1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha

107 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH ĐỒ ÁN TỐT NGHIỆP NGÀNH CƠNG NGHỆ THỰC PHẨM KHẢO SÁT TÍNH CHẤT ENZYME GLUCOAMYLASE CỐ ĐỊNH TRÊN MÀNG NẤM KOMBUCHA GVHD: VŨ TRẦN KHÁNH LINH SVTH: NGUYỄN HOÀNG VŨ MSSV: 15116158 SVTH: PHẠM THỊ KIỀU NGA MSSV: 15116107 SKL006128 Tp Hồ Chí Minh, tháng 8/2019 TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP.HCM KHOA CƠNG NGHỆ HĨA HỌC VÀ THỰC PHẨM BỘ MÔN CÔNG NGHỆ THỰC PHẨM ĐỒ ÁN TỐT NGHIỆP Mã số đồ án: 2019-15116158 KHẢO SÁT TÍNH CHẤT ENZYME GLUCOAMYLASE CỐ ĐỊNH TRÊN MÀNG NẤM KOMBUCHA GVHD: SVTH: Thành phố Hồ Chí Minh – 8/2019 TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP.HCM KHOA CƠNG NGHỆ HĨA HỌC VÀ THỰC PHẨM BỘ MÔN CÔNG NGHỆ THỰC PHẨM ĐỒ ÁN TỐT NGHIỆP Mã số đồ án: 2019-15116158 KHẢO SÁT TÍNH CHẤT ENZYME GLUCOAMYLASE CỐ ĐỊNH TRÊN MÀNG NẤM KOMBUCHA GVHD: SVTH: Thành phố Hồ Chí Minh – 8/2019 Khóa luận tốt nghiệp ii Khóa luận tốt nghiệp LỜI CẢM ƠN Trong suốt bốn năm học trường Đại học Sư phạm Kỹ thuật Thành phố Hồ Chí Minh, chúng em nhận dạy dỗ ân cần khơng quản ngại khó khăn Thầy Cơ giáo trường, đặc biệt Thầy Cô giáo môn Công nghệ Thực phẩm Chúng em xin chân thành gửi lời cảm ơn đến: ➢ Toàn thể giảng viên trường Đại học Sư phạm Kỹ Thuật Thành phố Hồ Chí Minh tạo điều kiện tốt cho chúng em học tập rèn luyện ➢ Toàn thể Thầy Cô môn Công nghệ Thực phẩm cung cấp cho chúng em kiến thức bổ ích kĩ cần thiết suốt trình học tập ➢ Gia đình bạn bè ln cổ vũ, động viên khích lệ chúng em gặp khó khăn suốt bốn năm ngồi giảng đường đại học Đặc biệt, chúng em xin gửi lời cảm ơn chân thành tới cô Vũ Trần Khánh Linh định hướng đề tài, tận tình bảo đưa dẫn kịp thời để giúp đỡ chúng em hồn thành tốt đồ án tốt nghiệp Trong trình thực thí nghiệm tính tốn chắn khơng tránh khỏi thiếu sót Chúng em mong nhận bảo góp ý Thầy, Cơ để chúng em rút kinh nghiệm có thêm kiến thức bổ ích làm hành trang bước vào đời TP.HCM, ngày 01 tháng 08 năm 2019 iii Khóa luận tốt nghiệp LỜI CAM ĐOAN Chúng tơi cam đoan tồn nội dung trình bày khóa luận tốt nghiệp Chúng xin cam đoan tồn nội dung tham khảo khóa luận tốt nghiệp trích dẫn xác đầy đủ theo quy định Ngày 01 tháng 08 năm 2019 Ký tên iv Khóa luận tốt nghiệp v Khóa luận tốt nghiệp vi Khóa luận tốt nghiệp vii Khóa luận tốt nghiệp viii Khóa luận tốt nghiệp Khan, A A., & Alzohairy, M A (2010) Recent advances and applications of immobilized enzyme technologies: a review Res J Biol Sci, 5(8), 565-75 Khorasani, A C., & Shojaosadati, S A (2016) Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition International journal of biological macromolecules, 83, 9-18 Kumar, S., Dwevedi, A., & Kayastha, A M (2009) Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: Analytical applications Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 138-145 Kusunoki, K., & Takahashi, K (2018) U.S Patent Application No 15/749,988 Lakshmi, M V V C., & Jyothi, P (2014) Production and optimization of Glucoamylase from Aspergillus oryzae NCIM1212 using wheat bran, varying chemical parameters under solid state fermentation International Journal of Current Microbiology and Applied Sciences, 3(5), 70-76 Lee, B H (1991) Bioconversion of starch wastes In Bioconversion of Waste Materials to Industrial Products (pp 265-292) Elsevier Applied Science London Lewis M.J and Young, T.W 1995 Brewing Chapman and Hall, London Lin, K W., & Lin, H Y (2004) Quality characteristics of chinese‐style meatball containing bacterial cellulose (Nata) Journal of food science, 69(3), SNQ107-SNQ111 Lindsay, H (1973) A colorimetric estimation of reducing sugars in potatoes with 3, 5dinitrosalicylic acid Potato Research, 16(3), 176-179 Lineweaver, H., & Burk, D (1934) The determination of enzyme dissociation constants Journal of the American chemical society, 56(3), 658-666 Liu, C H., Hsu, W H., Lee, F L., & Liao, C C (1996) The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation Food Microbiology, 13(6), 407-415 60 Khóa luận tốt nghiệp Liu, C K., Latona, N P., & Lee, J (2005) Glutaraldehyde-tanned leather treated with tocopherol Journal of the American Leather Chemists Association, 100(3), 102-110 Lončar, E., Djurić, M., Malbaša, R., Kolarov, L J., & Klašnja, M (2006) Influence of working conditions upon kombucha conducted fermentation of black tea Food and Bioproducts Processing, 84(3), 186-192 Ma, Y X., Li, Y F., Zhao, G H., Yang, L Q., Wang, J Z., Shan, X., & Yan, X (2012) Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase Carbon, 50(8), 2976-2986 Manjunath, P., Shenoy, B C., & Raghavendra, M R (1983) Fungal glucoamylases Journal of applied biochemistry, 5(4-5), 235-260 Marín-Navarro, J., & Polaina, J (2011) Glucoamylases: structural and biotechnological aspects Applied microbiology and biotechnology, 89(5), 1267-1273 Margel, S., & Rembaum, A (1980) Synthesis and characterization of poly (glutaraldehyde) A potential reagent for protein immobilization and cell separation Macromolecules, 13(1), 19-24 Margolin, A L., & Navia, M A (2001) Protein crystals as novel catalytic materials Angewandte Chemie International Edition, 40(12), 2204-2222 Martini, A E V., Miller, M W., & Martini, A (1979) Amino acid composition of whole cells of different yeasts Journal of agricultural and food chemistry, 27(5), 982-984 Mateo, C., Palomo, J M., Fernandez-Lorente, G., Guisan, J M., & Fernandez-Lafuente, R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques Enzyme and microbial technology, 40(6), 1451-1463 Mateo, C., Palomo, J M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., & Guisán, J M (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins Enzyme and Microbial Technology, 39(2), 274-280 Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007) Immobilization of enzymes on heterofunctional epoxy supports Nat Protoc 2:1022–33 61 Khóa luận tốt nghiệp Migneault, I., Dartiguenave, C., Bertrand, M J., & Waldron, K C (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking Biotechniques, 37(5), 790-802 Monsan, P., Puzo, G., & Mazarguil, H (1976) Etude du mécanisme d'établissement des liaisons glutaraldéhyde-protéines Biochimie, 57(11-12), 1281-1292 Mu, W., Wang, X., Xue, Q., Jiang, B., Zhang, T., & Miao, M (2012) Characterization of a thermostable glucose isomerase with an acidic pH optimum from Acidothermus cellulolyticus Food research international, 47(2), 364-367 Mulagalapalli, S., Kumar, S., Kalathur, R C R., & Kayastha, A M (2007) Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay Applied biochemistry and biotechnology, 142(3), 291-297 Murugesan, G S., Sathishkumar, M., & Swaminathan, K (2005) Supplementation of waste tea fungal biomass as a dietary ingredient for broiler chicks Bioresource technology, 96(16), 1743-1748 Neto, S A., Forti, J C., Zucolotto, V., Ciancaglini, P., & De Andrade, A R (2011) The kinetic behavior of dehydrogenase enzymes in solution and immobilized onto nanostructured carbon platforms Process biochemistry, 46(12), 2347-2352 Ng, C C., & Shyu, Y T (2004) Development and production of cholesterol-lowering Monascus-nata complex World Journal of Microbiology and Biotechnology, 20(9), 875879 Nguyen, N K., Nguyen, P B., Nguyen, H T., & Le, P H (2015) Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid LWT-Food Science and Technology, 64(2), 1149-1155 Nimni, M E., Cheung, D., Strates, B., Kodama, M., & Sheikh, K (1987) Chemically modified collagen: a natural biomaterial for tissue replacement Journal of biomedical materials research, 21(6), 741-771 62 Khóa luận tốt nghiệp Nisha, S., Arun Karthick, S., & Gobi, N (2012) A review on methods, applications and properties of immobilized enzyme Chemical Science Review and Letters, 1, 148–155 Norouzian, D., Akbarzadeh, A., Scharer, J M., & Young, M M (2006) Fungal glucoamylases Biotechnology advances, 24(1), 80-85 Okiyama, A., Motoki, M., & Yamanaka, S (1993) Bacterial cellulose IV Application to processed foods Food hydrocolloids, 6(6), 503-511 Okuda, K., Urabe, I., Yamada, Y., & Okada, H (1991) Reaction of glutaraldehyde with amino and thiol compounds Journal of fermentation and bioengineering, 71(2), 100-105 Owuama, C I (1999) Brewing beer with sorghum Journal of the Institute of Brewing, 105(1), 23-34 Pandey, A (1995) Glucoamylase research: an overview Starch‐Stärke, 47(11), 439-445 Rani, A S., Das, M L M., & Satyanarayana, S (2000) Preparation and characterization of amyloglucosidase adsorbed on activated charcoal Journal of Molecular Catalysis B: Enzymatic, 10(5), 471-476 Reiss, J (1994) Influence of different sugars on the metabolism of the tea fungus Zeitschrift fuÈr Lebensmittel-Untersuchung und-Forschung, 198(3), 258-261 Richards, F M., & Knowles, J R (1968) Glutaraldehyde as a protein cross-linking reagent Journal of molecular biology, 37(1), 231-233 Roskoski, (2007) Michaelis-Menten Kinetics The Comprehensive Pharmacology Reference 1-10 Roussin, M R (1996) Analyses of kombucha ferments: Report on growers Information Resources, LC, Salt Lake City, Utah, USA Russell, A D (1994) Glutaraldehyde: current status and uses Infection Control & Hospital Epidemiology, 15(11), 724-733 63 Khóa luận tốt nghiệp Sanjay, G., & Sugunan, S (2005) Glucoamylase immobilized on montmorillonite: Synthesis, characterization and starch hydrolysis activity in a fixed bed reactor Catalysis communications, 6(8), 525-530 Sardar, M., Roy, I., & Gupta, M N (2000) Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit (TM) L-100 Enzyme and Microbial Technology, 27, 672–679 Satyanarayana, T (Ed.) (2005) Microbial diversity: current perspectives and potential applications IK International Pvt Ltd Schomburg, I., Chang, A., Placzek, S., Söhngen, C., Rother, M., Lang, M., & Scheer, M (2012) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA Nucleic acids research, 41(D1), D764-D772 Sheldon, R A., & van Pelt, S (2013) Enzyme immobilisation in biocatalysis: why, what and how Chemical Society Reviews, 42(15), 6223-6235 Shi, Z., Zhang, Y., Phillips, G O., & Yang, G (2014) Utilization of bacterial cellulose in food Food hydrocolloids, 35, 539-545 Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U., & Teuber, M (1995) Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation Systematic and Applied Microbiology, 18(4), 590-594 Sirisha, V L., Jain, A., & Jain, A (2016) Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes In Advances in food and nutrition research (Vol 79, pp 179-211) Academic Press Stoffer, B., Frandsen, T P., Busk, P K., Schneider, P., Svendsen, I., & Svensson, B (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger Biochemical journal, 292(1), 197-202 Stuart, M C., Kouimtzi, M., & Hill, S R (Eds.) (2009) WHO model formulary 2008 World Health Organization 64 Khóa luận tốt nghiệp Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D L., Brittberg, M., & Gatenholm, P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage Biomaterials, 26(4), 419-431 Svensson, B., Svendsen, T G., Svendsen, I B., Sakai, T., & Ottesen, M (1982) Characterization of two forms of glucoamylase from Aspergillus niger Carlsberg Research Communications, 47(1), 55 Talekar, S., Nadar, S., Joshi, A., & Joshi, G (2014) Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase RSC Advances, 4(103), 59444-59453 Tam, T T M., & Huong, N T (2014) Optimization of Corynebacterium glutamicum immobilization process on bacterial cellulose carrier and its application for lysine fermentation Optimization, 4(07) Tanaka, Atsuo, Tetsuya Tosa, and Takeshi Kobayashi, eds (1992) Industrial application of immobilized biocatalysts Vol 16 CRC Press Tashima, T., Imai, M., Kuroda, Y., Yagi, S., & Nakagawa, T (1991) Structure of a new oligomer of glutaraldehyde produced by aldol condensation reaction The Journal of Organic Chemistry, 56(2), 694-697 Tischer, W., & Wedekind, F (1999) Immobilized enzymes: methods and applications In Biocatalysis-from discovery to application (pp 95-126) Springer, Berlin, Heidelberg Toole, G., & Toole, S (1997) Advanced human and social biology Nelson Thornes Tosa, T., Mori, T., Fuse, N., & Chibata, I (1966) Studies on continuous enzyme reactions I Screening of carriers for preparation of water-insoluble aminoacylase Enzymologia, 31(4), 214 Ueda, S (1981) Fungal glucoamylases and raw starch digestion Trends in Biochemical Sciences, 6, 89-90 Ullah, H., Santos, H A., & Khan, T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery Cellulose, 23(4), 2291-2314 65 Khóa luận tốt nghiệp Včeláková, K., Zusková, I., Kenndler, E., & Gaš, B (2004) Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis Electrophoresis, 25(2), 309-317 Walt, D R., & Agayn, V I (1994) The chemistry of enzyme and protein immobilization with glutaraldehyde Wang, F., Guo, C., Liu, H Z., & Liu, C Z (2007) Reversible immobilization of glucoamylase by metal affinity adsorption on magnetic chelator particles Journal of Molecular Catalysis B: Enzymatic, 48(1-2), 1-7 Watawana, M I., Jayawardena, N., Ranasinghe, S J., & Waisundara, V Y (2017) Evaluation of the Effect of Different Sweetening Agents on the Polyphenol Contents and Antioxidant and Starch Hydrolase Inhibitory Properties of Kombucha Journal of food processing and preservation, 41(1), e12752 White, A R., & Brown, R M (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process Proceedings of the National Academy of Sciences, 78(2), 1047-1051 Williamson, G., Belshaw, N J., & Williamson, M P (1992) O-glycosylation in Aspergillus glucoamylase Conformation and role in binding Biochemical journal, 282(2), 423-428 Wu, S C., & Lia, Y K (2008) Application of bacterial cellulose pellets in enzyme immobilization Journal of Molecular Catalysis B: Enzymatic, 54(3-4), 103-108 Wu, H., Liang, Y., Shi, J., Wang, X., Yang, D., & Jiang, Z (2013) Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres Materials Science and Engineering: C, 33(3), 1438-1445 Wu, S C., Wu, S M., & Su, F M (2017) Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption Journal of Chemical Technology & Biotechnology, 92(1), 109-114 Xiao,C., Hui, Z., Wei, L., & Jiacong, S (1990) Simultaneous saccharification and isomerization by immobilized glucoamylase and glucose isomerase Journal of Chemical Technology & Biotechnology, 47(2), 161-169 66 Khóa luận tốt nghiệp Xu, G G., Yang, C Q., & Deng, Y (2002) Applications of bifunctional aldehydes to improve paper wet strength Journal of Applied Polymer Science, 83(12), 2539-2547 Yamanaka, S., & Sugiyama, J (2000) Structural modification of bacterial cellulose Cellulose, 7(3), 213-225 Yodoya, S., Takagi, T., Kurotani, M., Hayashi, T., Furuta, M., Oka, M., & Hayashi, T (2003) Immobilization of bromelain onto porous copoly (γ-methyl-L-glutamate/L-leucine) beads European Polymer Journal, 39(1), 173-180 Yoshinaga, F (1997b) Advance on research for bacterial cellulose Kagaku to Seibutsu, 35, 772-779 Yoshinaga, F., Tonouchi, N., & Watanabe, K (1997a) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material Bioscience, biotechnology, and biochemistry, 61(2), 219-224 Yu, R C., & Hang, Y D (1991) Purification and characterization of a glucoamylase from Rhizopus oryzae Food chemistry, 40(3), 301-308 Zaar, K (1977) The biogenesis of cellulose by Acetobacter xylinum Eur J Cell Biology., 16, 1-15 Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., & Gatenholm, P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration Acta biomaterialia, 6(7), 2540-2547 Zhang, S., Gao, S., & Gao, G (2010) Immobilization of β-galactosidase onto magnetic beads Applied biochemistry and biotechnology, 160(5), 1386-1393 Zhu, H., Jia, S., Yang, H., Tang, W., Jia, Y., & Tan, Z (2010) Characterization of bacteriostatic sausage casing: A composite of bacterial cellulose embedded with ɛpolylysine Food Science and Biotechnology, 19(6), 1479-1484 67 Khóa luận tốt nghiệp PHỤ LỤC Phụ lục Nồng độ đường khử sinh sau thủy phân hồ tinh bột glucoamylase cố định FM xử lý phương pháp tiệt trùng (GFM1) xử lý với NaOH (GFM2) mẫu đối chứng (FM1 FM2) Mẫu Phụ lục Nồng độ đường khử sinh từ mẫu cố định enzyme glutaraldehyde Mẫu Phụ lục Hoạt tính tương đối enzyme glucoamylase cố định tự nhiệt độ phản ứng khác 68 Khóa luận tốt nghiệp Phụ lục Hoạt tính tương đối enzyme glucoamylase cố định tự pH phản ứng khác Phụ lục Hoạt tính tương đối enzyme glucoamylase cố định FM mẫu kiểm soát sau 10 lần tái sử dụng Số lần tái sử dụng 69 Khóa luận tốt nghiệp Phụ lục Xác định thông số động học Phương trình động học Lineweaver-Burk có dạng: Từ đồ thị Lineweaver-Burk, suy phương trình động học có dạng y = ax + b Trong đó: Hệ số a ứng với ➢ Glucoamylase tự [S] ( M) 6172.84 30864.2 61728.2 92592.6 123456.8 ➢ Glucoamylase cố định [S] ( M) 6172.84 30864.2 61728.2 92592.6 123456.8 70 ... tài ? ?Khảo sát tính chất enzyme glucoamylase cố định màng nấm Kombucha? ?? Mục tiêu đề tài Đề tài ? ?Khảo sát tính chất enzyme glucoamylase cố định màng nấm Kombucha? ?? thực nhằm mục đích khảo sát đánh... tài ? ?Khảo sát tính chất enzyme glucoamylase cố định màng nấm Kombucha? ?? gồm nội dung cụ thể sau: - Khảo sát phương pháp tiền xử lý màng nấm Kombucha để chuẩn bị cho trình cố định enzyme - Xác định. .. cố định - Khảo sát ảnh hưởng nồng độ glutaraldehyde đến hoạt độ glucoamylase cố định màng nấm Kombucha - Khảo sát ảnh hưởng nhiệt độ, pH đến hoạt độ glucoamylase cố định màng nấm Kombucha - Khảo

Ngày đăng: 26/12/2021, 17:45

Xem thêm:

HÌNH ẢNH LIÊN QUAN

Hình 1.1: Thành phần nấm trà và chất lỏng lên men của trà Kombucha. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.1 Thành phần nấm trà và chất lỏng lên men của trà Kombucha (Trang 29)
Bảng 1.1: Các loài vi sinh vật có trong hệ cộng sinh Kombucha. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 1.1 Các loài vi sinh vật có trong hệ cộng sinh Kombucha (Trang 31)
Hình 1.2: Vi khuẩn Gluconacetobacter hình thành các vi sợi cellulose. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.2 Vi khuẩn Gluconacetobacter hình thành các vi sợi cellulose (Trang 34)
Hình 1.3: Cấu trúc hóa học của cellulose vi khuẩn. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.3 Cấu trúc hóa học của cellulose vi khuẩn (Trang 34)
Hình 1.4: Cấu trúc không gian của glucoamylase. b. Cấu tạo hóa học - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.4 Cấu trúc không gian của glucoamylase. b. Cấu tạo hóa học (Trang 38)
Bảng 1.3: Tỉ lệ thành phần các amino acid cấu thành enzyme glucoamylase (Svensson và cộng sự, 1982). - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 1.3 Tỉ lệ thành phần các amino acid cấu thành enzyme glucoamylase (Svensson và cộng sự, 1982) (Trang 39)
Bảng 1.4: Các giai đoạn phát triển của kĩ thuật cố định enzyme (Hartmeier, 1988; Khan và - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 1.4 Các giai đoạn phát triển của kĩ thuật cố định enzyme (Hartmeier, 1988; Khan và (Trang 42)
Hình 1.5: Công thức cấu tạo của glutaraldehyde. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.5 Công thức cấu tạo của glutaraldehyde (Trang 46)
Hình 1.6: Cơ chế tạo liên kết giữa glutaraldehyde và amino acid thông qua phản ứng Michael (Migneault và cộng sự, 2004). - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.6 Cơ chế tạo liên kết giữa glutaraldehyde và amino acid thông qua phản ứng Michael (Migneault và cộng sự, 2004) (Trang 47)
Hình 1.7: Cơ chế tạo liên kết giữa glutaraldehyde và amino acid thông qua ngưng tụ aldol (Migneault và cộng sự, 2004). - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 1.7 Cơ chế tạo liên kết giữa glutaraldehyde và amino acid thông qua ngưng tụ aldol (Migneault và cộng sự, 2004) (Trang 48)
Hình 2.1: Sơ đồ quy trình công nghệ nuôi cấy và thu nhận nấm trà trà Kombucha sử dụng trong nghiên cứu. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 2.1 Sơ đồ quy trình công nghệ nuôi cấy và thu nhận nấm trà trà Kombucha sử dụng trong nghiên cứu (Trang 53)
Hình 2.2: Sơ đồ nghiên cứu - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 2.2 Sơ đồ nghiên cứu (Trang 55)
Hình 2.3: Quy trình cố định enzyme glucoamylase lên FM. ➢Thuyết minh quy trình - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 2.3 Quy trình cố định enzyme glucoamylase lên FM. ➢Thuyết minh quy trình (Trang 57)
Hình 2.4: FM sau khi cố định enzyme glucoamylase. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 2.4 FM sau khi cố định enzyme glucoamylase (Trang 58)
Bảng 2.3: Mẫu chuẩn bị thí nghiệm 3. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 2.3 Mẫu chuẩn bị thí nghiệm 3 (Trang 62)
Bảng 2.4: Mẫu chuẩn bị thí nghiệm 4. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 2.4 Mẫu chuẩn bị thí nghiệm 4 (Trang 64)
Bảng 2.5: Mẫu chuẩn bị thí nghiệm 5. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 2.5 Mẫu chuẩn bị thí nghiệm 5 (Trang 66)
Bảng 2.6: Mẫu chuẩn bị thí nghiệm 7. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Bảng 2.6 Mẫu chuẩn bị thí nghiệm 7 (Trang 68)
Hình 2.5: Cơ chế tạo màu giữa DNS và đường khử. ❖Hoá chất sử dụng - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 2.5 Cơ chế tạo màu giữa DNS và đường khử. ❖Hoá chất sử dụng (Trang 70)
Hình 3.1: Nồng độ đường khử sinh ra sau khi thuỷ phân tinh bột bằng glucoamylase cố định lên FM được xử lý bằng các phương pháp tiệt trùng (GFM1) và xử lý với NaOH (GFM2) và - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.1 Nồng độ đường khử sinh ra sau khi thuỷ phân tinh bột bằng glucoamylase cố định lên FM được xử lý bằng các phương pháp tiệt trùng (GFM1) và xử lý với NaOH (GFM2) và (Trang 72)
Hình 3.2: Ảnh hưởng của nồng độ glutaraldehyde tới quá trình cố định enzyme lên FM. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.2 Ảnh hưởng của nồng độ glutaraldehyde tới quá trình cố định enzyme lên FM (Trang 74)
Hình 3.2 biểu diễn sự ảnh hưởng của nồng độ glutaraldehyde sử dụng trong quá trình cố định tới khả năng thủy phân dung dịch hồ tinh bột của GFM - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.2 biểu diễn sự ảnh hưởng của nồng độ glutaraldehyde sử dụng trong quá trình cố định tới khả năng thủy phân dung dịch hồ tinh bột của GFM (Trang 75)
Hình 3.4: Công thức cấu tạo poly-glutaraldehyd eI (trái) và poly-glutaraldehyde II (phải) - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.4 Công thức cấu tạo poly-glutaraldehyd eI (trái) và poly-glutaraldehyde II (phải) (Trang 76)
Hình 3.5: Ảnh hưởng của nhiệt độ tới hoạt độ của enzyme glucoamylase tự do và cố định - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.5 Ảnh hưởng của nhiệt độ tới hoạt độ của enzyme glucoamylase tự do và cố định (Trang 77)
Hình 3.6: Ảnh hưởng của pH đến glucoamylase tự do và cố định. Trị số pKa   của enzyme phụ thuộc rất nhiều vào thành phần amino acid trong chuỗi - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.6 Ảnh hưởng của pH đến glucoamylase tự do và cố định. Trị số pKa của enzyme phụ thuộc rất nhiều vào thành phần amino acid trong chuỗi (Trang 79)
Kết quả ở Hình 3.6 cho thấy pH có ảnh hưởng lớn đến khả năng hoạt động của enzyme, đặc   biệt   là   đối   với   enzyme   tự  do - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
t quả ở Hình 3.6 cho thấy pH có ảnh hưởng lớn đến khả năng hoạt động của enzyme, đặc biệt là đối với enzyme tự do (Trang 80)
Hình 3.8 cho thấy hoạt độ GFM sau 10 lần thủy phân vẫn giữ được 82.86% so với hoạt tính ban đầu - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.8 cho thấy hoạt độ GFM sau 10 lần thủy phân vẫn giữ được 82.86% so với hoạt tính ban đầu (Trang 81)
Hình 3.9: Đồ thị đường biểu diễn Lineweaver-Burk của glucoamylase cố định trên FM và glucoamylase tự do. - Khảo sát tính chất enzyme glucoamylasr cố định trên màng nấm kombucha
Hình 3.9 Đồ thị đường biểu diễn Lineweaver-Burk của glucoamylase cố định trên FM và glucoamylase tự do (Trang 83)
w