ZZzfS/X6W0/9Mz71s/zz89OTl041qd+/w0/l0rMcrL/kmaeC9KNP9dm+/z0/G3vh6rdH5IOp/qXpO2NWx71678q6Pt81Oa/lFu+xw2f36y8/Mz9Xenftdm/E+X5s/PeOYN/3 GIỚI THIỆU GIỚI THIỆU  Mô hình nhân quả  Mô hình chuỗi thời gian Hai loại mô hình dự báo chính: 2 NỘI DUNGNỘI DUNG  Giới thiệu xây dựng Mô Hình ARIMA (Auto-Regressive Integrated ... xem là dừng nếu 1 SỬ DỤNG MÔ HÌNHSỬ DỤNG MÔ HÌNH ARIMA ARIMA TRONG DỰ BÁO CHUỖI THỜI GIANTRONG DỰ BÁO CHUỖI THỜI GIAN CAO HÀO THI 7  Đồ thị Y t = f(t)  Hàm tự tương quan mẫu (SAC – Sample Auto...

Ngày tải lên: 02/04/2014, 21:59

26 1,4K 5
khai phá dữ liệu chuỗi thời gian dựa vào rút trích đặc trưng bằng phương pháp điểm giữa và kỹ thuật xén

khai phá dữ liệu chuỗi thời gian dựa vào rút trích đặc trưng bằng phương pháp điểm giữa và kỹ thuật xén

... số chiều chuỗi thời gian. 2 2.3. Rời rạc hóa chuỗi thời gian. 3 2.4. Cấu trúc chỉ mục. 3 2.5. Tìm kiếm tương tự trên chuỗi thời gian. 3 2.6. Tìm kiếm tương tự trên chuỗi thời gian dạng luồng. ... đề tài. Một chuỗi thời gian (time series) là một chuỗi các điểm dữ liệu được đo theo từng khoảng thời gian liền nhau theo một tần suất thời gian thống nhất. Một chuỗi thời gian dạng luồng (streaming ... xoắn thời gian động (Dynamic Time Warping). 2.2. Thu giảm số chiều chuỗi thời gian. Thu giảm số chiều là phương pháp biểu diễn chuỗi thời gian n chiều X = {x 1 , x 2 , …, x n } thành chuỗi thời...

Ngày tải lên: 10/05/2014, 21:58

32 1K 1
đề tài thảo luận '''''''''''''''' thiết kế một tour du lịch trong thời gian 4-7 ngày đi quảng ninh bằng việc ứng dụng những kiến thứ

đề tài thảo luận '''''''''''''''' thiết kế một tour du lịch trong thời gian 4-7 ngày đi quảng ninh bằng việc ứng dụng những kiến thứ

... của các thời đại. Hiện nay hệ thống cáp treo ở Yên Tử đã đi vào hoạt động, đưa du khách tới chùa Hoa Yên ở độ cao 534m so với mực nước biển, nơi có hai cây đại 700 năm tuổi Tiềm năng du lịch ... chương trình Thương mại điện tử căn bản Nhóm 8 Đề tài thảo luận : Thiết kế một tour du lịch trong thời gian 4-7 ngày đi Quảng Ninh bằng việc ứng dụng những kiến thức thu được qua học tập nghiên ... nóng, ẩm, mưa nhiều, gió thịnh hành là gió nam. Mùa đông lạnh, khô hanh, ít mưa, gió đông bắc Khách Sạn Sao Mai • Khách sạn Sao Mai • Địa chỉ: Đảo Tuần Châu, Thành phố Hạ Long, Quảng Ninh Điện...

Ngày tải lên: 02/07/2014, 06:27

20 1,2K 0
Cấp giấy chứng nhận cho học viên đã chấp hành xong thời gian ghi trong quyết định chữa trị, cai nghiện tại Trung tâm pptx

Cấp giấy chứng nhận cho học viên đã chấp hành xong thời gian ghi trong quyết định chữa trị, cai nghiện tại Trung tâm pptx

... thủ tục hành chính Trung tâm Chữa bệnh - Giáo dục - Lao động xã hội cấp giấy chứng nhận, giải quyết cho đối tượng ra khỏi Trung tâm theo thời gian ghi tại biên bản do Hội đồng đã xét duyệt ... bước 1. Họp Hội đồng xét duyệt hồ sơ Trung tâm Chữa bệnh - Giáo dục - Lao động xã hội tổ chức họp Hội đồng khen thưởng, kỹ luật xét duyệt, lập biên bản nội dung cuộc họp (tùy tình hình ... học viên không có nơi cư trú nhất định. Hồ sơ Thành phần hồ sơ 1. Biên bản cuộc họp Hội đồng khen thưởng. 2. Danh sách xét duyệt, giải quyết cho học viên tái hòa nhập cộng đồng...

Ngày tải lên: 02/07/2014, 08:20

3 373 0
w