Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,26 MB
Nội dung
Lecture 05 BJTs Circuits Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt topics • Large-signal operation • BJT circuits at DC • BJT biasing schemes Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Large-signal Ỉ Bias (DC) + signal (AC) Bias + signal vo = Vcc − iC Rc = Vcc − Rc I S e vBE VT vBE = VBE + vi Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt DC load line : VBB = I B × RB + VBE Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt VCC = I C × RC + VCE Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt head room (small) Leg room (small) VCC = I C × RCA + VCE → QA VCC = I C × RCB + VCE → QB RCB > RCA Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt BJT operate as a switch Switch off: vI < 0.5V →i B = →i C = →v C = VCC Switch on: vC = 0.2V ≈ 0V Switch on Ỉ saturation mode Switch off Æ cut-off mode Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.3 BJT work in saturation mode VC = VCE ( sat ) = 0.2V 50 < β 10 − 0.2 I C ( sat ) = = 9.8mA 1k I C ( sat ) 9.8m I B (max) = = = 0.196mA 50 β < 150 I C ( sat ) 9.8m I B (min) = = = 0.0653mA 150 β max I B = I B (max) × overdrive RB = factor − 0.7 4.3 = = 2.2k IB 1.96 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.4 (DC analysis) Reverse bias β = 100 forward bias Assume BJT in active mode : VE = − 0.7V = 3.3V IE = VE 3.3 = = 1mA RE 3.3k 100 ×1mA = 0.99mA I C = αI E = 100 + I B = I E − I C= 0.01mA Active mode check VC = 10 − I C × 4.7 k = 5.3V Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.5 (DC analysis) Assume BJT in active mode : VE = − 0.7V = 5.3V β = 100 VE IE = = = 1.6mA RE 3.3k 100 ×1.6mA = 1.584mA I C = αI E = 100 + I B = I E − I C= 0.016mA VC = 10 − I C × 4.7 k = 2.48V JC : forward bias Not in active mode JE : forward bias 10 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.9 (DC analysis) β = 30 Assume BJT in active mode : VE = VEB + VB RB l arg e → I B ≈ − 0.7 = 4.3mA 1k I C ≈ I E = 4.3V → VC = 10k × 4.3m − 5V = 38V (impossible) VE ≈ 0.7V → I E = I C (max) = 0.5mA → VC = 0V 15 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.10 (DC analysis) Reverse bias β = 100 forward bias Thevenin’s equivalent circuit VBB = I B RBB + VBE + I E RE VBB = 15V VBB = I B RBB + VBE + ( βI B + I B ) RE RBB ⇒ I B = 0.0128mA 50k = 5V 100k + 50k = 100k // 50k = 33.3k Assume BJT in active mode : ⇒ I E = 101× I B = 1.29mA ⇒ I C = 1.28mA 16 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.11 (DC analysis) β = 100 β = 100 15V = ( I C1 + I B ) RC1 + VC1 ≈ I C1 RC1 + VC1 ⇒ VC1 ≈ 8.6V start VE = VC1 + 0.7V ≈ 9.3V 15 − 9.3 ≈ 2.85mA 2k = αI E ≈ 2.82mA IE2 = IC with I B = 0.028mA Find correct current by iteration VC = I C × 2.7 k ≈ 7.62V I B2 = IE2 ≈ 0.028mA 101 CuuDuongThanCong.com 17 Microelectronic Circuit by meiling CHEN https://fb.com/tailieudientucntt Exercise 5.30 (DC analysis) β = 100 β = 100 IC3 VC 18 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.12 (DC analysis) β = 100 β = 100 Q1 and Q2 cannot be conducting at same time If Q1 ON than Q2 OFF, and vice versa Assume Q1 on and Q2 off : 19 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt BJT’s biasing schemes self-bias Base fixed bias Collector-feedback bias Two power supply version bias Constant current bias 20 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Why we need good biasing scheme? 1.Temperature change ỈCollector biasing current change 2.Device change Ỉ biasing current change iC T1 T2 T3 iC1 iC vBE iC = I S e VBE VT KT 1.38 ×10 − 23 ( o K ) VT = = q 1.6 × 10 −19 21 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt VBB − VBE IE = RE + 1R+Bβ Self-Bias Insensitive to T and β Constrains: VBB >> VBE RE >> Voltage-divider : RB 1+ β RR Q RB = R1 + R2 RE >> Suggestion: ( R1 + R2 ) × 0.1× I E = VCC CuuDuongThanCong.com The rule of thumb : (經驗法則) VBB = 13 VCC I C RC = 13 VCC ∴ R1 , R2 small → I B ↑ Trade-off RB 1+ β VCE (orVCB ) = 13 VCC 22 Microelectronic Circuit by meiling CHEN https://fb.com/tailieudientucntt Self-Bias (emitter feedback bias) VCC VCC − VBE IE = RB RE + 1+ β RC RB VE RE The rule of thumb : VBB = 13 VCC I C RC = 13 VCC VCE (orVCB ) = 13 VCC 23 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Example 5.13 design the following self bias circuit VBB − VBE IE = RB RE + 1+ β The rule of thumb : VB = 13 12 = 4V VE = − VBE = 3.3V given I E = 1mA VCC = 12V β = 100 ( R1 + R2 ) × 0.1× I E = VCC RE = VE 3.3 = = 3.3k I E 1m ⇒ ( R1 + R2 ) × 0.1× = 12 L (a ) RC = 12 = ≈ 4k αI E 0.99 ×1m R2 VCC L (b) VB = 4V ⇒ R1 + R2 R1 = 80k (a ), (b) ⇒ R2 = 40k 24 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Base fixed bias VCC RC RB Type IC = β (VBB − VBE ) RB Type Type IC = β (VCC − VBE ) RB IC = RB RB = RB1 // RB VBB Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com β (VBB − VBE ) RB = VCC RB1 + RB 25 https://fb.com/tailieudientucntt Collector-feedback bias (a) Constrains: RC >> VCC = I E RC + I BRB + VBE V −V I E = I B + I C = CC RBE RC + 1+Bβ RB 1+ β T ↑⇒ I C ↑⇒ I C RC ↑ ⇒ VCE ↓⇒ I B ↓⇒ I C ↓ Good biasing scheme 26 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Collector-feedback bias (b) VCC RB RC VCC = ( I B + I C ) RC + I BRB + VBE + ( I B + I C ) RE VCC − VBE I E = I B + IC = RC + RE + 1R+Bβ RE T ↑⇒ I C ↑⇒ I E ↑ ⇒ VCE ↓⇒ I B ↓⇒ I C ↓ Good biasing scheme 27 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Two-power supply version I B RB + VBE + I E RE = VEE VEE − VBE ⇒ IE = RE + 1R+Bβ Constrains: VBB >> VBE RB RE >> 1+ β 28 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Constant current bias by Current mirror I REF = I C1 + I B1 + I B Q Q1 ≡ Q2 ∴ I B1 = I B = I B I REF = I C1 + I B = ( β + 2) I B I = I C = I C1 = ( β + 2) I B I V − (−VEE ) − VBE I Re f = CC R VCC + VEE − VBE I = I Re f = R I REF = β ( β + 2) ≈β 29 Microelectronic Circuit by meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt ... https://fb.com/tailieudientucntt Assume BJT in saturation mode : VE = − 0.7V = 5. 3V VC = VE + VCE ( sat ) = 5. 3 + 0.2 = 5. 5V IE = VE = = 1.6mA I E 3.3m 10 − 5. 5 IC = = 0.96mA I B = I E − I C= 0.64mA 11 Microelectronic... Example 5. 3 BJT work in saturation mode VC = VCE ( sat ) = 0.2V 50 < β 10 − 0.2 I C ( sat ) = = 9.8mA 1k I C ( sat ) 9.8m I B (max) = = = 0.196mA 50 β < 150 I C ( sat ) 9.8m I B (min) = = = 0.0 653 mA... equivalent circuit VBB = I B RBB + VBE + I E RE VBB = 15V VBB = I B RBB + VBE + ( βI B + I B ) RE RBB ⇒ I B = 0.0128mA 50 k = 5V 100k + 50 k = 100k // 50 k = 33.3k Assume BJT in active mode : ⇒ I E = 101×