1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Tỷ Suất Lợi Nhuận -- Rate of Returns Trọng-Quyen L. Nguyen Tỷ lệ Bất Biến Tỷ ppt

9 423 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 193,96 KB

Nội dung

Tỷ lệ này không có thay đổi theo số giờ thí sinh học bài; học thêm 1 tiếng từ một giờ lên hai giờ, thí sinh lợi thêm 10 điểm, và học thêm 1 tiếng từ tám giờ lên chín giờ, tỷ lệ vẫn là 10

Trang 1

Tỷ Suất Lợi Nhuận Rate of Returns

Trọng-Quyen L Nguyen

Tỷ lệ Bất Biến

Tỷ như có một thí sinh, để chuẩn bị cho kỳ thi Toán tới, có tất cả là mười giờ để

ôn bài Tỷ như, thí sinh đó không học bài, thí sinh sẽ được không (zero) điểm

trong bài thi; học 1 tiếng được 10 điểm, học 2 tiếng được 20 điểm, v.v

Qua sự phân tích tài liệu sau về thí sinh đó, ta thấy được tỷ lệ của thí sinh là

10điểm/1giờ Tỷ lệ này không có thay đổi theo số giờ thí sinh học bài; học thêm 1

tiếng từ một giờ lên hai giờ, thí sinh lợi thêm 10 điểm, và học thêm 1 tiếng từ tám

giờ lên chín giờ, tỷ lệ vẫn là 10 điểm/1 giờ Tỷ lệ không thay đổi này gọi là tỷ lệ

bất biến, hay là tỷ lệ cố định (In English, it is a constant rate of return)

# giờ học Toán Ðiểm Toán Tỷ lệ

Trang 2

3 30 10

Dưới đây là biểu đồ, biểu thị sự tương quan giữa điểm thi và số giờ thí sinh học bài Sự tương quan này được trình bày qua đường thẳng xanh đậm Sự tương quan của tỷ lệ cố định là một đường thẳng Và đường đỏ biểu thị tỷ lệ cố định

10điểm/1giờ

Trang 3

Biểu đồ tương quan tỷ lệ bất biến giữa điểm và giờ học

Tỷ lệ Giảm Thiểu

Tỷ như có một thí sinh khác, thí sinh X, cũng có 10 giờ học bài Lợi ích của học bài quy theo từng giờ như sau: nếu không học thì được điểm không (zero); hoc một giờ đươc 22 điểm, học hai giờ được 38 điểm tổng cộng, học ba giờ được 50 điểm tổng cộng, học bốn giờ được 60 điểm tổng cộng, và v.v

Qua sự phân tích, trong giờ học bài đầu tiên, thí sinh đó có lợi thêm 22 điểm (22 - 0) Nhưng học thêm giờ thứ hai, thí sinh X có lợi thêm 16 điểm (38 - 22), và học thêm một giờ nữa từ hai giờ đến ba giờ thí sinh X có lợi thêm 12 điểm (50 - 38) nữa Và cứ tiếp tục như vậy, chúng ta thấy lợi ích học bài thay đổi từ 22 điểm cho giờ đầu tiên, 16 điểm cho giờ thứ hai, 12 điểm cho giờ thứ ba, 10 điểm cho giờ thứ tư, và cứ thế đến giờ thứ mười, 3 điểm

Trang 4

Tuy hoc bài thí sinh đó sẽ hưởng lợi hơn là không học bài, nhưng tỷ lệ lợi ích học bài cho mỗi giờ thay đổi và giảm dần Tiếng đầu tiên, tỷ lệ lợi ích là 22điểm/1giờ; tiếng giờ thứ hai, tỷ lệ lợi ích là 16điểm/1giờ Như vậy, tỷ lệ cho mỗi tiếng giảm dần từ giờ thứ nhất sang giờ thứ hai là 5 điểm (22 - 16) Tỷ lệ lợi ích của giờ học thứ ba là 12 điểm/1 giờ So sánh với giờ thứ hai, tỷ lệ thấp hơn là 4 điểm (16 - 12)

# giờ học Toán Ðiểm Toán Tỷ lệ

Trang 5

7 82 7

Dưới đây là biểu đồ, biểu thị sự tương quan giữa điểm thi và giờ học bài cho thí

sinh X Sự tương quan này được trình bày qua đường xanh đậm Trước hết, ta thấy

rằng đường xanh đậm này không phải là đường thẳng Và đường màu hồng biểu

thị tỷ lệ giảm thiểu Bởi vì tỷ lệ bị giảm dần hay giảm thiểu, đường màu hồng có

khuynh hướng đi xuống, và đường màu xanh biểu thị cho điểm thi của thí sinh X

là đường cung có khuynh hướng lồi ra (convex out)

Chú ý: khi phân tích tỷ lệ, ta nên chú ý đến sự khác biệt giữa lợi (benefits) và lợi

thêm (additional benefits) Như đã trình bày, học thì lúc nào cũng lợi hơn không

học Nhưng tỷ lệ lợi thêm cho mỗi giờ có thể không giống nhau, nếu như tỷ lệ lợi

ích là tỷ lệ giảm thiểu hay tỷ lệ gia tăng. Tỷ lệ lợi thêm bị giảm dần dần, từ nhiều

đến ít

Trang 6

Biểu đồ tương quan tỷ lệ giảm thiểu giữa điểm và giờ học

Tỷ lệ Gia Tăng

Tỷ như có một thí sinh Y, cũng có mười tiếng để học bài cho kỳ thi cuối khoá Và

tỷ như sự tương quan giữa điểm thi và số giờ học theo một quy trình sau Nếu thí sinh Y không học bài, thí sinh đó sẽ không làm bài đuợc, và chắc chắc là sẽ được điểm không (zero) Nếu thí sinh Y học một tiếng đồng hồ, thì thi sinh sẽ làm được

1 điểm Nếu thí sinh học hai tiếng thì sẽ làm được 4 điểm tổng cộng Nếu thí sinh học ba tiếng, thì sẽ làm được 9 điểm tổng cộng; bốn tiếng thì được 16 điểm tổng cộng; năm tiếng 24 điểm tổng cộng; sáu tiếng 34 điểm tổng cộng; bảy tiếng 45 điểm tổng cộng; tám tiếng 60 điểm tổng cộng; chín tiếng 77 điểm tổng cộng và mười tiếng 96 điểm tổng cộng

Qua quá trình phân tích, ta thấy trong tiếng đầu, lợi ích cho thí sinh là 1 điểm Trong tiếng thứ hai, lơi ích thêm cho thí sinh là 3 điểm Tiếng thứ ba, lợi ích thêm

Trang 7

là 5 điểm; tiếng thứ tư, lợi ích thêm là 7 điểm; thứ năm là 8 điểm; thứ sáu là 10 điểm; thứ bảy là 11 điểm; thứ tám là 15 điểm; thứ chín là 17 điểm, thứ 10 là 18 điểm

Như ta thấy, tỷ lệ càng ngày càng gia tăng Từ 1 điểm cho tiếng thứ nhất, tăng lên thành 3 điểm cho tiếng thứ hai, 5 điểm cho tiếng thứ ba, 7 điểm cho tiếng thứ tư, và cho đến 18 điểm cho tiếng thứ mười

# giờ học Toán Ðiểm Toán Tỷ Lệ

Trang 8

7 45 11

Sau đây là biểu đồ, biểu thi sự tưong quan giữa điểm thi và số giờ học bài của thí sinh Y Sự tương quan này được trình bày qua đường xanh đậm Còn đường này biểu thị tỷ lệ gia tăng của thí sinh Y Cũng như tỷ lệ giảm thiểu, tỷ lệ gia tăng không phải là một đường thẳng Ngược với tỷ lệ giảm thiểu, tỷ lệ gia tăng là

đường vòng cung lõm vào Và đường màu hông, biểu thị cho tỷ lệ gia tăng có khuynh hướng đi lên

Khi phân tích tỷ lệ gia tăng cũng như tỷ lệ giảm thiểu, ta cần phải để ý đến sự khác biệt giữa lợi và lợi thêm Có học vẫn tôt hơn không học, nhưng ở tỷ lệ gia tăng,

càng học càng được điểm cao một cách không ngờ (giống như câu tục ngữ "gừng càng già càng cay")

Ngoài ra, ta còn thấy nữa là thí sinh Y sẽ hưởng lợi rất nhiều trong hai giờ cuối cùng Học thêm hai giờ, tiếng thứ chín và tiếng thứ mười, thí sinh Y sẽ nâng cao điểm thi từ 60 lên 96 điểm

Trang 9

Biểu đồ tương quan tỷ lệ gia tăng giữa điểm và giờ học

Ngày đăng: 20/01/2014, 09:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w