THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 68 |
Dung lượng | 1,69 MB |
Nội dung
Ngày đăng: 12/12/2021, 21:02
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
65. Zhang, X., Gao, B., Zhao, S., Wu, P., Han, L., Liu, X., 2020. Optimization of a “coal-like” pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw. J. Clean. Prod. 242, 118426.https://doi.org/10.1016/j.jclepro.2019.118426 | Sách, tạp chí |
|
||
1. Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203, 183–191.https://doi.org/10.1016/j.geoderma.2013.03.003 | Link | |||
2. Axelsson, L., Franzén, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N.H., 2012. Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioprod. Biorefining 6, 246–256.https://doi.org/10.1002/bbb | Link | |||
3. Ayuso, M., Moreno, J.L., Hernández, T., García, C., 1997. Characterisation and evaluation of humic acids extracted from urban waste as liquid fertilisers. J. Sci.Food Agric. 75, 481–488. https://doi.org/10.1002/(SICI)1097-0010(199712)75:4<481::AID-JSFA901>3.0.CO;2-K | Link | |||
4. Babinszki, B., Jakab, E., Sebestyén, Z., Blazsó, M., Berényi, B., Kumar, J., Krishna, B.B., Bhaskar, T., Czégény, Z., 2020. Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products.J. Anal. Appl. Pyrolysis 149, 104844.https://doi.org/10.1016/j.jaap.2020.104844 | Link | |||
5. Bach, Q.V., Tran, K.Q., Khalil, R.A., Skreiberg, ỉ., Seisenbaeva, G., 2013. Comparative assessment of wet torrefaction. Energy and Fuels 27, 6743–6753.https://doi.org/10.1021/ef401295w | Link | |||
6. Becker, G.C., Wỹst, D., Kửhler, H., Lautenbach, A., Kruse, A., 2019. Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization. J. Environ. Manage. 238, 119–125.https://doi.org/10.1016/j.jenvman.2019.02.121 | Link | |||
7. Benyoucef, S., Amrani, M., 2011. Removal of phosphorus from aqueous solutions using chemically modified sawdust of Aleppo pine (Pinus halepensis Miller):Kinetics and isotherm studies. Environmentalist 31, 200–207.https://doi.org/10.1007/s10669-011-9313-1 | Link | |||
9. Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., Renz, M., 2016. Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermalcarbonization. Green Chem. 18, 1051–1060.https://doi.org/10.1039/c5gc02296g | Link | |||
10. Chen, X., Ma, X., Peng, X., Lin, Y., Yao, Z., 2018. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour. Technol. 249, 900–907.https://doi.org/10.1016/j.biortech.2017.10.096 | Link | |||
11. Chen, Y., Chen, J., Chen, S., Tian, K., Jiang, H., 2015. Ultra-high capacity and selective immobilization of Pb through crystal growth of hydroxypyromorphite on amino-functionalized hydrochar. J. Mater. Chem. A 3, 9843–9850.https://doi.org/10.1039/c5ta01011j | Link | |||
12. Dai, L., Tan, F., Wu, B., He, M., Wang, W., Tang, X., Hu, Q., Zhang, M., 2015. Immobilization of phosphorus in cow manure during hydrothermalcarbonization. J. Environ. Manage. 157, 49–53.https://doi.org/10.1016/j.jenvman.2015.04.009 | Link | |||
13. Du, Z., Hu, B., Shi, A., Ma, X., Cheng, Y., Chen, P., Liu, Y., Lin, X., Ruan, R., 2012. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour. Technol. 126, 354–357. https://doi.org/10.1016/j.biortech.2012.09.062 | Link | |||
14. Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Fletcher, L.A., 2016a. Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water. Bioresour. Technol. 214, 637–644.https://doi.org/10.1016/j.biortech.2016.05.012 | Link | |||
15. Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Williams, P.T., 2016b. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate.Bioresour. Technol. 200, 951–960.https://doi.org/10.1016/j.biortech.2015.11.018 | Link | |||
17. Gao, Y., Wang, X.H., Yang, H.P., Chen, H.P., 2012. Characterization of products from hydrothermal treatments of cellulose. Energy 42, 457–465.https://doi.org/10.1016/j.energy.2012.03.023 | Link | |||
18. Gunarathne, D.S., Mueller, A., Fleck, S., Kolb, T., Chmielewski, J.K., Yang, W., Blasiak, W., 2014. Gasification characteristics of hydrothermal carbonized biomass in an updraft pilot-scale gasifier. Energy and Fuels 28, 1992–2002.https://doi.org/10.1021/ef402342e | Link | |||
19. Guo, N., Luo, W., Guo, R., Qiu, D., Zhao, Z., Wang, L., Jia, D., Guo, J., 2020. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. J. Alloys Compd. 834, 155115.https://doi.org/10.1016/j.jallcom.2020.155115 | Link | |||
20. Han, L., Sun, H., Ro, K.S., Sun, K., Libra, J.A., Xing, B., 2017. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure- derived hydrochars and pyrochars. Bioresour. Technol. 234, 77–85.https://doi.org/10.1016/j.biortech.2017.02.130 | Link | |||
23. Heilmann, S.M., Molde, J.S., Timler, J.G., Wood, B.M., Mikula, A.L., Vozhdayev, G. V., Colosky, E.C., Spokas, K.A., Valentas, K.J., 2014. Phosphorus reclamation through hydrothermal carbonization of animal manures. Environ.Sci. Technol. 48, 10323–10329. https://doi.org/10.1021/es501872k | Link |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN