Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
1,32 MB
Nội dung
Lecture 12 BJT’s Differential Pair Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt topics • Ideal characteristics of differential amplifier – – – – Input differential resistance Input common-mode resistance Differential voltage gain CMRR • Non-ideal characteristics of differential amplifier – Input offset voltage – Input biasing and offset current • Differential Amplifier with active load Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Differential pair Figure 7.12 The basic BJT differential-pair configuration Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Common mode operation Q Q1 = Q2 ∴ vB1 = vB = vCM ⇒ iE1 = iE I = ⇒ vC1 = vC = VCC I − α RC vC1 − vC = Reject common mode input Figure 7.13 Different modes of operation of the BJT differential pair: (a) The differential pair with a common-mode input signal vCM Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt The differential pair with a “large” differential input signal (1)VB1 >> VB VB1 = +1V , VB = Q1 on → VE1 = 0.3V = VE → Q2 off VC1 = VCC − αIRC , VC = VCC VC1 − VC = −αIRC Figure 7.13 Different modes of operation of the BJT differential pair: (b) The differential pair with a “large” differential input signal Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt (2)VB1 VB VB1 = small , VB = I I I E1 = + ΔI , I E = − ΔI 2 I VC1 = VCC − α RC − αΔIRC I VC = VCC − α RC + αΔIRC VC1 − VC = vo = −2αΔIRC ⇒ vo = f (ΔI ) Figure 7.13 (Continued) (d) The differential pair with a small differential input signal vi Note that we have assumed the bias current source I to be ideal (i.e., it has an infinite output resistance) and thus I remains constant with the change in vCM Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Exercise 7.7 let α ≈ 1, vBE = 0.7V find vE , vC1 and vC − 0.7 I= = 4.3mA 1k + 0.7 − Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Large signal operation iE = IS e ( vB1 −vE ) / VT iE = IS e ( vB −vE ) / VT α α iE = e ( vB1 −vB ) / VT iE iE1 = iE1 + iE + e ( vB −vB1 ) / VT iE = iE1 + iE + e ( vB1 −vB ) / VT iE + iE = I iE = iE I + e −vid / VT I = + e vid / VT Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt iC1 ≈ I + e −vid / VT + e −vid / VT iC I = ⇒ ≈ vid / VT I + e vid / VT 1+ e I iE = iE ⇒ How to enhance linear region? Figure 7.14 Transfer characteristics of the BJT differential pair of Fig 7.12 assuming α 10 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Differential mode vo vo RS vs RC αie RC vs RS g m vπ RE re re = Rid = (1 + β )(50 + 150) RE VT 25m = = 50 I E 0.5m 150 Rid = 2(1 + β )(50 + 150) = 40k v c1 − α (1 + β )ib 10k − αie Rc = = vs Rs ib + 0.2ie 5kib + 0.2k (1 + β )ib v c1 − α (1 + β )10k = vs 5k + 0.2k (1 + β ) Ad = Rid v c1 −v c v − α (1 + β )10k = 40 = c1 = vs vs 5k + 0.2k (1 + β ) 26 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Common mode vo RS vicm vo RS RC vicm αie αie ib 0.05k re g m vπ 0.15k RE ro = rO RC 10k RE Ricm REE Ricm ie 400k if VA VA = = 200k I IC 2 REE RC1 = Rc + 1% ≠ RC = Rc − 1% vc1 = − βib ( RC ) vc = − βib ( RC + ΔRC ) Ricm ≈ (1 + β )(400k // 200k ) ΔRC = RC × 0.02 Ricm ≈ (1 + β )(400k // 200k ) = 6.7 M Microelectronic Circuits by Meiling CHEN 27 vicm = 5kib + (1 + β )ib (400.2k ) Acm = vc1 − vc β (ΔRC ) = vicm 5k + (1 + β )(400.2k ) CuuDuongThanCong.com https://fb.com/tailieudientucntt 7-4.2 Input offset voltage Vos ≡ V o vi = Ad Solution : Add a -Vos − − Vos Ad Vo = Vos Ad + (−Vos ) Ad = + 28 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt 7-4.2 Input offset voltage Case : different RC Case : different Q let RC1 ≠ RC , Q1 = Q2 ΔRC RC1 = RC + ΔR RC = RC − C ΔR αI VC1 = VCC − ( )( RC + C ) 2 ΔR αI VC = VCC − ( )( RC − C ) 2 αI Vo = VC1 − VC = ΔRC αI αI ΔRC ΔRC Vo Vos ≡ = = IE Ad g m RC RC VT Vos = VT ΔRC RC 29 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Q1 ≠ Q ⇒ I S ≠ I S consider IC = ISe V BE VT ΔIS ΔIS IS2 = IS − Q V BE = V BE internal Consider Q and RC Vos = (VT I S1 = I S + ∴ I E1 = ΔRC ΔI ) + (VT S ) RC IS Solution : Add a -Vos ΔIS I (1 + ) 2IS ∴ IE2 ΔIS I = (1 − ) 2IS ⇒ VO I ΔIS =α RC IS V os = V T ( ΔIS ) IS CuuDuongThanCong.com 30 Microelectronic Circuits by Meiling CHEN https://fb.com/tailieudientucntt Input offset current I /2 L symmetric case β +1 β1 ≠ β ⇒ I B1 ≠ I B I B1 = I B = let I os = I B1 − I B Δβ Δβ , β2 = β − 2 I E1 I I Δβ (1 − ) ⇒ I B1 = = ≈ (1 + β1 ) β + + Δβ / 2 β + 2β let β1 = β + ⇒ I B2 = I os = IE2 I I Δβ (1 + ) = ≈ (1 + β ) β + − Δβ / 2 β + 2β I ( Δβ ) 2( β + 1) β I +I I Q I B ≡ B1 B = 2( β + 1) Δβ ⇒ I os = I B ( ) β 31 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt 7-5.5 Differential amplifier with active load Active load Small-signal 32 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Active load Q3 Q4 Passive load RC Ad = − g m (ro // ro ) Ad = − g m RC Acm ≈ − αRC Acm ≈ 2REE CMRR ≈ g m REE Rid = (1 + β )(2re + 2RE ) = 2rπ + 2(1 + β ) RE r0 Ricm ≈ (1 + β )(REE // ) Ro = RC // r0 ro β REE CMRR ≈ g m (ro // ro ) β REE ro Rid = 2rπ Ricm ≈ Ro = ro // ro Improving: Differential gain Common-mode gain and CMRR Defect: Vos 33 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Differential amplifier with active load equivalent-circuit Differential-mode vo Q1 v B1 = vid Q3 Q4 vB2 = − vid 0v Vid Vo + rπ Vπ − Rid = Q2 + gm1Vπ1 ro1 re3 // ro3Vπ rπ − Ro = ro // ro − Vid + gm4Vπ ro ro gm2Vπ2 rπ Vπ − vid I vid = Irπ ⇒ Rid = 2rπ CuuDuongThanCong.com 34 Microelectronic Circuits by Meiling CHEN https://fb.com/tailieudientucntt vid v )(re // ro // ro1 // rπ ) ≈ − g m1re3 ( id ) 2 v id Q vb = vb ⇒ g m vb = − g m g m1re ( ) v vo = (− g m vπ − g m vπ )(r04 // ro ) io = g m ( id ) − g m vb vid = − − − v [ g v g ( )](r04 // ro ) vid vid o m π4 m ∴ io = g m ( ) + g m g m1re 2 v vπ = − g m vπ (r01 // re // ro // rπ ) ≈ − g m id re Q g m1 = g m = g m = g m vb = − g m1 ( I /2 gm ≈ VT re = α / g m ≈ / g m ⇒ GM = vid )(r04 // ro )[ g m (r01 // re // ro // rπ ) + 1] v vo ≈ g m ( id )(r04 // ro )[ g m re + 1] vo ≈ g m ( )(r04 // ro )[ g m re3 + 1] Ad = vid vo = g m ( io = gm vid Ad = vo = g m (r04 // ro ) vid 35 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Since four transistors have the same parameters i= vx v = x Ro 2ro ix = 2i + vx vx vx = + ro ro ro ⇒ Ro ≡ vx = ro // ro ix Ad ≡ vo = GM Ro = g m (ro // ro ) vid Q ro = ro = ro Ad ≡ g m ro Rid = 2rπ 36 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Common-mode gain at CMRR Differential amplifier with active load equivalent-circuit Common-mode i1 V icm ie1 ro1 vb Vo + rπ // // ro3 r π Vπ gm3 − gm4Vπ re1 i1 ro i2 ro ie i2 37 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com icm re 2 R EE R EE V https://fb.com/tailieudientucntt i1 ≈ i2 ≈ vicm REE vb = −i1 ( // rπ // ro // rπ ) g m3 Q3 ic = g m vb vo = (− g m vb − i2 )ro Acm ≡ =− let vo r // rπ // ro // rπ ) − 1] = o4 [ gm4 ( vicm REE g m3 ro REE 1 + + rπ rπ ro 1 g m3 + + + rπ rπ ro + vπ − rπ g m vπ ro gm ro g m = g m , rπ = rπ , ro >> rπ , ro >> rπ Acm ≡ rπ vo r r r = − o4 ≈ − o4 = − − o4 REE g + REE β vicm β REE m3 rπ CMRR ≡ Ad Acm = g m (ro // ro )( β REE ro ) + vπ − rπ when ro = ro = ro CMRR = β g m REE CuuDuongThanCong.com 38 Microelectronic Circuits by Meiling CHEN https://fb.com/tailieudientucntt Input offset voltage (systematic problem) I + I B + I 4= I ⇒ I3 + let I3 β + I 4= I I3 = α I I3 IB I4 I4 = L β P ≡ β3 = β I3 + / β P αI / I4 = 1+ / βP αI αI / αI / β P αI Δi = − = ≈ 1+ / βP 1+ / βP βP αI / β P Δi 2VT Vos = − =− =− αI / 2VT βP GM 39 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Exercise 7-13 + VCC + VCC Q3 Q4 v1 v2 Q1 Ro = ro Q2 Ro = ro + VCC I I Q5 Q6 g m vπ ro + vπ − + rπ vπ − rπ g m vπ ro − VEE 40 Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt ... current • Differential Amplifier with active load Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt Differential pair Figure 7 .12 The basic BJT differential- pair. .. the BJT differential pair: (a) The differential pair with a common-mode input signal vCM Microelectronic Circuits by Meiling CHEN CuuDuongThanCong.com https://fb.com/tailieudientucntt The differential. .. − VC = −αIRC Figure 7.13 Different modes of operation of the BJT differential pair: (b) The differential pair with a “large” differential input signal Microelectronic Circuits by Meiling CHEN