1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 37 pptx

23 217 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

37.1: If O  sees simultaneous flashes then O will see the )AA(  flash first since O would believe that the A  flash must have traveled longer to reach O  , and hence started first. 37.2: a) .29.2 )9.0(1 1 γ 2    s.105.05s)1020.2()29.2(γ 66    t b) km.1.36m101.36s)1005.5()sm1000.3()900.0( 368   vtd 37.3:  2 2 212222 2 1)1(1 c u cucu s.1000.5)( )sm102(3.00 (3600)hrs)4()sm250( 2 ))(11()( 9 0 28 2 2 2 22 0      tt t c u tcutt The clock on the plane shows the shorter elapsed time. 37.4: .79.4 )978.0(1 1 γ 2    ms.0.395s103.95s)104.82()79.4(γ -46   t 37.5: a) 2 0 2 2 22 0 1 1             t t c u cu t t 2 2 0 42 6.2 11                 c t t cu .998.0 cu   b) m.126s)10(4.2)sm1000.3()998.0( 78   tux 37.6: 667.1γ  a) s.300.0 )800.0( γ m1020.1 γ 8 0      c t t b) m.107.20)(0.800s)300.0( 7 c c) s.180.0γs300.0 0 t (This is what the racer measures your clock to read at that instant.) At your origin you read the original s.5.0 )sm10(3(0.800) m1020.1 8 8    Clearly the observes (you and the racer) will not agree on the order of events! 37.7: yr)(1 sm103.00 sm104.80 11 2 8 6 22 0            tcut hrs.1.12yr)1028.1()( 4 0   tt The least time elapses on the rocket’s clock because it had to be in two inertial frames whereas the earth was only in one. 37.8: a) The frame in which the source (the searchlight) is stationary is the spacecraft’s frame, so 12.0 ms is the proper time. b) To three figures, . c u  Solving Eq. (37.7) for cu in terms of , γ . γ2 1 1) γ1(1 2 2  c u Using .998.0givesms190ms0.12γ1 0  cutt 37.9: 00.6 )9860.0(1 1 )(1 1 γ 22      cu a) km.17.9 6.00 km55 γ 0  l l b) In muon’s frame: %.1.7071.0 17 . 9 651.0 % km.0.651s)1020.2)(9860.0( 6    h d ctud c) In earth’s frame: %.1.7 km55.0 km90.3 % km3.90s)10)(1.32(0.9860 s101.32s)(6.00)102.2( γ 5 56 0           h d ctud tt 37.10: a) s.101.51 0.99540 m104.50 4 4     c t km.4.31 10.44 km45 γ 10.44 (0.9954)1 1 γ) 2      h h b c) s;101.44 γ ands,101.44 0.99540 55    t c h so the results agree but the particle’s lifetime is dilated in the frame of the earth. 37.11: a) m3600 0  l m.3568m)(0.991)(3600 )sm1000.3( )sm1000.4( 1)m3600(1 28 27 0 2 2 0     l c u ll )b .s109.00 sm104.00 m3600 5 7 0 0     u l t c) .s108.92 sm104.00 m3568 5 7     u l t 37.12: .sm102.86952.0)γ1(1so,3048.01γ 82  ccu 37.13: 22 0 2 2 0 1 1 cu l l c u ll   m.92.5 0.600 1 m74.0 2 0          c c l 37.14: Multiplying the last equation of (37.21) by u and adding to the first to eliminate t gives , 1 1 2 2 x c u xtux               and multiplying the first by 2 c u and adding to the last to eliminate x gives , γ 1 1 γ 2 2 2 t c u tx c u t              ),(γand)(γso 2 cxutttuxx         which is indeed the same as Eq. (37.21) with the primed coordinates replacing the unprimed, and a change of sign of u. 37.15: a) c cc cvu uv v 806.0 )600.0()400.0(1 600.0400.0 1 2          b) c cc cvu uv v 974.0 )600.0)(900.0(1 600.0900.0 1 2          c) .997.0 )600.0)(990.0(1 600.0990.0 1 2 c cc cvu uv v          37.16: ).)54(if35γ(667.1γ cu    a) In Mavis’s frame the event “light on” has space-time coordinates 0   x and 00.5   t s, so from the result of Exercise 37.14 or Example 37.7, )(γ tuxx     and                tttux c xu tt γ,m1000.2γγ 9 2 .s33.8 b) The 5.00-s interval in Mavis’s frame is the proper time 0 t in Eq. (37.6), so ,s33.8γ 0  tt as in part (a). c) 9 1000.2)800.0()s33.8( c m, which is the distance x found in part (a). 37.17: Eq. (37.18): 22 1 cu utx x     Eq. (37.19): 22 1 cuxtux     Equate: γ γ )( x tuutx              . )(1 γ γ γ 11 11 1 1 1 γ γ 1 γ γ 1 γ γ γ γ 2 2 2 22 2 22 2 2 2 2 cu cuxt c xu tt cu cu cu cu cu cu cu u x t u x t u x t                                   37.18: Starting from Eq. (37.22), )1( )1( 1 2 2 2 2 cvuv cuvvvuv uvcuvv cuv uv v            from which Eq. (37.23) follows. This is the same as switching the primed and unprimed coordinates and changing the sign of u . 37.19: Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity v  of the cruiser knowing the velocity of the primed frame u and the velocity of the cruiser v in the unprimed frame (Tatooine). c cc c uv uv v 385.0 )800.0()600.0(1 800.0600.0 1 2          the cruiser is moving toward the pursuit ship at .385.0 c 37.20: In the frame of one of the particles, u and v are both c9520.0 but with opposite sign. .9988.0 )9520.0)(9520.0(1 9520.09520.0 )()(1 )( 2 c cc cvu uv v           Thus, one particle moves at a speed c9988.0 toward the other in the other particle’s frame. 37.21: .784.0 )650.0)(950.0(1 650.0950.0 1 2 c cc c vu uv v           37.22: a) In Eq.(39-24), )400.0()700.0(1 400.0700.0 1 700.0,400.0 2           cc cvu uv vcvcu .859.0 c  b) .s0.31 859 . 0 m1000.8 9     c v x 37.23: uv c vuv v cuv uv v          22 1 c cc u cvv vv uvv c vv u 837.0 ))920.0)(360.0(1( 920.0360.0 )1( 1 22                     moving opposite the rocket, i.e., away from Arrakis. 37.24: Solving Eq. (37.25) for cu , (see solution to Exercise 37.25) , )(1 )(1 2 0 2 0 ff ff c u    and so (a) if   ,0202.0,98.0 0  cuff the source and observer are moving away from each other. b) if   ,882.0,4 0  cuff they are moving toward each other. 37.25: a) 2 0 2 0 )()( fucfucf uc uc f     )1λ)λ(( )1λ)λ(( 1)( )1)(()( 2 0 2 0 2 0 2 0 22 0 2 0 2          c ff ffc ff ffc u h.km101.72skm104.77sm1077.4159.0 )1)575675(( )1)575675(( 847 2 2     ccu b) 172$)00.1$(h)km90hkm1072.1( 8  million dollars! 37.26: Using   ccu 53600.0     in Eq. (37.25) gives     .2 58 52 531 531 000 ffff     37.27: a) 2/322 2 2 1 2 1 2222 )1( )2( 11 cv cvamv cv ma cv mv dt d dt dp F                .1 )1( )1( )1( 23 2 2 2322 2322 2222                      c v m F a cvma cv cvcv ma b) If the force is perpendicular to velocity then denominator is constant   dt dp F .1 1 22 22 cv m F a cv dtdvm   37.28: The force is found from Eq. (37.32) or Eq. (37.33). (a) Indistinguishable from N.145.0   maF b) .N75.1γ 3 ma c) N.7.51γ 3 ma d) N,145.0γ  ma N.03.1,N333.0 37.29: a) mv cv mv p 2 1 22    .866.0 2 3 4 3 1 4 1 121 22 2 2 22 ccvcv c v cv   b) c v c v mamaF    3/2 2 2 3/133 2 1 1 so)2( γ2γ2γ .608.021 3/2   37.30: a)   s.m1021.4and140.0so,01.1γ 8  vcv b) The relativistic expression is always larger in magnitude than the non-relativistic expression. 37.31: a) 22 22 2 1 mcmc cv mc K    .866.0 4 3 1 4 1 2 1 1 2 2 22 cv c v cv    b) .986.0 36 35 1 36 1 6 1 1 5 2 2 22 2 ccv c v cv mcK    37.32: eV.1088.1J1001.3)sm1000.3(kg)1067.1(22 91028272   mcE 37.33:  2 4 22 8 3 2 1 )1 γ( c mv mvmcK s.m1089.4163.0 150 4 4 150 2 02.0 8 3 2 1 02.1 722 2 2 4 2 0   ccvcv v c v mvKKif 37.34: a) .)1007.4()1γ( 232 f mcmcKW   b) ( .79.4)γγ 22 if mcmc  c) The result of part (b) is far larger than that of part (a). 37.35: a) Your total energy E increases because your potential energy increases; %103.3)sm10998.2()m30()sm80.9()( )(so)( 132822 222       cygmm cymgcEmcmE y mg E This increase is much, much too small to be noticed. b) J36.0m)m)(0.060N1000.2( 22 2 1 2 2 1  kxUE kg100.4)( 162   cEm Energy increases so mass increases. The mass increase is much, much too small to be noticed. 37.36: a) 2 00 cmE  2 0 2 22 cmmcE  0 22 0 0 2 /1 2 m cv m mm    sm1060.2866.0 43 4 3 1 4 1 8 2 2 2 2   cv cv c v c v b) 2 22 0 22 0 1 10 c cv m mccm   sm1098.2995.0 100 99 100 99 100 1 1 8 2 2 2 2   ccv c v c v 37.37: a) J1005.400.3means00.4so, 10222   mcKmcEKmcE b) 22222222 )()(0.15so,00.4;)()( pcmcmcEpcmcE  smkg1094.115 18   mcp c) 222 1 cvmcE  ccvcvmcE 968.01615and1611gives00.4 222  37.38: The work that must be done is the kinetic energy of the proton. a) 2 0 2 0 1 1 1 )1( 2 2 cmcmK c v                J1056.7 1 0.011 1 J)1050.1( 1 1 1 )sm10kg)(3.001067.1( 13 10 2 c1.0 2827                           c b)          1J)1050.1( 2 (0.5)1 1 10 K J1032.2 11  c)          1J)1050.1( 2 (0.9)1 1 10 K J1094.1 10  37.39: )smkg102.10kg,1064.6( 1827   pm a) 222 )()( pcmcE  J.1068.8 10  b) J.1070.2kg)1064.6(1068.8 10227102   cmcEK c) .452.0 kg)10(6.64 J1070.2 227 10 2       cmc K 37.40: 21 2 2212242 1)(                mc p mccpcmE 22 2 2 22 2 2 2 1 22 1 1 mvmc m p mc cm p mc           the sum of the rest mass energy and the classical kinetic energy. 37.41: a) 0376.1 1 1 γsm108 22 7    cv v p mm  J1034.5 2 1 122 0   mvK .06.1 J1065.5)1γ( 0 122   K K mcK b) 3.203γsm1085.2 8 v .88.4J1031.31)(γ J1078.6 2 1 0 102 112 0     KKmcK mvK 37.42: MeV.3105J1097.4)sm10kg)(3.001052.5( 102827   37.43: a) VeVqK     V1006.2 MeV2.06J10295.3025.41 1 1 6 132 22 2               eKV mc cv mcK b) From part (a), MeV2.06J1030.3 13   K 37.44: a) According to Eq. 37.38 and conservation of mass-energy .292.1 )7.16(2 75.9 1 2 122 222  M m McmcMc Note that since , 22 1 1 cv   we have that .6331.0 )292.1( 1 1 1 1 22    c v b) According to Eq. 37.36, the kinetic energy of each proton is MeV.274 J101.60 MeV00.1 )sm10kg)(3.001067.1)(1292.1()1( 13 28272              McK  c) The rest energy of 0  is       J101.60 MeV00.1 28282 13 )sm10kg)(3.001075.9(mc MeV.548 d) The kinetic energy lost by the protons is the energy that produces the , 0  MeV).2(274MeV548  37.45: a) eV.104.20MeV420.0 5 E b) eVJ106.1 )sm1000.3(kg)1011.9( eV1020.4 19 2831 52      mcKE eV.109.32eV105.11eV1020.4 555  c) 2 2 22 2 1 1            E mc cv cv mc E .sm1051.2836.0 eV109.32 eV1011.5 1 8 2 5 5             cc d) Nonrel: kg109.11 )eVJ10eV)(1.61020.4(22 2 1 31 915 2      m K vmvK .sm1084.3 8  37.46: a) The fraction of the initial mass that becomes energy is ,10382.6 u)2(2.0136 u)0015.4( 1 3  and so the energy released per kilogram is J.1074.5)sm10kg)(3.0000.1)(10382.6( 14283   b) kg.107.1 kgJ105.74 J100.1 4 14 19    [...]... 10 8 s  2.20  10 8 m s 37. 61: x  2  c 2 t  2   ( x  ut ) 2  2  c 2  2 t  ux c 2  2  x  ut  c(t  ux c 2 )  u 1  x1    x(u  c)  t (u  c)  x  ct  c c  x 2  c 2t 2 37. 62: a) From Eq (37. 37), (3.00  10 4 m s) 4 1 3 v4 3 K  mv 2  m 2  (90.0 kg)  304 J 2 8 c 8 (3.00  10 8 m s) 2 2 (3 8) mv 4 c 2 3  v      7.50  10  9 b) 2 (1 2)mv 4c 37. 63: dv F  (1  v 2 c... m mc E   c, so E  mc 2 magnitude of momentum, E c b) v  mc 37. 58: a) v  37. 59: Speed in glass v   1 1 v2 c2 c c   1.97  10 8 m s n 1.52  1.326  K  (   1)mc 2  (0.326)(0.511 MeV)  0.167 MeV  1.67  10 5 eV 37. 60: a) 80.0 m s is non-relativistic, and K  1 2 mv  186 J 2 b) (   1)mc 2  1.31  1015 J c) In Eq (37. 23), v   2.20  10 8 m s , u  1.80  10 8 m s , and so v ... t     12  2.11  10 5 37. 50: One dimension of the cube appears contracted by a factor of 1 , so the volume in γ S  is a 3 γ  a 3 1  (u c) 2 37. 51: Need a  b  l 0  a, l  b l b b     1  u 2 c2 l0 a 1.40b 2 2 b  1   u  c 1    c 1    0.700c a  1.40   2.10  108 m s 37. 52: The change in the astronaut’s biological age is t 0 in Eq (37. 6), and t is the distance to... Tachyons seem to violate causality 37. 67: Longer wavelength (redshift) implies recession (The emitting atoms are moving (λ λ) 2  1 away.) Using the result of Ex 37. 26: u  c 0 (λ 0 λ)  1  (656.3 953.4) 2  1 8  u  c   0.3570c  1.071  10 m s 2  (656.3 953.4)  1 37. 68: The baseball had better be moving non-relativistically, so the Doppler shift formula (Eq (37. 25)) becomes f  f 0 (1  (u... Ft m So as t  , v  c v 1  ( Ft mc) 2  Ft   v2    m 2 37. 64: Setting x  0 in Eq (37. 21), the first equation becomes x    ut and the last, upon multiplication by c, becomes ct   ct Squaring and subtracting gives c 2 t  2  x  2  γ 2 (c 2 t 2  u 2 t 2 )  c 2 t 2 , or x   c t  2  t 2  4.53  10 8 m   37. 65: a) Want t   t 2  t1   x1  ( x1  ut1 ) γ  x2  ( x2 ... yr   24.7 yr γu γ(0.9910) 37. 53: a) E  mc 2 and   10  1 1  (v c ) 2  v  c v 99 γ2  1  c 2 c γ 100  0.995   v 2 2  b) ( pc)  m v γ c , E  m c    γ  1  c     2 2 1 1 E  ( pc)     0.01  1% 2 2 1  (10 (0.995)) 2 E 2 v 1    c 2 2 2 2 2 2 2 4 37. 54: a) Note that the initial velocity is parallel to the x-axis Thus, according to Eqn 37. 30, 3 2 3 Fx  v  (3.00... does not enter the front of the barn until the later time t 3 37. 72: In Eq (37. 23), u  V , v   (c n), and so ( c n)  V (c n )  V v  cV 1  (V nc) 1 2 nc For V non-relativistic, this is v  ((c n)  V )(1  (V nc))  (c n)  V  (V n 2 )  (V 2 nc)  c  1   1  2  V n  n  1   so k  1  2  For water, n  1.333 and k  0. 437  n  dv dt    (dt  udx c 2 ) dt  dv vu u dv   dv... s)]2 x    1.81 m 2F 2(4.20  10 4 N) b) Using the relativistic work-energy theorem for a constant force (Eq 37. 35) we obtain (   1)mc 2 x  F 1  2.55, thus For the given speed,   2 1 0.920 (2.55  1)(2.00  10 12 kg)(3.00  10 8 m s) 2  6.65 m (4.20  10 4 N) c) According to Eq 37. 30, x  3 3 3  v2 2 (4.20  10 4 N)  v 2  2 F  v2 2 1  2   (2.10  1016 m s 2 )1  2  , a  1... to Eqn 37. 33, 2 1 1 Fy  v 2  2 (5.00  10 12 N) 2 2 2 1  2   ay  (1  0.900 )  1.31  1015 m s  27  c  m (1.67  10 kg)  b) The angle between the force and acceleration is given by cos θ  Fx a x  Fy a y Fa  ( 3.001012 N)( 1.491014 m s 2 )  ( 5.001012 N)(1.311015 m s 2 ) ( 3.001012 N)2  ( 5.001012 N) 2 ( 1.491014 m s 2 ) 2  (1.311015 m s 2 ) 2  θ  24.5 37. 55:... 1.44  10 8 s c) Part (b): t  c c  x 1  37. 66: a) (100 s)(0.600)(3.00  10 8 m s)  1.80  1010 m b) In Sebulbas frame, the relative speed of the tachyons and the ship is 3.40c, and so the time t 2  100 s  1.80  1010 m  118 s At t 2 Sebulba measures that Watto is a distance from him of 3.4c (118 s)(0.600)(3.00  10 8 m s)  2.12  1010 m c) From Eq (37. 23), with v   4.00c and u  0.600c, v . a) m3600 0  l m.3568m)(0.991)(3600 )sm1000.3( )sm1000.4( 1)m3600(1 28 27 0 2 2 0     l c u ll )b .s109.00 sm104.00 m3600 5 7 0 0     u l t c) .s108.92 sm104.00 m3568 5 7     u l t 37. 12: .sm102.86952.0)γ1(1so,3048.01γ 82  ccu 37. 13: 22 0 2 2 0 1 1 cu l l c u ll   m.92.5 0.600 1 m74.0 2 0          c c l 37. 14: Multiplying. in Eq. (37. 6), so ,s33.8γ 0  tt as in part (a). c) 9 1000.2)800.0()s33.8( c m, which is the distance x found in part (a). 37. 17: Eq. (37. 18): 22 1

Ngày đăng: 17/01/2014, 04:20

Xem thêm: Tài liệu Physics exercises_solution: Chapter 37 pptx