1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ nghiên cứu một số tính chất quang của các hạt nano zns mn bọc phủ polyvinylpyrrolidone chế tạo bằng phương pháp đồng kết tủa

71 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 71
Dung lượng 2,71 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Phạm Văn Thắng NGHIÊN CỨU MỘT SỐ TÍNH CHẤT QUANG CỦA CÁC HẠT NANO ZnS:Mn BỌC PHỦ POLYVINYLPYRROLIDONE CHẾ TẠO BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA LUẬN VĂN THẠC SĨ KHOA HỌC Ơ Hà Nội – 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Phạm Văn Thắng NGHIÊN CỨU MỘT SỐ TÍNH CHẤT QUANG CỦA CÁC HẠT NANO ZnS:Mn BỌC PHỦ POLYVINYLPYRROLIDONE CHẾ TẠO BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA Chuyên ngành: Quang học Mã số: 60 44 01 09 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS PHẠM VĂN BỀN LỜI CẢM ƠN Em xin gửi lời cảm ơn sâu sắc đến thầy hướng dẫn luận văn em PGS.TS Phạm Văn Bền, Bộ môn Quang lượng tử, Khoa Vật lý, Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội, người động viên, tạo điều kiện thuận lợi giúp đỡ em hoàn thành luận văn cao học Em xin chân thành cảm ơn thầy cô môn Quang lượng tử, thầy cô khoa Vật lý, trường Đại học Khoa học Tự nhiên - Đại học QGHN giảng dạy, cho em kiến thức giúp đỡ em trình làm luận văn Em xin gửi lời cảm ơn tới anh Đặng Văn Thái, bạn Lê Thị Nhung, người hướng dẫn, hỗ trợ em bước tiến hành thí nghiệm nghiên cứu tài liệu Cuối cùng, em xin gửi lời cảm ơn tới gia đình bạn bè, người ln bên em, cổ vũ động viên em trình nghiên cứu, học tập hoàn thành luận văn Hà Nội, ngày 19 tháng 12 năm 2014 Học viên Phạm Văn Thắng MỤC LỤC LỜI NÓI ĐẦU .1 Chương 1: TỔNG QUAN VỂ CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU NANO ZnS:Mn BỌC PHỦ POLYMER .3 1.1 Giới thiệu chung vật liệu nano bán dẫn… 1.1.1 Phân loại vật liệu nano bán dẫn 1.1.2 Hiệu ứng giam cầm lượng tử liên quan tới kích thước hạt 1.1.3 Ứng dụng vật liệu nano 1.2 Polymer ảnh hưởng đến hình thành hạt nano ZnS:Mn.9 1.2.1 Polymer phân loại 1.2.2 Ảnh hưởng polymer lên hình thành hạt nano ZnS:Mn 10 1.2.3 Phương pháp bọc phủ hạt nano ZnS:Mn polymer 12 1.3 Cấu trúc tinh thể, vùng lượng vật liệu nano ZnS:Mn 13 1.3.1 Cấu trúc tinh thể ZnS 13 1.3.1.1 Cấu trúc tinh thể lập phương hay sphelerite 13 1.3.1.2 Cấu trúc tinh thể lục giác hay Wurzte 14 1.3.2 Cấu trúc vùng lượng ZnS 15 1.3.3 Ảnh hưởng Mn lên cấu trúc tinh thể, vùng lượng ZnS 18 1.4 Phổ hấp thụ, phát quang kích thích phát quang PVP 19 1.5 Phổ hấp thụ phát quang vật liệu nano ZnS:Mn bọc phủ PVP… 21 1.5.1 Phổ hấp thụ vật liệu nano ZnS:Mn bọc phủ PVP 21 1.5.2 Phổ phát quang vật liệu nano ZnS:Mn bọc phủ PVP 22 Chương 2: MỘT SỐ PHƯƠNG PHÁP CHỂ TẠO VẬT LIỆU NANO ZnS:Mn 24 2.1 Một số phương pháp chế tạo vật liệu nano ZnS:Mn… 24 2.1.1 Phương pháp thuỷ nhiệt 24 2.1.2 Phương pháp đồng kết tủa 25 2.2 Hệ chế tạo mẫu phương pháp đồng kết tủa… 26 2.2.1 Máy rung siêu âm 26 2.2.2 Máy khuấy từ gia nhiệt 27 2.2.3 Cân xác 28 2.2.4 Máy quay ly tâm 28 2.2.5 Hệ lò sấy ủ mẫu 29 2.3 Hệ xác định cấu trúc, hình thái học mẫu .30 2.3.1 Hệ đo phổ nhiễu xạ tia X (phổ X-ray) 30 2.3.2 Hệ đo hình thái học mẫu Kính hiển vi điện tử truyền qua (TEM) 31 2.4 Hệ đo phổ hấp thụ, phổ phát quang… 32 2.4.1 Hệ đo phổ hấp thụ V-670 32 2.4.2 Hệ đo phổ phát quang spectrapro 2300i dùng kĩ thuật CCD .33 2.4.3 Hệ đo phổ phổ hấp thụ hồng ngoại 36 Chương 3: KẾT QUẢ THỰC NGHIỆM VÀ BIỆN LUẬN 38 3.1 Quy trình chế tạo hạt nano ZnS:Mn (CMn=8mol%) phương pháp đồng kết tủa… .38 3.2 Quy trình bọc phủ hạt nano ZnS:Mn (CMn=8mol%) PVP .41 3.3 Cấu trúc hình thái học hạt nano ZnS:Mn bọc phủ PVP… 43 3.3.1 Cấu trúc tinh thể hạt nano ZnS:Mn/PVP 43 3.3.2 Hình thái học mẫu 46 3.4 Tính chất quang PVP… 47 3.4.1 Phổ phát quang PVP .47 3.4.2 Phổ hấp thụ hồng ngoại PVP 48 3.5 Tính chất quang hạt nano ZnS:Mn bọc phủ PVP 48 3.5.1 Phổ hấp thụ tử ngoại ZnS:Mn bọc phủ PVP 48 3.5.2 Phổ phát quang ZnS:Mn bọc phủ PVP 51 3.5.3 Phổ hấp thụ hồng ngoại ZnS:Mn bọc phủ PVP 54 3.6 Thảo luận kết quả… 56 KẾT LUẬN 59 TÀI LIỆU THAM KHẢO 61 DANH MỤC CÁC BẢNG BIỂU, HÌNH VẼ Danh mục bảng biểu Danh mục bảng biểu Trang Bảng 1.1: Phân loại vật liệu nano Bảng 3.1: Nồng độ, thể tích dung mơi khối lượng Zn(CH3COO)2.2H2O, 38 Na2S cần dùng cho mẫu vật liệu Bảng 3.2: Số mol, khối lượng Mn(CH3COO)2 4H2O, nồng độ dung dịch 39 thể tích dung dịch Mn(CH3COO)2 theo nồng độ Mn 8mol% Bảng 3.3: Khối lượng ZnS:Mn (8mol%), PVP tỉ lệ khối lượng 42 chúng Bảng 3.4: Hằng số mạng kích thước hạt trung bình hạt nano 45 ZnS:Mn bọc phủ PVP với tỉ lệ khối lượng khác ZnS:Mn PVP Bảng 3.5: Cường độ vạch hấp thụ 50 Bảng 3.6: Tỉ số cường độ đám da cam - vàng hạt nano ZnS:Mn 52 bọc phủ không bọc phủ PVP Bảng 3.7: Số sóng cường độ đỉnh phổ hấp thụ hồng ngoại 55 Danh mục hình vẽ Danh mục hình vẽ Hình 1.1: Vật liệu khối 3D (a), vật liệu 2D (b), vật liệu chiều 1D (c) Trang vật liệu không chiều 0D (d) Hình 1.2: Phổ mật độ trạng thái bán dẫn khối 3D Hình 1.3: Phổ mật độ trạng thái bán dẫn hai chiều 2D Hình 1.4: Phổ mật độ trạng thái bán dẫn chiều 1D Hình 1.5: Phổ mật độ trạng thái bán dẫn khơng chiều 0D Hình 1.6: Sự so sánh mức lượng vật liệu khối, vật liệu nano phân tử HOMO: trạng thái điện tử bản, LUMO: trạng thái điện tử kích thích Hình 1.7: Phân tử chất hoạt hố bề mặt 10 Hình 1.8: Hình ảnh hạt nano bọc phủ polymer 11 Hình 1.9: Cấu trúc dạng lập phương tâm mặt (hay sphalerite) tinh thể 13 ZnS (a) toạ độ nguyên tử Zn, S (b) Hình 1.10: Cấu trúc dạng lục giác hay wurtzite tinh thể ZnS 14 Hình 1.11: Sự hình thành orbital phân tử vùng 16 Hình 1.12: Cấu trúc vùng lượng bán dẫn loại zincblende 17 wurtzite Hình 1.13: Sơ đồ mức lượng ion Mn2+ tự (a) ion Mn2+ 19 trường tinh thể ZnS (b) Hình 1.14: Đặc điểm phát quang PVP hạt nano PVP-ZnS:Mn.(a) phổ 20 kích thích phát quang ghi nhận bước sóng phát 430nm PVP, (b) phổ phát quang PVP, (c) phổ phát quang ZnS:Mn-PVP bước sóng kích thích 235nm 310nm Hình 1.15: Các mức lượng orbital phân tử PVP 20 Hình 1.16: Phổ hấp thụ ZnS, ZnS:Mn2+, ZnS:Mn2+/PVP, ZnS:Mn2+ 21 SHMP Hình 1.17: Phổ phát quang ZnS:Mn2+ mol % bọc phủ PVP 22 nồng độ khác Hình 1.18: Phổ phát quang ZnS:Mn2+ mol % bọc phủ SHPM, PVP 23 nhiệt độ phịng Hình 2.1: Máy rung siêu âm 26 Hình 2.2: Máy khuấy từ có gia nhiệt 27 Hình 2.3: Cân xác BP – 1218 28 Hình 2.4: Máy quay ly tâm Hettich EBA 8S 29 Hình 2.5: Hệ lị nung ủ mẫu 29 Hình 2.6: Sự tán xạ cặp tia X phản xạ hai mặt phẳng nguyên 30 tử liên tiếp Hình 2.7: Máy đo phổ XRD 31 Hình 2.8: Sơ đồ khối kính hiển vi điện tử truyền qua 32 Hình 2.9: Hệ đo phổ hấp thụ (JASCO V- 670) 33 Hình 2.10: Sơ đồ khối hệ thu phổ phát quang spectrapro 2300i 34 Hình 2.11: Hệ đo huỳnh quang Viện Khoa học Vật liệu 35 Hình 2.12: Hệ đo phổ hấp thụ hồng ngoại Nicolet 6700 FT-IR 36 Spectrometer Hình 3.1: Quy trình chế tạo hạt nano ZnS:Mn (CMn-8mol%) phương pháp đồng kết tủa 41 Hình 3.2: Quy trình chế tạo hạt nano ZnS:Mn bọc phủ PVP 43 Hình 3.3: Giản đồ XRD hạt nano ZnS:Mn bọc phủ PVP với tỉ lệ 44 khối lượng khác ZnS:Mn PVP Hình 3.4: Sự phụ thuộc kích thước hạt nano ZnS:Mn vào tỉ lệ khối 46 lượng ZnS:Mn PVP Hình 3.5: Ảnh TEM hạt nano ZnS:Mn (CMn= mol %) chưa bọc phủ 47 PVP (a) bọc phủ PVP theo tỉ lệ khối lượng 5:3(b) Hình 3.6: Phổ phát quang PVP 47 Hình 3.7: Phổ hấp thụ hồng ngoại PVP 48 Hình 3.8: Phổ hấp thụ tử ngoại hạt nano ZnS:Mn không bọc phủ 49 bọc phủ PVP với tỉ lệ khối lượng khác Hình 3.9: Phổ phát quang hạt nano ZnS:Mn bọc phủ PVP theo tỉ lệ 51 khối lượng khác ZnS:Mn PVP Hình 3.10: Sự phụ thuộc cường độ đám da cam - vàng hạt 53 nano ZnS:Mn/PVP vào tỉ lệ khối lượng ZnS:Mn PVP Hình 3.11: Sự dịch chuyển hấp thụ, xạ hạt nano ZnS:Mn 54 Hình 3.12: Phổ hấp thụ hồng ngoại PVP, ZnS:Mn ZnS:Mn bọc phủ 54 PVP với tỉ lệ khối lượng 5:3 Hình 3.13: Mơ hình bọc phủ hạt nano ZnS:Mn PVP 57 Hình 3.14: Sơ đồ mức lượng dịch chuyển hấp thụ, xạ 58 hạt nano ZnS:Mn bọc phủ PVP DANH MỤC TỪ VIẾT TẮT LED: Diot phát quang PVA: Polyvinyl alcohol PVP: Polyvinyl pyrrolidone HOMO: Trạng thái điện tử LUMO: Trạng thái điện tử kích thích PVC: PolyVinyl Chloride SHMO: Sodium hexametapolyphosphate HH: Lỗ trống nặng LH: Lỗ trống nhẹ XRD: Nhiễu xạ tia X TEM: Kính hiển vi điện tử truyền qua Phạm Văn Thắng Luận văn Thạc sĩ LỜI NĨI ĐẦU Hiện nay, cơng nghệ nano đầu tư phát triển mạnh mẽ với ứng dụng lĩnh vực đời sống Chẳng hạn, người ta chế tạo chip nano máy tính có độ tích hợp cao triển vọng cho phép dung lượng nhớ máy tính tăng lên lớn; ống nano Cacbon vững chắc, có độ bền học gấp 10 lần thép đặc biệt có tính bền nhiệt cao; loại pin có khả quang hợp nhân tạo giúp người sản xuất lượng sạch….Ngồi cơng nghệ nano nhiều ứng dụng quan trọng nhiều ngành nghề khác y tế, an ninh quốc phòng, thực phẩm….[7] Đối tượng công nghệ nano vật liệu có kích cỡ nanomet Với kích thước nhỏ vậy, vật liệu nano có tính chất vơ độc đáo mà vật liệu có kích thước lớn khơng thể có độ bền học, tính xúc tác cao, tính siêu thuận từ, tính chất điện quang trội Mục tiêu ban đầu việc nghiên cứu vật liệu nano để ứng dụng công nghệ sinh học tác nhân phản ứng sinh học ảnh tế bào Ứng dụng vật lý, chấm lượng tử hướng tới để sản xuất linh kiện điện tử diot phát quang (LED), laser chấm lượng tử có hiệu suất cao dịng ngưỡng thấp Trong viễn thơng chấm lượng tử dùng linh kiện để khuếch đại quang dẫn sóng [7] ZnS chất bán dẫn có vùng cấm thẳng, độ rộng vùng cấm lớn hợp chất bán dẫn A2B6 (Eg =3,68eV 300K) có độ bền nhiệt độ cao Trong phổ phát quang chúng chủ yếu xuất đám phát quang đặc trưng cho tâm tự kích hoạt nút khuyết Zn (VZn), S (VS), nguyên tử điền kẽ chúng trạng thái bề mặt nằm vùng nhìn thấy vùng hồng ngoại gần [2] Vì độ rộng vùng cấm ZnS lớn nên dễ dàng pha tạp chất kích hoạt vào để tạo nên đám phát quang Các chất kích hoạt thường sử dụng nguyên tố kim loại chuyển tiếp với lớp vỏ 3d chưa lấp đầy: Mn, Fe, Ni, Co, Cu…nên ZnS có hiệu suất lượng tử phát quang lớn, đáng ý ZnS pha tạp Mn (kí hiệu ZnS:Mn) Vì ZnS:Mn ứng dụng nhiều Bộ môn Quang – Lượng tử Năm 2014 Đám đặc trưng cho dịch chuyển xạ phân tử PVP từ trạng thái điện tử kích thích (LUMO) xuống trạng thái điện tử (HOMO) 3.4.2 Phổ hấp thụ hồng ngoại PVP Hình 3.7 phổ hấp thụ hồng ngoại PVP PVP polymer có cơng thức (C6H9NO)n với nhóm chức đặc trưng OH, C-H, C=O, CH 2… Phổ hấp thụ hồng ngoại PVP có đám vạch đặc trưng cho dao động nhóm OH 3433 cm-1, C-H 2953 cm-1, C=O 1646 cm-1, –C-C- khoảng 657 cm-1 Ngồi cịn xuất vạch 571 cm -1, 731 cm-1, 1300 cm-1, 1473 cm-1,… Trong đám vạch đặc trưng cho nhóm OH, C=O có độ hấp thụ tương đối lớn Đám đặc trưng cho nhóm OH có độ hấp thụ mạnh PVP hấp thụ mạnh nước 1646 (C=O) 3433 (OH) (-C-C-) 657 60 1473 Do hap thu (a.u) 1300 571 30 (C-H) 2953 731 1018 8441079 2126 0 2000 4000 -1 So song (cm ) Hình 3.7: Phổ hấp thụ hồng ngoại PVP 3.5 Tính chất quang hạt nano ZnS:Mn bọc phủ PVP 3.5.1 Phổ hấp thụ tử ngoại ZnS:Mn bọc phủ PVP Phổ hấp thụ hạt nano ZnS:Mn, ZnS:Mn/PVP đo thông qua phổ phản xạ, khuếch tán Hệ số phản xạ R ghi khoảng bước sóng tử 200 nm đến 800 nm Hình 3.8 phổ hấp thụ hạt nano ZnS:Mn/PVP với tỉ lệ khối lượng ZnS:Mn PVP khác Hình 3.8: Phổ hấp thụ tử ngoại hạt nano ZnS:Mn không bọc phủ bọc phủ PVP với tỉ lệ khối lượng khác * Khi hạt nano ZnS:Mn (C M = 8mol%) chưa bọc phủ PVP phổ hấp thụ xuất đám vùng tử ngoại vùng khả kiến Trong vùng tử xuất đám: + Đám 263nm (4.715eV) không rõ thành đỉnh đặc trưng cho chuyển dời hấp thụ vùng – vùng lượng photon ứng với chuyển dời lớn độ rộng vùng cấm ZnS + Đám 310nm (4.001eV) rõ thành đỉnh có độ hấp thụ lớn đặc trưng cho chuyển dời hấp thụ gần bờ hấp thụ lượng photon gần độ rộng vùng cấm Trong vùng khả kiến xuất đám 430, 468, 498nm có độ hấp thụ nhỏ Các đám đặc trưng cho dịch chuyển hấp thụ electron lớp vỏ 3d5 ion Mn2+ tương ứng 6A1(6S)→4T2(4D), 6A1(6S)→4A1(4G)-4E(4G), A1(6S)→4T2(4G) tinh thể ZnS:Mn Sự xuất dịch chuyển hấp thụ cho thấy ion Mn2+ pha tạp vào mạng tinh thể ZnS thay cho ion Zn2+ Bảng 3.5: Độ hấp thụ đám phổ hấp thụ ZnS:Mn/PVP Tỉ lệ mZnS:Mn/mPVP Độ hấp thụ (a.u) 263nm 310nm 353nm 430nm 468nm 498nm 5:0 0.430 0.427 0.317 0.038 0.063 0.066 5:1 0.384 0.430 0.340 0.022 0.045 0.045 5:2 0.374 0.430 0.394 0.061 0.078 0.074 5:3 0.343 0.407 0.362 0.049 0.063 0.060 5:4 0.363 0.453 0.441 0.137 0.143 0.140 5:5 0.384 0.364 0.464 0.174 0.156 0.148 5:6 0.421 0.504 0.520 0.316 0.296 0.293 * Khi hạt ZnS:Mn bọc phủ PVP với tỉ lệ khối lượng khác độ hấp thụ đám 263, 310 nm giảm độ hấp thụ đám 353, 430, 468, 498 nm tăng (bảng 3.5) Từ hình 3.8 ta thấy sau bọc phủ PVP vị trí đám hấp thụ thay đổi + Vị trí đám hấp thụ vùng – vùng 263nm đám hấp thụ đặc trưng cho ion Mn2+ 430, 468, 498nm không đổi + Đám hấp thụ gần bờ vùng 310nm đặc trưng cho ZnS bị dịch phía bước sóng dài 353nm (năng lượng nhỏ), cịn đám đặc trưng cho dịch chuyển ion Mn2+ có vị trí không đổi Theo kết từ phổ X-Ray, tăng tỉ lệ bọc phủ PVP kích thước hạt giảm tức đám đặc trưng cho ZnS phải bị dịch phía bước sóng ngắn Nhưng đám lại dịch phía bước sóng dài, nguyên nhân gần bờ hấp thụ sườn phải xuất đám 430nm đặc trưng cho ion Mn 2+ có độ hấp thụ tăng lên đáng kể tăng tỉ lệ bọc phủ PVP 3.5.2 Phổ phát quang ZnS:Mn bọc phủ PVP Hình 3.9 phổ phát quang ZnS:Mn (CMn = 8mol%) bọc phủ PVP với tỉ lệ khối lượng ZnS:Mn PVP 5:0, 5:1, 5:2, 5:3, 5:4, 5:5, 5:6 ZnS:Mn/PVP(5:0) ZnS:Mn/PVP(5:1) ZnS:Mn/PVP(5:2) ZnS:Mn/PVP(5:3) ZnS:Mn/PVP(5:4) ZnS:Mn/PVP(5:5) ZnS:Mn/PVP(5:6) 603nm 9.0x103 g f ed cb Cuong (a.u) 6.0x103 a 3.0x103 0.0 400 500 600 700 800 Buoc song (nm) Hình 3.9: Phổ phát quang hạt nano ZnS:Mn bọc phủ PVP theo tỉ lệ khối lượng khác ZnS:Mn PVP Khi hạt nano ZnS:Mn chưa bọc phủ PVP phổ phát quang xuất đám da cam – vàng khoảng 603nm (hình 3.8a) Đám da cam – vàng dịch chuyển xạ điện tử 3d5 ion Mn2+ từ mức 4T1(4G) xuống mức 6A1(6S) Khi ion Mn2+ doping vào mạng tinh thể ZnS thay cho cation mạng tinh thể Zn 2+(3d10) dẫn đến trộn lẫn electron s-p mạng ZnS electron d Mn 2+, làm cho chuyển dịch cấm spin trở nên cho phép Khi hạt nano ZnS:Mn bọc phủ PVP tỉ lệ 5:1 phát quang đám da cam – vàng 603nm cường độ tăng lên đáng kể Tiếp tục tăng khối lượng PVP lên cường độ phát quang tăng theo (hình 3.8b-3.8g) Và phụ thuộc cường độ đám da cam - vàng vào tỉ lệ khối lượng ZnS:Mn PVP dẫn hình 3.10 Bảng 3.6: Tỉ số cường độ đám da cam - vàng hạt nano ZnS:Mn bọc phủ không bọc phủ PVP Tỉ lệ khối lượng Cường độ (a.u) mZnS:Mn mPVP Tỉ số cường độ IZnS:Mn/PVP IZnS:Mn 5:0 4030.04 5:1 5703.99 1.42 5815.95 1.44 6124.52 1.52 6263.79 1.55 7017.48 1.74 8216.28 2.04 5:2 5:3 5:4 5:5 5:6 Cuong (a.u) 9x10 8x10 7x10 6x10 5x10 4x10 3x10 3 Ti le khoi luong ZnS:Mn va PVP Hình 3.10: Sự phụ thuộc cường độ đám da cam - vàng hạt nano ZnS:Mn/PVP vào tỉ lệ khối lượng ZnS:Mn PVP Từ đồ thị phụ thuộc cường độ đám da cam - vàng hạt nano ZnS:Mn/PVP vào tỉ lệ khối lượng (hình 3.10) ta thấy hạt nano ZnS:Mn bọc phủ PVP cường độ tăng mạnh so với chưa bọc phủ PVP Khi tăng tỉ lệ khối lượng ZnS:Mn PVP tăng từ 5:1 đến 5:6 cường độ đám da cam - vàng tăng Tỉ số cường độ đám da cam - vàng hạt nano ZnS:Mn bọc phủ không bọc phủ PVP tăng từ 1.42 đến 2.04 (bảng 3.6) Điều giải thích truyền lượng kích thích từ PVP sang ion Mn 2+ tinh thể ZnS Sự dịch chuyển hấp thụ, xạ hạt nano ZnS:Mn dẫn hình 3.11 Hình 3.11: Sự dịch chuyển hấp thụ, xạ hạt nano ZnS:Mn 3.5.3 Phổ hấp thụ hồng ngoại ZnS:Mn bọc phủ PVP Sự bọc phủ hạt nano ZnS:Mn PVP kiểm tra phổ hấp thụ hồng ngoại Hình 3.12 phổ hấp thụ hồng ngoại ZnS:Mn (C Mn= mol %) không bọc phủ bọc phủ PVP với tỉ lệ khối lượng 5:3 PVP ZnS:Mn ZnS:Mn/PVP (5:3) (C=O) 1649 (OH) (Mn-S) 660 60 Do hap thu (a.u) 3430 (C= 1420 N) 571 1292 (CH 2) 742 c a 30 (Zn-S) 1014 (C-H) 2953 2106 b 0 1000 2000 3000 4000 5000 So song (cm-1 ) Hình 3.12: Phổ hấp thụ hồng ngoại PVP, ZnS:Mn ZnS:Mn bọc phủ PVP với tỉ lệ khối lượng 5:3 Bảng 3.7: Số sóng độ hấp thụ vạch phổ hấp thụ hồng ngoại ZnS:Mn bọc phủ PVP Số sóng (cm-1) Sai số Độ hấp thụ (a.u) PVP ZnS:Mn ZnS:Mn Δ Δ (1) (2) bọc phủ 31 32 PVP (3) 429 PVP ZnS:Mn -1 (cm ) (cm ) ZnS:Mn PVP +29 657 24.3 40.0 38.8 660 731 660 742 1014 +11 1014 chất bọc phủ -1 458 Bản -C-C31.8 31.5 ZnO 10.0 50.3 Mn-S 38.8 CH2 17.9 Zn-S 1079 1099 +20 7.32 7.36 -C-C- 1300 1292 -8 40.0 47.0 C=N 1646 1649 +5 65.7 72.9 C=O 2953 2946 -7 32.4 41.2 C-H 3430 -3 61.2 OH 3433 3422 +8 60.1 50.6 Từ bảng số sóng cường độ đỉnh phổ hấp thụ hồng ngoại (bảng 3.7) ta thấy: + Trước sau hạt nano ZnS:Mn bọc phủ PVP xuất vạch đặc trưng cho dao động liên kết Zn-S 1014 cm -1, Mn-S 660 cm-1 ZnO 429, 458 cm-1 với dịch không đáng kể Độ hấp thụ vạch sau bọc phủ có thay đổi, vạch 660 cm -1 tăng từ 31.8 lên 50.3 a.u, vạch 1014 cm -1 tăng từ 10.0 lên 17.9 a.u, vạch 3422 cm-1 tăng từ 50.6 lên 61.2 a.u + Khi hạt nano ZnS:Mn bọc phủ PVP, ta thấy phổ hấp thụ hồng ngoại xuất nhiều đám, vạch PVP Vạch đặc trưng cho –C-C- 657 cm-1, 1079 cm-1, CH2 731 cm-1, C=N 1300 cm-1, C=O 1646 cm-1, C-H 2953 cm-1 Điều chứng tỏ hạt nano ZnS:Mn bọc phủ PVP Vạch đặc trưng cho dao động nhóm C=O PVP bị dịch phía số sóng lớn khoảng 1649 cm-1, vạch đặc trưng cho liên kết C-H PVP bị dịch phía số sóng nhỏ khoảng 2946 cm-1 Cịn nhóm OH có độ hấp thụ không thay đổi hạt nano ZnS:Mn không bọc phủ bọc phủ PVP hấp thụ mạnh nước khơng khí Ở ta thấy vạch 657 cm -1 đặc trưng cho dao động –C-Ccủa PVP có vị trí gần so với vạch 660 cm-1 liên kết Mn-S hạt nano ZnS:Mn 3.6 Thảo luận kết + Từ giản đồ XRD bảng 3.4 cho thấy kích thước hạt nano ZnS:Mn bọc phủ PVP giảm đáng kể so với chưa bọc phủ PVP Polyvinyl pyrrolidone (PVP) với cơng thức phân tử (C6H9NO)n có nhóm carbonyl -C=O Khi hạt nano ZnS:Mn phân tán dung dịch PVP nhóm carbonyl phân tử PVP liên kết với ion Zn2+, Mn2+ hình thành kiên kết –C=O → Zn2+, – C=O → Mn2+, dẫn đến che phủ quỹ đạo phân tử PVP với quỹ đạo ion Zn2+ Mn2+ định xứ, bề mặt hạt nano ZnS:Mn Do hình thành liên kết mà hạt nano ZnS:Mn không kết tụ với kích thước hạt bị giảm Hình 3.13: Mơ hình bọc phủ hạt nano ZnS:Mn PVP + Trong phổ phát quang cho thấy tăng khối lượng bọc phủ cường độ phát quang đám da cam – vàng tăng Điều giải thích sau: Dưới tác dụng laser He-Cd đèn Xe, việc tạo cặp điện tử - lỗ trống tham gia vào trình truyền lượng kích thích cho ion Mn 2+ tinh thể ZnS, cịn xảy kích thích phân tử PVP bao quanh hạt nano ZnS Các phân tử PVP hấp thụ photon xạ kích thích chuyển từ trạng thái điện tử (HOMO) lên trạng thái điện tử kích thích (LUMO), sau chuyển trạng thái điện tử phát xạ 390 nm Bức xạ kích thích điện tử 3d ion Mn2+ cường độ đám da cam vàng tăng lên tăng khối lượng bọc phủ PVP Sơ đồ mức lượng, vùng lượng dịch chuyển hấp thụ, xạ hạt nano ZnS:Mn bọc phủ PVP dẫn hình 3.14 Hình 3.14: Sơ đồ mức lượng dịch chuyển hấp thụ, xạ KẾT hạt nano ZnS:Mn bọc phủ PVP LUẬN KẾT LUẬN Sau thời gian thực đề tài :“Nghiên cứu số tính chất quang hạt nano ZnS:Mn bọc phủ polyvinylpyrrolidone chế tạo phương pháp đồng kết tủa”, thu số kết sau: Thu thập tài liệu tìm hiểu quy trình chế tạo, cấu trúc tinh thể, phổ phát quang, phổ hấp thụ tử ngoại hấp thụ hồng ngoại vật liệu nano ZnS:Mn khơng bọc phủ có bọc phủ PVP chế tạo nhiều phương pháp khác nhau, đặc biệt phương pháp đồng kết tủa Nghiên cứu xây dựng quy trình chế tạo hạt nano ZnS:Mn bọc phủ PVP phương pháp đồng kết tủa, bọc phủ sau cho phép tính tốn khối lượng hạt nano ZnS:Mn PVP cách xác định Khảo sát cấu trúc hình thái học hạt nano ZnS:Mn bọc phủ PVP thông qua phổ X-Ray ảnh TEM chúng Kết cho thấy kích thước hạt cỡ vài nanomet bọc phủ hạt nano ZnS:Mn PVP khơng làm thay đổi tính chất cấu trúc tinh thể ZnS:Mn mà làm giảm kích thước hạt chúng Khảo sát ảnh hưởng tỉ lệ khối lượng ZnS:Mn PVP lên phổ phát quang, phổ hấp thụ tử ngoại hạt nano ZnS:Mn bọc phủ PVP Kết cho thấy: + Trong phổ phát quang ZnS:Mn xuất đám da cam – vàng 603 nm đặc trưng cho ion Mn2+ [4T1(4G) → 6A1(6S)] Khi bọc phủ PVP với tỉ lệ khối lượng ZnS:Mn PVP tăng từ 5:1 đến 5:6 cường độ đám da cam – vàng tăng lên có giá trị lớn tỉ lệ 5:6 + Trong phổ hấp thụ đám đặc trưng cho chuyển dời hấp thụ vùng – vùng gần bờ vùng xuất đám 430, 468, 498 nm đặc trưng cho chuyển dời hấp thụ electron lớp vỏ 3d5 chưa lấp đầy ion Mn2+ tinh thể ZnS:Mn Đây chứng cho thấy ion Mn 2+ pha tạp vào mạng tinh thể ZnS thay cho ion Zn2+ Khảo sát phổ hấp thụ hồng ngoại PVP, hạt nano ZnS:Mn chưa bọc phủ có bọc phủ PVP Kết cho thấy phổ hấp thụ hồng ngoại hạt nano ZnS:Mn bọc phủ PVP xuất vạch đặc trưng cho PVP số vạch đặc trưng cho liên kết Zn-S, Mn-S, ZnS:Mn Điều chứng tỏ hạt nano ZnS:Mn bọc phủ PVP Bước đầu giải thích tăng cường độ đám da cam – vàng 603 nm đặc trưng cho ion Mn2+ tinh thể ZnS, truyền lượng kích thích từ phân tử PVP bao quanh hạt nano sang ion Mn 2+ tinh thể ZnS TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt Trịnh Thị Huế (2010), Vai trị mơi trường chất lỏng quy trình chế tạo hạt nano kim loại phương pháp ăn mòn laser, Luận văn thạc sĩ, Trường ĐHKHTN ĐHQG Hà Nội Nguyễn Quang Liêm (1995), Chuyển dời điện tử tâm phát tổ hợp bán dẫn AIIBVI, Luận văn phó tiến sĩ Nguyễn Ngọc Long (2007), Vật lý chất rắn, NXB ĐHQGHN, Hà Nội Nguyễn Đức Nghĩa (2007), Hóa học Nano, Công nghệ vật liệu nguồn NXB Viện Khoa học Việt nam, Hà Nội Tài liệu tiếng Anh Bernard Valeur (2002), Molecular Fluorescence Principles and Applications, pp.21-22 G Murugadoss (2010), “Synthesis and optical characterization of PVP and SHMP-encapsulated Mn2+-doped ZnS nanocrystals”, Journal of Luminescence, pp.2207–2214 Http//en.wikipedia.org Jian Cao (2010), “Growth mechanism and blue shift of Mn 2+ luminescence for wurtzite ZnS:Mn2+ nanowires” Journal of Physics K Jayanthi, S Chawla, H Chander, and D Haranath (2007), Cryst Red Technol, pp.976-982 10 K Manzoor (2003), “Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nanocrystals”, Solid State Communications, pp.469-473 11 Kubelka P., Munk F.(1931), “The Kubelka-Munk Theory of reflectance”, Zeit, Fur Tekn, Physik 12, pp.593-599 12 Mingwen Wang, Lingdong Sun, Xuefeng Fu, Chunsheng Liao, Chunhua Yan (2000), Solid State Communication, pp.493-496 13 Schmid Gunter (2006), Nanoparticles: from theory to application, WILEY- VCH Verlag GmbH Co.KgaA 14 Subhendu K Panda (2007), “Nearly monodispersed ZnS nanospheres: Synthesis and optical properties”, Chemical Physics Letters 440, pp.235-238 15 Ulrike Woggon (2004), Optical properties of Semiconductor Quantum Dots, pp.52-53 16 Warren B.E (1991), Xray-diraction, Dover publication Inc, New York 17 W.Q.Peng, S.C.Qu, G.W.Cong, X.Q.Zhang, Z.H.Wang (2005), Journal of Crystal Growth, pp.179-185 18 Yoffe A.D (1993), “Low-dimensinal systems:quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensinal symtems) and some quasi-two-dimensional systems”, Advances in Physics 42, pp.173-266 19 Yvonne Axmann (2004), Manganese doped ZnS nanoparticles: Synthesis, particle, particle sizing and optical properties, pp.23 ... Phạm Văn Thắng NGHIÊN CỨU MỘT SỐ TÍNH CHẤT QUANG CỦA CÁC HẠT NANO ZnS: Mn BỌC PHỦ POLYVINYLPYRROLIDONE CHẾ TẠO BẰNG PHƯƠNG PHÁP ĐỒNG KẾT TỦA Chuyên ngành: Quang học Mã số: 60 44 01 09 LUẬN VĂN THẠC... phát quang hạt nano ZnS: Mn2 + bọc phủ cường độ phát quang hạt bọc phủ PVP lớn SHMP [9] CHƯƠNG MỘT SỐ PHƯƠNG PHÁP CHẾ TẠO VẬT LIỆU NANO ZnS: Mn 2.1 Một số phương pháp chế tạo vật liệu nano ZnS: Mn. .. CHƯƠNG KẾT QUẢ THỰC NGHIỆM VÀ THẢO LUẬN 3.1 Quy trình chế tạo hạt nano ZnS: Mn (C Mn = 8mol%) phương pháp đồng kết tủa Để chế tạo hạt nano ZnS: Mn bọc phủ PVP ban đầu cần phải chế tạo hạt nano chưa bọc

Ngày đăng: 24/12/2021, 20:42

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Trịnh Thị Huế (2010), Vai trò của môi trường chất lỏng trong quy trình chế tạo hạt nano kim loại bằng phương pháp ăn mòn laser, Luận văn thạc sĩ, Trường ĐHKHTN - ĐHQG Hà Nội Sách, tạp chí
Tiêu đề: Vai trò của môi trường chất lỏng trong quy trình chế tạo hạtnano kim loại bằng phương pháp ăn mòn laser
Tác giả: Trịnh Thị Huế
Năm: 2010
2. Nguyễn Quang Liêm (1995), Chuyển dời điện tử trong các tâm phát tổ hợp của bán dẫn A II B VI , Luận văn phó tiến sĩ Sách, tạp chí
Tiêu đề: Nguyễn Quang Liêm (1995), "Chuyển dời điện tử trong các tâm phát tổ hợp củabán dẫn A"II"B"VI
Tác giả: Nguyễn Quang Liêm
Năm: 1995
3. Nguyễn Ngọc Long (2007), Vật lý chất rắn, NXB ĐHQGHN, Hà Nội Sách, tạp chí
Tiêu đề: Vật lý chất rắn, NXB ĐHQGHN
Tác giả: Nguyễn Ngọc Long
Nhà XB: NXB ĐHQGHN"
Năm: 2007
4. Nguyễn Đức Nghĩa (2007), Hóa học Nano, Công nghệ nền và vật liệu nguồn NXB Viện Khoa học Việt nam, Hà Nội.Tài liệu tiếng Anh Sách, tạp chí
Tiêu đề: Hóa học Nano, Công nghệ nền và vật liệu nguồn
Tác giả: Nguyễn Đức Nghĩa
Nhà XB: NXB Viện Khoa học Việt nam
Năm: 2007
5. Bernard Valeur (2002), Molecular Fluorescence Principles and Applications, pp.21-22 Sách, tạp chí
Tiêu đề: Molecular Fluorescence Principles and Applications
Tác giả: Bernard Valeur
Năm: 2002
6. G. Murugadoss (2010), “Synthesis and optical characterization of PVP and SHMP-encapsulated Mn 2+ -doped ZnS nanocrystals”, Journal of Luminescence, pp.2207–2214.7. Http//en.wikipedia.org Sách, tạp chí
Tiêu đề: Synthesis and optical characterization of PVP andSHMP-encapsulated Mn2+-doped ZnS nanocrystals”, "Journal of Luminescence
Tác giả: G. Murugadoss
Năm: 2010
8. Jian Cao (2010), “Growth mechanism and blue shift of Mn 2+ luminescence for wurtzite ZnS:Mn 2+ nanowires” Journal of Physics Sách, tạp chí
Tiêu đề: Growth mechanism and blue shift of Mn2+ luminescence forwurtzite ZnS:Mn2+ nanowires”
Tác giả: Jian Cao
Năm: 2010
9. K. Jayanthi, S. Chawla, H. Chander, and D. Haranath (2007), Cryst. Red. Technol, pp.976-982 Sách, tạp chí
Tiêu đề: Cryst. Red. Technol
Tác giả: K. Jayanthi, S. Chawla, H. Chander, and D. Haranath
Năm: 2007
10. K. Manzoor (2003), “Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nanocrystals”, Solid State Communications, pp.469-473 Sách, tạp chí
Tiêu đề: Energy transfer from organic surface adsorbate-polyvinylpyrrolidone molecules to luminescent centers in ZnS nanocrystals”, "Solid StateCommunications
Tác giả: K. Manzoor
Năm: 2003
11. Kubelka P., Munk F.(1931), “The Kubelka-Munk Theory of reflectance”, Zeit, Fur Tekn, Physik 12, pp.593-599 Sách, tạp chí
Tiêu đề: The Kubelka-Munk Theory of reflectance”, "Zeit, Fur Tekn, Physik
Tác giả: Kubelka P., Munk F
Năm: 1931
12. Mingwen Wang, Lingdong Sun, Xuefeng Fu, Chunsheng Liao, Chunhua Yan (2000), Solid State Communication, pp.493-496 Sách, tạp chí
Tiêu đề: Solid State Communication
Tác giả: Mingwen Wang, Lingdong Sun, Xuefeng Fu, Chunsheng Liao, Chunhua Yan
Năm: 2000
13. Schmid Gunter (2006), Nanoparticles: from theory to application, WILEY- VCH Verlag GmbH Co.KgaA Sách, tạp chí
Tiêu đề: Nanoparticles: from theory to application
Tác giả: Schmid Gunter
Năm: 2006
14. Subhendu K. Panda (2007), “Nearly monodispersed ZnS nanospheres: Synthesis and optical properties”, Chemical Physics Letters 440, pp.235-238 Sách, tạp chí
Tiêu đề: Nearly monodispersed ZnS nanospheres: Synthesis and optical properties”, "Chemical Physics Letters 440
Tác giả: Subhendu K. Panda
Năm: 2007
15. Ulrike Woggon (2004), Optical properties of Semiconductor Quantum Dots, pp.52-53 Sách, tạp chí
Tiêu đề: Ulrike Woggon (2004), "Optical properties of Semiconductor Quantum Dots
Tác giả: Ulrike Woggon
Năm: 2004
16. Warren B.E (1991), Xray-diraction, Dover publication Inc, New York Sách, tạp chí
Tiêu đề: Xray-diraction, Dover publication Inc
Tác giả: Warren B.E
Năm: 1991
17. W.Q.Peng, S.C.Qu, G.W.Cong, X.Q.Zhang, Z.H.Wang (2005), Journal of Crystal Growth, pp.179-185 Sách, tạp chí
Tiêu đề: Journal ofCrystal Growth
Tác giả: W.Q.Peng, S.C.Qu, G.W.Cong, X.Q.Zhang, Z.H.Wang
Năm: 2005
18. Yoffe A.D. (1993), “Low-dimensinal systems:quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensinal symtems) and some quasi-two-dimensional systems”, Advances in Physics 42, pp.173-266 Sách, tạp chí
Tiêu đề: Low-dimensinal systems:quantum size effects andelectronic properties of semiconductor microcrystallites (zero-dimensinal symtems)and some quasi-two-dimensional systems”, "Advances in Physics 42
Tác giả: Yoffe A.D
Năm: 1993
19. Yvonne Axmann (2004), Manganese doped ZnS nanoparticles: Synthesis, particle, particle sizing and optical properties, pp.23 Sách, tạp chí
Tiêu đề: Manganese doped ZnS nanoparticles: Synthesis,particle, particle sizing and optical properties
Tác giả: Yvonne Axmann
Năm: 2004

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w