1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 37 pptx

23 217 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 278,48 KB

Nội dung

37.1: If O  sees simultaneous flashes then O will see the )AA(  flash first since O would believe that the A  flash must have traveled longer to reach O  , and hence started first. 37.2: a) .29.2 )9.0(1 1 γ 2    s.105.05s)1020.2()29.2(γ 66    t b) km.1.36m101.36s)1005.5()sm1000.3()900.0( 368   vtd 37.3:  2 2 212222 2 1)1(1 c u cucu s.1000.5)( )sm102(3.00 (3600)hrs)4()sm250( 2 ))(11()( 9 0 28 2 2 2 22 0      tt t c u tcutt The clock on the plane shows the shorter elapsed time. 37.4: .79.4 )978.0(1 1 γ 2    ms.0.395s103.95s)104.82()79.4(γ -46   t 37.5: a) 2 0 2 2 22 0 1 1             t t c u cu t t 2 2 0 42 6.2 11                 c t t cu .998.0 cu   b) m.126s)10(4.2)sm1000.3()998.0( 78   tux 37.6: 667.1γ  a) s.300.0 )800.0( γ m1020.1 γ 8 0      c t t b) m.107.20)(0.800s)300.0( 7 c c) s.180.0γs300.0 0 t (This is what the racer measures your clock to read at that instant.) At your origin you read the original s.5.0 )sm10(3(0.800) m1020.1 8 8    Clearly the observes (you and the racer) will not agree on the order of events! 37.7: yr)(1 sm103.00 sm104.80 11 2 8 6 22 0            tcut hrs.1.12yr)1028.1()( 4 0   tt The least time elapses on the rocket’s clock because it had to be in two inertial frames whereas the earth was only in one. 37.8: a) The frame in which the source (the searchlight) is stationary is the spacecraft’s frame, so 12.0 ms is the proper time. b) To three figures, . c u  Solving Eq. (37.7) for cu in terms of , γ . γ2 1 1) γ1(1 2 2  c u Using .998.0givesms190ms0.12γ1 0  cutt 37.9: 00.6 )9860.0(1 1 )(1 1 γ 22      cu a) km.17.9 6.00 km55 γ 0  l l b) In muon’s frame: %.1.7071.0 17 . 9 651.0 % km.0.651s)1020.2)(9860.0( 6    h d ctud c) In earth’s frame: %.1.7 km55.0 km90.3 % km3.90s)10)(1.32(0.9860 s101.32s)(6.00)102.2( γ 5 56 0           h d ctud tt 37.10: a) s.101.51 0.99540 m104.50 4 4     c t km.4.31 10.44 km45 γ 10.44 (0.9954)1 1 γ) 2      h h b c) s;101.44 γ ands,101.44 0.99540 55    t c h so the results agree but the particle’s lifetime is dilated in the frame of the earth. 37.11: a) m3600 0  l m.3568m)(0.991)(3600 )sm1000.3( )sm1000.4( 1)m3600(1 28 27 0 2 2 0     l c u ll )b .s109.00 sm104.00 m3600 5 7 0 0     u l t c) .s108.92 sm104.00 m3568 5 7     u l t 37.12: .sm102.86952.0)γ1(1so,3048.01γ 82  ccu 37.13: 22 0 2 2 0 1 1 cu l l c u ll   m.92.5 0.600 1 m74.0 2 0          c c l 37.14: Multiplying the last equation of (37.21) by u and adding to the first to eliminate t gives , 1 1 2 2 x c u xtux               and multiplying the first by 2 c u and adding to the last to eliminate x gives , γ 1 1 γ 2 2 2 t c u tx c u t              ),(γand)(γso 2 cxutttuxx         which is indeed the same as Eq. (37.21) with the primed coordinates replacing the unprimed, and a change of sign of u. 37.15: a) c cc cvu uv v 806.0 )600.0()400.0(1 600.0400.0 1 2          b) c cc cvu uv v 974.0 )600.0)(900.0(1 600.0900.0 1 2          c) .997.0 )600.0)(990.0(1 600.0990.0 1 2 c cc cvu uv v          37.16: ).)54(if35γ(667.1γ cu    a) In Mavis’s frame the event “light on” has space-time coordinates 0   x and 00.5   t s, so from the result of Exercise 37.14 or Example 37.7, )(γ tuxx     and                tttux c xu tt γ,m1000.2γγ 9 2 .s33.8 b) The 5.00-s interval in Mavis’s frame is the proper time 0 t in Eq. (37.6), so ,s33.8γ 0  tt as in part (a). c) 9 1000.2)800.0()s33.8( c m, which is the distance x found in part (a). 37.17: Eq. (37.18): 22 1 cu utx x     Eq. (37.19): 22 1 cuxtux     Equate: γ γ )( x tuutx              . )(1 γ γ γ 11 11 1 1 1 γ γ 1 γ γ 1 γ γ γ γ 2 2 2 22 2 22 2 2 2 2 cu cuxt c xu tt cu cu cu cu cu cu cu u x t u x t u x t                                   37.18: Starting from Eq. (37.22), )1( )1( 1 2 2 2 2 cvuv cuvvvuv uvcuvv cuv uv v            from which Eq. (37.23) follows. This is the same as switching the primed and unprimed coordinates and changing the sign of u . 37.19: Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity v  of the cruiser knowing the velocity of the primed frame u and the velocity of the cruiser v in the unprimed frame (Tatooine). c cc c uv uv v 385.0 )800.0()600.0(1 800.0600.0 1 2          the cruiser is moving toward the pursuit ship at .385.0 c 37.20: In the frame of one of the particles, u and v are both c9520.0 but with opposite sign. .9988.0 )9520.0)(9520.0(1 9520.09520.0 )()(1 )( 2 c cc cvu uv v           Thus, one particle moves at a speed c9988.0 toward the other in the other particle’s frame. 37.21: .784.0 )650.0)(950.0(1 650.0950.0 1 2 c cc c vu uv v           37.22: a) In Eq.(39-24), )400.0()700.0(1 400.0700.0 1 700.0,400.0 2           cc cvu uv vcvcu .859.0 c  b) .s0.31 859 . 0 m1000.8 9     c v x 37.23: uv c vuv v cuv uv v          22 1 c cc u cvv vv uvv c vv u 837.0 ))920.0)(360.0(1( 920.0360.0 )1( 1 22                     moving opposite the rocket, i.e., away from Arrakis. 37.24: Solving Eq. (37.25) for cu , (see solution to Exercise 37.25) , )(1 )(1 2 0 2 0 ff ff c u    and so (a) if   ,0202.0,98.0 0  cuff the source and observer are moving away from each other. b) if   ,882.0,4 0  cuff they are moving toward each other. 37.25: a) 2 0 2 0 )()( fucfucf uc uc f     )1λ)λ(( )1λ)λ(( 1)( )1)(()( 2 0 2 0 2 0 2 0 22 0 2 0 2          c ff ffc ff ffc u h.km101.72skm104.77sm1077.4159.0 )1)575675(( )1)575675(( 847 2 2     ccu b) 172$)00.1$(h)km90hkm1072.1( 8  million dollars! 37.26: Using   ccu 53600.0     in Eq. (37.25) gives     .2 58 52 531 531 000 ffff     37.27: a) 2/322 2 2 1 2 1 2222 )1( )2( 11 cv cvamv cv ma cv mv dt d dt dp F                .1 )1( )1( )1( 23 2 2 2322 2322 2222                      c v m F a cvma cv cvcv ma b) If the force is perpendicular to velocity then denominator is constant   dt dp F .1 1 22 22 cv m F a cv dtdvm   37.28: The force is found from Eq. (37.32) or Eq. (37.33). (a) Indistinguishable from N.145.0   maF b) .N75.1γ 3 ma c) N.7.51γ 3 ma d) N,145.0γ  ma N.03.1,N333.0 37.29: a) mv cv mv p 2 1 22    .866.0 2 3 4 3 1 4 1 121 22 2 2 22 ccvcv c v cv   b) c v c v mamaF    3/2 2 2 3/133 2 1 1 so)2( γ2γ2γ .608.021 3/2   37.30: a)   s.m1021.4and140.0so,01.1γ 8  vcv b) The relativistic expression is always larger in magnitude than the non-relativistic expression. 37.31: a) 22 22 2 1 mcmc cv mc K    .866.0 4 3 1 4 1 2 1 1 2 2 22 cv c v cv    b) .986.0 36 35 1 36 1 6 1 1 5 2 2 22 2 ccv c v cv mcK    37.32: eV.1088.1J1001.3)sm1000.3(kg)1067.1(22 91028272   mcE 37.33:  2 4 22 8 3 2 1 )1 γ( c mv mvmcK s.m1089.4163.0 150 4 4 150 2 02.0 8 3 2 1 02.1 722 2 2 4 2 0   ccvcv v c v mvKKif 37.34: a) .)1007.4()1γ( 232 f mcmcKW   b) ( .79.4)γγ 22 if mcmc  c) The result of part (b) is far larger than that of part (a). 37.35: a) Your total energy E increases because your potential energy increases; %103.3)sm10998.2()m30()sm80.9()( )(so)( 132822 222       cygmm cymgcEmcmE y mg E This increase is much, much too small to be noticed. b) J36.0m)m)(0.060N1000.2( 22 2 1 2 2 1  kxUE kg100.4)( 162   cEm Energy increases so mass increases. The mass increase is much, much too small to be noticed. 37.36: a) 2 00 cmE  2 0 2 22 cmmcE  0 22 0 0 2 /1 2 m cv m mm    sm1060.2866.0 43 4 3 1 4 1 8 2 2 2 2   cv cv c v c v b) 2 22 0 22 0 1 10 c cv m mccm   sm1098.2995.0 100 99 100 99 100 1 1 8 2 2 2 2   ccv c v c v 37.37: a) J1005.400.3means00.4so, 10222   mcKmcEKmcE b) 22222222 )()(0.15so,00.4;)()( pcmcmcEpcmcE  smkg1094.115 18   mcp c) 222 1 cvmcE  ccvcvmcE 968.01615and1611gives00.4 222  37.38: The work that must be done is the kinetic energy of the proton. a) 2 0 2 0 1 1 1 )1( 2 2 cmcmK c v                J1056.7 1 0.011 1 J)1050.1( 1 1 1 )sm10kg)(3.001067.1( 13 10 2 c1.0 2827                           c b)          1J)1050.1( 2 (0.5)1 1 10 K J1032.2 11  c)          1J)1050.1( 2 (0.9)1 1 10 K J1094.1 10  37.39: )smkg102.10kg,1064.6( 1827   pm a) 222 )()( pcmcE  J.1068.8 10  b) J.1070.2kg)1064.6(1068.8 10227102   cmcEK c) .452.0 kg)10(6.64 J1070.2 227 10 2       cmc K 37.40: 21 2 2212242 1)(                mc p mccpcmE 22 2 2 22 2 2 2 1 22 1 1 mvmc m p mc cm p mc           the sum of the rest mass energy and the classical kinetic energy. 37.41: a) 0376.1 1 1 γsm108 22 7    cv v p mm  J1034.5 2 1 122 0   mvK .06.1 J1065.5)1γ( 0 122   K K mcK b) 3.203γsm1085.2 8 v .88.4J1031.31)(γ J1078.6 2 1 0 102 112 0     KKmcK mvK 37.42: MeV.3105J1097.4)sm10kg)(3.001052.5( 102827   37.43: a) VeVqK     V1006.2 MeV2.06J10295.3025.41 1 1 6 132 22 2               eKV mc cv mcK b) From part (a), MeV2.06J1030.3 13   K 37.44: a) According to Eq. 37.38 and conservation of mass-energy .292.1 )7.16(2 75.9 1 2 122 222  M m McmcMc Note that since , 22 1 1 cv   we have that .6331.0 )292.1( 1 1 1 1 22    c v b) According to Eq. 37.36, the kinetic energy of each proton is MeV.274 J101.60 MeV00.1 )sm10kg)(3.001067.1)(1292.1()1( 13 28272              McK  c) The rest energy of 0  is       J101.60 MeV00.1 28282 13 )sm10kg)(3.001075.9(mc MeV.548 d) The kinetic energy lost by the protons is the energy that produces the , 0  MeV).2(274MeV548  37.45: a) eV.104.20MeV420.0 5 E b) eVJ106.1 )sm1000.3(kg)1011.9( eV1020.4 19 2831 52      mcKE eV.109.32eV105.11eV1020.4 555  c) 2 2 22 2 1 1            E mc cv cv mc E .sm1051.2836.0 eV109.32 eV1011.5 1 8 2 5 5             cc d) Nonrel: kg109.11 )eVJ10eV)(1.61020.4(22 2 1 31 915 2      m K vmvK .sm1084.3 8  37.46: a) The fraction of the initial mass that becomes energy is ,10382.6 u)2(2.0136 u)0015.4( 1 3  and so the energy released per kilogram is J.1074.5)sm10kg)(3.0000.1)(10382.6( 14283   b) kg.107.1 kgJ105.74 J100.1 4 14 19    [...]... 10 8 s  2.20  10 8 m s 37. 61: x  2  c 2 t  2   ( x  ut ) 2  2  c 2  2 t  ux c 2  2  x  ut  c(t  ux c 2 )  u 1  x1    x(u  c)  t (u  c)  x  ct  c c  x 2  c 2t 2 37. 62: a) From Eq (37. 37), (3.00  10 4 m s) 4 1 3 v4 3 K  mv 2  m 2  (90.0 kg)  304 J 2 8 c 8 (3.00  10 8 m s) 2 2 (3 8) mv 4 c 2 3  v      7.50  10  9 b) 2 (1 2)mv 4c 37. 63: dv F  (1  v 2 c... m mc E   c, so E  mc 2 magnitude of momentum, E c b) v  mc 37. 58: a) v  37. 59: Speed in glass v   1 1 v2 c2 c c   1.97  10 8 m s n 1.52  1.326  K  (   1)mc 2  (0.326)(0.511 MeV)  0.167 MeV  1.67  10 5 eV 37. 60: a) 80.0 m s is non-relativistic, and K  1 2 mv  186 J 2 b) (   1)mc 2  1.31  1015 J c) In Eq (37. 23), v   2.20  10 8 m s , u  1.80  10 8 m s , and so v ... t     12  2.11  10 5 37. 50: One dimension of the cube appears contracted by a factor of 1 , so the volume in γ S  is a 3 γ  a 3 1  (u c) 2 37. 51: Need a  b  l 0  a, l  b l b b     1  u 2 c2 l0 a 1.40b 2 2 b  1   u  c 1    c 1    0.700c a  1.40   2.10  108 m s 37. 52: The change in the astronaut’s biological age is t 0 in Eq (37. 6), and t is the distance to... Tachyons seem to violate causality 37. 67: Longer wavelength (redshift) implies recession (The emitting atoms are moving (λ λ) 2  1 away.) Using the result of Ex 37. 26: u  c 0 (λ 0 λ)  1  (656.3 953.4) 2  1 8  u  c   0.3570c  1.071  10 m s 2  (656.3 953.4)  1 37. 68: The baseball had better be moving non-relativistically, so the Doppler shift formula (Eq (37. 25)) becomes f  f 0 (1  (u... Ft m So as t  , v  c v 1  ( Ft mc) 2  Ft   v2    m 2 37. 64: Setting x  0 in Eq (37. 21), the first equation becomes x    ut and the last, upon multiplication by c, becomes ct   ct Squaring and subtracting gives c 2 t  2  x  2  γ 2 (c 2 t 2  u 2 t 2 )  c 2 t 2 , or x   c t  2  t 2  4.53  10 8 m   37. 65: a) Want t   t 2  t1   x1  ( x1  ut1 ) γ  x2  ( x2 ... yr   24.7 yr γu γ(0.9910) 37. 53: a) E  mc 2 and   10  1 1  (v c ) 2  v  c v 99 γ2  1  c 2 c γ 100  0.995   v 2 2  b) ( pc)  m v γ c , E  m c    γ  1  c     2 2 1 1 E  ( pc)     0.01  1% 2 2 1  (10 (0.995)) 2 E 2 v 1    c 2 2 2 2 2 2 2 4 37. 54: a) Note that the initial velocity is parallel to the x-axis Thus, according to Eqn 37. 30, 3 2 3 Fx  v  (3.00... does not enter the front of the barn until the later time t 3 37. 72: In Eq (37. 23), u  V , v   (c n), and so ( c n)  V (c n )  V v  cV 1  (V nc) 1 2 nc For V non-relativistic, this is v  ((c n)  V )(1  (V nc))  (c n)  V  (V n 2 )  (V 2 nc)  c  1   1  2  V n  n  1   so k  1  2  For water, n  1.333 and k  0. 437  n  dv dt    (dt  udx c 2 ) dt  dv vu u dv   dv... s)]2 x    1.81 m 2F 2(4.20  10 4 N) b) Using the relativistic work-energy theorem for a constant force (Eq 37. 35) we obtain (   1)mc 2 x  F 1  2.55, thus For the given speed,   2 1 0.920 (2.55  1)(2.00  10 12 kg)(3.00  10 8 m s) 2  6.65 m (4.20  10 4 N) c) According to Eq 37. 30, x  3 3 3  v2 2 (4.20  10 4 N)  v 2  2 F  v2 2 1  2   (2.10  1016 m s 2 )1  2  , a  1... to Eqn 37. 33, 2 1 1 Fy  v 2  2 (5.00  10 12 N) 2 2 2 1  2   ay  (1  0.900 )  1.31  1015 m s  27  c  m (1.67  10 kg)  b) The angle between the force and acceleration is given by cos θ  Fx a x  Fy a y Fa  ( 3.001012 N)( 1.491014 m s 2 )  ( 5.001012 N)(1.311015 m s 2 ) ( 3.001012 N)2  ( 5.001012 N) 2 ( 1.491014 m s 2 ) 2  (1.311015 m s 2 ) 2  θ  24.5 37. 55:... 1.44  10 8 s c) Part (b): t  c c  x 1  37. 66: a) (100 s)(0.600)(3.00  10 8 m s)  1.80  1010 m b) In Sebulbas frame, the relative speed of the tachyons and the ship is 3.40c, and so the time t 2  100 s  1.80  1010 m  118 s At t 2 Sebulba measures that Watto is a distance from him of 3.4c (118 s)(0.600)(3.00  10 8 m s)  2.12  1010 m c) From Eq (37. 23), with v   4.00c and u  0.600c, v . a) m3600 0  l m.3568m)(0.991)(3600 )sm1000.3( )sm1000.4( 1)m3600(1 28 27 0 2 2 0     l c u ll )b .s109.00 sm104.00 m3600 5 7 0 0     u l t c) .s108.92 sm104.00 m3568 5 7     u l t 37. 12: .sm102.86952.0)γ1(1so,3048.01γ 82  ccu 37. 13: 22 0 2 2 0 1 1 cu l l c u ll   m.92.5 0.600 1 m74.0 2 0          c c l 37. 14: Multiplying. in Eq. (37. 6), so ,s33.8γ 0  tt as in part (a). c) 9 1000.2)800.0()s33.8( c m, which is the distance x found in part (a). 37. 17: Eq. (37. 18): 22 1

Ngày đăng: 17/01/2014, 04:20

w