This page intentionally left blank Handbook of Bioplastics and Biocomposites Engineering Applications Scrivener Publishing Winter Street, Suite Salem, MA 01970 Scrivener Publishing Collections Editors James E R Couper Richard Erdlac Pradip Khaladkar Norman Lieberman W Kent Muhlbauer S A Sherif Ken Dragoon Rafiq Islam Vitthal Kulkarni Peter Martin Andrew Y C Nee James G Speight Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com) Handbook of Bioplastics and Biocomposites Engineering Applications Edited by Srikanth Pilla Wisconsin Institute for Discovery University of Wisconsin-Madison, USA Scrivener )WILEY Copyright © 2011 by Scrivener Publishing LLC All rights reserved Co-published by John Wiley & Sons, Inc Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., Ill River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wuey.com/go/ permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com For more information about Scrivener products please visit www.scrivenerpublishing.com Cover design by Russell Richardson Front cover photos supplied by Joseph G Lawrence Library of Congress Cataloging-in-Publication ISBN 978 0-470-62607-8 Printed in the United States of America 10 Data: Contents Foreword by Amur K Mohanty xix Preface xxi List of Contributors Engineering Applications of Bioplastics and Biocomposites - An Overview Srikanth Pilla 1.1 Introduction 1.1.1 Bioplastics 1.1.2 Biocomposites 1.2 Engineering Applications of Bioplastics and Biocomposites 1.2.1 Processing of Bioplastics and Biocomposites 1.2.2 Packaging Applications of Bioplastics and Biocomposites 1.2.3 Civil Engineering Applications of Bioplastics and Biocomposites 1.2.4 Biomédical Applications of Bioplastics and Biocomposites 1.2.5 Automotive Applications of Bioplastics and Biocomposites 1.2.6 General Engineering Applications of Bioplastics and Biocomposites 1.3 Conclusions References xxiii 1 2 11 12 13 14 Part 1: Processing of Bioplastics and Biocomposites The Handling of Various Forms of Dry Ingredients in Bioplastics Manufacturing and Processing Applications Andy Kovats 2.1 Introduction 2.2 Ingredient Properties Affecting Feedrates and Dry Ingredients Handling 2.2.1 Name 2.2.2 Bulk Density 2.2.3 Compressibility 2.2.4 Particle Form 2.2.5 Particle Size 2.2.6 Angle of Repose 2.2.7 Angle of Slide 19 19 20 20 20 21 21 21 21 21 xxi viii CONTENTS CONTENTS 2.2.8 Packing and Compaction 2.2.8.1 Packing, By Pressure 2.2.8.2 Compacting, By Vibration 2.2.9 Moisture Content 2.3 Storage Hoppers and Ingredient Activation 2.3.1 Vibration 2.3.2 Internal Stirring Agitation 2.3.3 Concentric Screw Agitation 2.3.4 External Agitation (Flexible Hopper) 2.4 Volumetric Feeders 2.4.1 Single Screw Feeders - Sizing and Feed Rate Calculation 2.4.1.1 Screw Sizing 2.4.1.2 Screw Fill Efficiency 2.4.1.3 Feed Rate Calculation 2.4.1.4 Feeder Selection 2.4.1.5 Spiral Screw 2.4.1.6 Blade Screw 2.4.2 Twin Screw Feeders 2.4.2.1 Twin Concave Screws 2.5 Vibrating Tray Feeders 2.6 Belt Feeders 2.7 Loss-In-Weight Feeders 2.7.1 Scale 2.7.2 Feed Device 2.7.3 Weigh Hopper 2.7.4 Feeder Controller 2.7.5 Refill Device 2.7.6 Principle of Operation-Continuous Feeding from a Loss-In Weight Feeder 2.7.7 Loss-In-Weight Feeding Helpful Comments 2.7.7.1 Refilling a Loss-In-Weight Feeder 2.7.7.2 Venting a Loss-In-Weigh Feeder 2.7.7.3 In Plant Vibration Effects on Feeder Performance 2.7.7.4 Temperature Effects in Feeder Performance 2.7.7.5 Scale Stabilization Time 2.7.7.6 Flexible Connections 2.8 Special Feeders for BioPlastics Ingredients 2.8.1 Bio Ingredients-Typical Physical Characteristics 2.8.2 The Physical Characteristics Aggravate Controlled Rate Feeding 2.8.3 Fibers Need to be Tested in Feeders to Determine How They Can Be Fed 2.8.3.1 Start with a Traditional Feeding Device, Example a Screw Feeder 22 22 22 22 22 22 22 24 24 26 27 27 27 28 28 29 30 30 30 31 32 34 34 34 36 36 36 36 37 37 37 38 38 38 39 39 39 39 40 40 CONTENTS 2.9 2.8.4 Feeder Control and Checking the Feed Rate 2.8.5 Ingredient Storage and Keeping the Feeder Full Conclusions Modeling the Processing of Natural Fiber Composites Made Using Liquid Composite Molding Reza Masoodi and Krishna M Pillai 3.1 Introduction to Liquid Composite Molding (LCM) Processes 3.2 Introduction to the Use of Bio-fibers and Bio-resins in Polymer Composites 3.3 Physics for Modeling Mold-filling in LCM Processes 3.3.1 Modeling Single-phase Fluid Flow in Porous Media 3.3.2 Modeling LCM Mold Filling in Synthetic Fiber Mats 3.3.3 Modeling LCM Mold Filling in Natural Fiber Mats 3.3.3.1 Swelling of Natural Fiber Mats in Organic Resins 3.3.3.2 Some Recent Studies on Changes in Permeability of Natural-Fiber Mats Due to Liquid Absorption and Swelling 3.3.3.3 Mold Filling Modeling in Natural-fiber Mats After Including the Swelling of Fibers Due to Liquid Absorption 3.3.4 Constant Inlet-Pressure Injection Solution 3.3.5 Constant Flow-rate Injection Solution 3.4 Numerical Simulation 3.4.1 Mold Filling Simulation in Non-swelling Fiber Mats 3.4.2 Recent Developments in LCM Mold Filling Simulation in the Swelling Natural-fiber Mats 3.5 Summary and Conclusions References vii 41 41 42 43 43 46 48 49 50 51 52 53 58 60 64 68 68 68 69 69 Part 2: P a c k a g i n g A p p l i c a t i o n s Bioplastics Based Nanocomposites for Packaging Applications / Soulestin, K Prashantha, Μ.Έ Lacrampe and P Krawczak 4.1 Introduction 4.2 Definitions and Classification 4.3 Biopolymers Based Packaging Materials 4.3.1 Poly Lactic Acid (PLA) 4.3.2 Starch Based Materials 4.3.3 Poly Hydroxyalkanoates (PHA) 4.3.4 Proteins 4.4 Structure of Bio-nanocomposites 4.4.1 Bio-nanocomposites for Packaging Applications 4.4.2 Structure of Nanocomposites Based on Natural Nanofillers 4.4.2.1 Layered Silicate Filled Nanocomposites 77 77 79 79 79 80 81 82 83 83 84 84 viii CONTENTS 4.5 4.6 4.4.2.2 Cellulose Nanoparticles Filled Nanocomposites 4.4.2.3 Starch Nanocrystals Filled Nanocomposites Properties of Bio-nanocomposites 4.5.1 PLA Based Bio-nanocomposites 4.5.1.1 Mechanical Properties 4.5.1.2 Barrier Properties 4.5.2 Starch Based Nanocomposites 4.5.5.1 Elaboration Processes 4.5.2.2 Effect of the Surfactant and Plasticizer on the Structure 4.5.2.3 Mechanical properties 4.5.2.4 Barrier Properties 4.5.2.5 Optical Properties 4.5.3 PHA Based Bio-Nanocomposites 4.5.4 Proteins Based Nanocomposites Conclusion References 86 87 88 89 89 94 95 96 97 101 106 109 109 114 114 115 Biobased Materials in Food Packaging Applications M.N Satheesh Kumar, Z Yaakob and Siddaramaiah 5.1 Introduction 5.2 Biobased Packaging Materials 5.2.1 Polymers Produced from Biomass 5.2.2 Polymers from Bio-derived Monomers 5.2.3 Polymers Produced from Micro-organisms 5.3 Properties of Packaging Materials 5.3.1 Gas Barrier Properties 5.3.2 Moisture Barrier Properties 5.3.3 Mechanical and Thermal Properties 5.3.4 Biodegradability 5.4 Packaging Products from Biobased Materials 5.4.1 Blown Films 5.4.2 Foamed Products 5.4.3 Thermoformed Containers 5.4.4 Adhesives 5.4.5 Coated Paper 5.5 Food Applications 5.6 Nanotechnology 5.7 Conclusions Acknowledgements References 121 Polylactic Acid (PLA) Foams for Packaging Applications Kate Parker, Jean-Philippe Garancher, Samir Shah, Stephanie Weal and Alan Fernyhough 6.1 Introduction 6.2 Polylactic Acid (PLA) Foam Overview 6.2.1 Extruded Foam 161 121 123 125 128 129 131 133 138 139 141 141 142 143 145 145 146 148 152 154 154 155 161 162 162 576 H A N D B O O K OF BIOPLASTICS A N D BIOCOMPOSITES ENGINEERING APPLICATIONS 19 A Fernyhough, Developments in Polymer & Composite Materials from Renewable Resources, Presented at Composites Association of New Zealand Annual Meeting/Conference, September 2004 20 K O k s m a n , J.F Selin, "Plastics and Composites from Polylactic Acid" in Natural Fibers, Plastics and Composites, F T Wallenberger and N E Weston, Editors, Kluwer Academic Publishers, 149-165, Dordrecht/ Boston/London, 2004 21 N Reddy , Y Yang, "Biofibers from Agricultural By-products for Industrial Applications," Trends in Biotechnology, Vol 23,1,22-27, 2005 22 Α.Κ Bledzki, J Gassan, Prog Polym Sei., Vol 24,2 221-274,1999 23 I Van de Weyenberg, T Chi Truong, B Vangrimde, I Verpoest, Comp A: App Sei Manuf., Vol 37,9,1368-1376,2006 24 A K Bledzki, O Faruk, App Comp Mat., Vol 10, 6,365-379,2003 25 C d e m o n s , "Wood-plastic Composites in the United States: The Interfacing of Two Industries," Forest Prod J., Vol 52, 6,10-18, June 2002 26 M.P.Wolcott, and K Englund, A technology review of wood-plastic composites, Proceedings 33rd International Particleboard/Composite Materials Symposium, Washington State University, Pullman, pp 103-111,1999 27 D F Caulfield, C d e m o n s , R E Jacobson, R M Rowell, "Chapter 13, Wood Thermoplastic Composites" in Handbook of Wood Chemistry and Wood Composites, Roger Rowell, ed., CRC Press, Boca Raton, FL, 2005, 365-378 http://www.fpl.fs.fed.us/documnts/pdf2005/fpl_2005_ caulfield001.pdf 28 Wood-Plastic Composite & Plastic Lumber to 2013 (US industry forecasts for 2013 & 2018) http://www.the-infoshop.com/press/fd92369_en.shtml The Freedonia Group, 2009 29 UNECE/FAO: Wood resources availability and demands -implications of renewable energy policies A first glance at 2005, 2010 and 2020 in European countries, http://www.unece.org/ timber/ docs / tc-sessions/ tc-65 / policyf orum / Wood_availability_and_demand.pdf, 2007 30 MAF (Ministry of Agriculture & Forestry, New Zealand, The Forestry Sector in New Zealand, http://www.maf.govt.nz/forestry/publications/forind/ 31 U Lohmann, Holz-hexikon, 4th Edition, DRW-Verlag, Leinfelden-Echterdingen, 2003 32 N.M Stark, R.E Rowlands, "Effects of Wood Fiber Characteristics on Mechanical Properties of Wood/Polypropylene Composites," Wood Fiber Sei, Vol 35(2): 167-174, 2003 33 D Brosius, "Natural Fiber Composites Slowly Take Root," Comp Tech., February 2006 34 www.europeanbioplastics.org 35 R Harrington, Food & Production Daily Strong growth predicted for US bioplastics, h t t p : / / www.foodproductiondaily.com/Product-Categories/Packaging-Materials/Strong-growthpredicted-for-US-bioplastics 01 Sep2010 36 A Yezza, The Global Market For Bioplastics, http://www.scribd.com/doc/4899724/ The-global-market-for-bioplastic37 Accelerating the Development of the Market for Bio-based Products in Europe Report Of The Taskforce On Bio-Based Products, |COM(2007) 860 final!, http://ec.europa.eu/enterprise/ policies/innovation/files/lead-market-initiative/bio_based_products_taksforce_report_en.pdf 38 U.B Queiroz and F.P Collares-Queiroz, "Innovation and Industrial Trends in Bioplastics," / Macromolecular Sei., Part C: Polymer Reviews, Vol 49,65-78, 2009 39 L Sibley, A growing future for bioproducts from sugar, December 7, 2009, Cleantech Group http://cleantech.com/news/5391/growing-future-bioproducts-sugar 40 R.l Auras, B Harte, S Selke, "An Overview of Polylactides as Packaging Materials," Macromol Biosci," Vol 4, 9,835-864,2004 41 M.S Huda, L T Drzal, / App.Pol Sei., Vol 102,5: 4856-4869, 2006 42 S Pilla, S Gong, / App Pol Sei., Vol 111,1,37-47, 2009 43 M.A Huneault, M A H Li, "Morphology and Properties of Compatibilized Polylactide/ Thermoplastic Starch Blends," Polymer, Vol 48: 270-280, 2007 44 D.Carlson, L Nie, et al, "Maleation of Polylactide (PLA) by Reactive Extrusion," / App Pol Sei., Vol 72: 477-^85,1999 LONG BIOFIBERS AND ENGINEERED PULPS 577 45 J M Luengo, B Garcia, A Sandoval, G Naharro, E R Olivera, "Bioplastics from Microorganisms," Current Opinion in Microbiology, Vol 6,3 251-260,2003 46 P A Sreekumar, S Thomas, "Matrices for natural-fiber reinforced composites" in: Properties and Performance of Natural-Fiber Composites, K L Pickering, ed., Cambridge, Woodhead Publishing Limited, 2008 47 A Jaszkiewicz, A K Bledzki, High Strength Bio-Based Composites - Mechanical Performance and Capability Study - PP vs PLA vs PA6.10 8th Global WPC and Natural Fiber Composites Congress and Exhibition, Stuttgart / Germany, 2010 48 A.K Mohanty, M Misra, G Hinrichsen, "Biofibers, Biodegradable Polymers and Biocomposites: an Overview," Macromol Mat Eng., Vol 276-277,1-24, 2000 49 A.K Bledzki, A Jaszkiewicz and D Scherzer, "Natural Fiber and Biocomposites for Technical Applications," Bioplastics Mag., Vol 3,2 12-15, 2008 50 H Deng, C.T Reynolds, N.O Cabrer, N M Barkoul,, B Alcockaand T Peijs, Comp.B: Engi., Vol 41,4,268-275,2010 51 R Newman, "Development of non-wood natural-fiber composites," in Properties and Performance of Natural-Fiber Composites, K L Pickering, ed., Cambridge, Woodhead Publishing Limited, 2008 52 I Van de Weyenberg, et al, Comp Sei Technol., Vol 63, 9,1241-1246, 2003 53 www.nova-instirut.de 54 J C M De Bruijn, "Natural Fiber Mat Thermoplastic Products from a Processor's Point of View," App Comp Mat., Vol 7: 415-420, 2000 55 M Pervaiz, M M Sain, "Sheet-Molded Polyolefin Natural Fiber Composites for Automotive Applications," Macromol Mat Eng., Vol 288, 7, 2003 56 B van Voorn, H H G Smit, R J Sinke, B de Klerk, / Compos., Part A, Vol 32,1271,2001 57 S K Garkhail, R W H Heijenrath, T Peijs, / Appl Compos Mater., Vol 7,351,2000 58 K Oksman, / Appl Compos Mater., Vol 7,403,2000 59 K Oksman, M Skrifvars, J.F Selin, Comp Sei Tech., Vol 63,9,2003,1317-1324 60 VP Cyras, S Innace, J.M Kenny and A Vazques, "Relationship Between Processing and Properties of Biodegradable Composites Based on PCL/Starch Matrix and Sisal Fibers," Polymer Composites, Vol 22,1,104-110,2001 61 A.S Herrmann, J Nickel and U Riedel, "Construction Materials Based upon Biologically Renewable Resources—from Components to Finished Parts," Polymer Degradation and Stability, Vol 59, 251-261,1998 62 S Goutianos, T Peijs, B Nystrom and M Skrifvars, "Development of Flax Fiber Based Textile Reinforcements for Composite Applications," Appl Comp Mat., Vol 13,4,199-215, 2006 63 L Zhang, M Miao, "Commingled Natural Fiber/Polypropylene Wrap Spun Yarns for Structured Thermoplastic Composites," Comp Sei Tech., Vol 70,1,2010,130-135, 2010 64 D H Mueller, A Krobjilowski, Improving the Impact Strength Of Natural Fiber Reinforced Composites By Specifically Designed Material and Process Parameters, INJ Winter, 31-34,2004 65 www.compoistesevolution.com 66 J.E.P Carpenter, M He Miao, P Brorens, / Adv Mat Res., Vol 29 - 30, 263-266 (Advanced Materials and Processing IV), November, 2007 67 M Le Guen , R Newman, "Pulped Phormium Tenax Leaf Fibers as Reinforcement for Epoxy Composites," Comp Part A: App Sei Manuf, Vol 38, 2109-2115, 2007 68 M Zampaloni, F Pourboghrat, J Moore, S.A Yankovich, B.N Rodgers, L.T Drzal, A.K Mohanty, M Misra, "Kenaf Natural Fiber Reinforced Polypropylene Composites: A Discussion on Manufacturing Problems and Solutions," Comp A, App Sei Manuf, Vol 38A, 6,1569-1580,2007 69 J Mitchell, Forestry & Forest Products, Newsletter, Vol 4, 2, Autumn CSIRO, Australia, 1-4,1990 70 US patent 4,562,218 71 GB-A-1 010 043, U.S Pat No 3,396,142, EP0235794B1, EP0312090B1, U.S Pat No 4,612,238 72 D Bhattacharyya, M Bowis, K Jayaraman, "Thermoforming of Wood Fiber-Polypropylene Composite Sheets," Comp Sei Tech., Vol 63, 353-365, 2003 73 A Fernyhough, J.M Warnes, C.R Anderson, B J Lee, M R J Witt, PCT Patent Application WO/2007/073218 Method For Producing Wood Fiber Composite Products, 2007 578 H A N D B O O K OF BIOPLASTICS A N D BIOCOMPOSITES ENGINEERING APPLICATIONS 74 M Pervaiz, M.M Sain, "Sheet-Molded Polyolefin Natural Fiber Composites for Automotive Applications," Macromol Mater Eng., Vol 288, 7, 553-557, 2003 75 R Marutzky, P Buchholzer, V Thole, Fiber-based WPC with enhanced mechanical properties: New manufacturing processes and first research results, Proceedings, 2nd Wood Fiber Polymer Composites Symposium, Bordeaux, 24-25 March 2005 76 K Gehrmann, R Starke, G Wilczek, F Nagel, K Morawietz, S Meinicke, M.Busch, Perspektiven mit Profilextrusion - Erste Ergebnisse über den Einfluss unterschiedlicher Holzfaserstoffe und Polypropylen-Typen auf mechanische Kennwerte von Composites, Holz- Kunststoffverarb (HK), Vol 4:50-52, 2003 77 H van Dyk, P Peralta, I Peszlen, P Banks-Lee, Forest Products Journal, Vol 59,11-12,11(7) 2009 78 P Malnati, "Interior innovation: The value proposition: OEMs and Tier suppliers ask materials and molding processes to go 'green' and more for less," Comp Tech, August 2010 h t t p : / / www.compositesworld.com/articles/interior-innovation-the-value-proposition 79 Nova Institut: http://www.nova-institut.de/nr/index.php?tpl=startlist&id=&aid=&lng=en 80 J Markarian, "Strengthening Compounds Through Fiber Reinforcement," Reinforced Plastics, Vol 14 February 2007 81 M.A Sawpan, K.L Pickering, A Fernyhough, Advanced Materials Research, Vol 29 - 30, IV, 337-340,2007 82 B Bax, J Müssig, Comp Sei Tech., Vol 68, 7-8,1601-1607, 2008 83 T Yu, J Ren, S.Li, H Yuan, Y Li, Comp A: App Sei Manuf, Vol 41,4,495-505,2009 84 R Tokoro, D Minh Vu, K Okubo, T Tanaka, T Fujii, T Fujiura, / Mat Sei., Vol 43, 2, 775-787, 2008 85 N Graupner, A S Herrmann, J.Müssig, Comp A: App Sei Manuf, Vol 40, 6-7,810-821, 2009 86 Toyota Bushoku Ltd., http://wardsauto.com/ar/supplier_green-up_hybrids_100901 87 D Vink, "Ford Focuses on Sustainable Mouldings," Plastics & Rubber Weekly, 21st July 2010 http:/ / w w w prw.com/subscriber/headlines2.html? cat=l&id=1279701293&q=Ford 88 G Mougin, M Magnani, N Eikelenberg, "Natural-fibers Composites for the Automotive Industry: Challenges, Solutions and Applications," International Journal of Materials and Product Technology, Vol 36,1-2,176-188 (13), 2009 89 h t t p : / / w w w a g r o f i b e r c o m p o s i t e s c o m / G r e e n G r a n % N F % f a c t % s h e e t % and%20comparison%20chart.pdf 90 http://greencorenfc.com/products.htm 91 http://www.creafill.com/index.htm 92 http:/ /www.jrs.de/cgi-bin/wPermission.cgi?file=/wEnglisch/unternehmen/kernkompetenz shtml&navid=10 93 www.reinforcedplastics.com 94 A.K Bledzki, A Jaszkiewicz, "Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibers - a Comparative Study to PP," Comp Sei Tech., Vol 70, 12,1687-1696, 2010 95 S Wong, R Shanks and A Hodzic, "Properties of Poly(3-hydroxybutyric acid) Composites with Flax Fibers Modified by Plasticiser Absorption," Macromol Mater Eng., Vol 287 (10) 647-655, 2002 96 A.H Mohanty, L T Drzal, P.Mulukut , S.M Desai M Misra M., "Green" composites from biofibers and poly(3-hydroxybutyrate), Proceedings of Annual Technical Conference (ANTEC), Navy Pier and Sheraton Chicago Hotel & Towers, Chicago, Illinois, USA; pl483-7, 2004 97 J Ganster H P Fink, "Novel Cellulose Fiber Reinforced Thermoplastic Materials," Cellulose, Vol 13, 271-280, 2006 98 A.K Bledzki S Reihmane, J Gassan, Thermoplastics Reinforced with Wood Fillers: a Literature Review, Polym Plast Technol Eng., Vol 37 (4): 451-468,1998 99 A.K Bledzki, O Faruk, "Wood Fiber Reinforced Polypropylene Composites: Compression and Injection Molding Process," Pol Plast Tech Eng., Vol , , - 888, 2004 100 Gaylord, U.S Pat Nos 3,765,934,3,869,432,3,894,975,3,900,685,3,958,069: Casper et al, U.S Pat No 4,051,214; Raj et al, U.S Pat No 5,120,776 101 T Yu, J Ren, S Li, H u Yuan, Yan Li, Comp A App Sei Manuf, Vol 41,4, 499-505, 2010 LONG BIOFIBERS AND ENGINEERED PULPS 579 102 K.D Sears et al, Proc 6th International Conference on Woodfiber Plastics Composites, Forest Products Society, 27-34, 2001 and K Sears U.S Pat No 6,270,883,1999 103 R Jacobson, D, Caulfield, K Sears, and J Underwood, Low temperature processing (LTP) of ultra-pure cellulose fibers into nylon and other thermoplastics, Proceedings, Sixth International Conference on Woodfiber/Plastic Composites, Madison WI, 2002 104 A Schirp, J Stenter, Eur } Wood & Wood Prod., Vol 68,2,219-231,2010 105 S Migneault, A Kouba, F Erchiqui, A Chaala, K Englund, C Krause, M Wolcott, "Effect of Fiber Length on Processing and Properties of Extruded Wood-Fiber/HDPE Composites," / App Pol Sei, Vol 110:1085-1092, 2008 106 A Fernyhough, M Witt, J Warnes, C.R Anderson, B.J Lee, PCT Patent Application: WO/2006/001717: Method For Producing Wood Fiber Pellets, Pub: 05.01.2006 107 J Warnes, "High Aspect Ratio Fibers," 9th Pacific Rim Bio-Based Composites Symposium, Rotorua, New Zealand, 5-8 November, 2008 108 Y Amintowlieh, "Nylon-6/Agricultural Filler Composites," Masters Thesis: Waterloo University, Ontaraio, September 2010 Abstract available at; http://uwspace.uwaterloo.ca/ bitstream/10012/5476/l/Amintowlieh_Yasaman.pdf 109 X Xu, "Cellulose fiber reinforced nylon or nylon 66 composites" PhD thesis: Georgia Institute of Technology, December 2008 This page intentionally left blank Index Absorption coefficient, 58 Acanthamoeba castellani, 349 Acid platform, 518 3-hydroxypropionic acid, 519 acrolein, 518 degussa hydrogénation, 518 acrylic acid, 520 high-surface-area γ-Α1203, 520 glycolic acid, 519 gluconobacter oxydans DSM 2003, 519 hydroxy acids, 518 monomers for ring-opening polymerization, 518 succinic acid, 520 γ-methyl- γ-valero lactone, 519 γ-valero lactone, 519 Activation energy, 306 Active and intelligent packaging, 221 Aliphatic polyester-grafted starch, 207 Amorphous, 383, 386, 387 Amylopectin, 477, 478, 479, 480, 493, 496 Amylose, 477,478, 479, 480, 493 Apparent density of composite, 295 Application of chitosan and chitin nanofibres, 362 Assimilation, 391 Automotive, 374,376, 378, 392, 393 Bacterial cellulose, 352, 355, 481, 484, 485, 487, 488, 489, 490, 491, 493, 494, 495, 496,500 Bacterial fermentation, 374, 376, 377, 393 Biobased, 373, 374,376, 378, 382,386, 392, 393 aromates, 514 plastics or bioplastics, polymer composites using poly-lactic acid, 229 Biocompatibility, 374, 375, 390, 392, 393, 473,475, 501 Biocompatible, Biocomposite(s), 2, 7, 269, 270,280, 399, 431-437,439, 440,452, 457, 463,464, 465, 466, 561 bacterial cellulose fiber-reinforced starch type, 233-34 flake type, 198 from wheat straw nanofibers, 237 hybrid type, 198 particulate type, 198 sandwich type, 199 thermoplastic starch and bacterial cellulose based, 231 Biodegradability, 374, 375, 390, 391, 392, 393,399, 431, 440,473, 474, 475, 479,481, 501 Biodegradable, 6, 78, 82, 88,112, 373, 374, 375, 376, 378, 379, 382, 383, 384, 386, 387 composites, 472, 495 packaging, 220 materials, 227 polymers, 200-202 Biodegradation, 451, 463 Biodeterioration, 391 Biofibers, 556 Biofillers, 469, 472 Biogenic precursors, 13 Biogenic raw materials, 513 Biomass, 451, 453,455,456 Biomédical engineering, 347, 348, 349, 350, 351, 352, 353, 355 Bionanocomposites, 10, 469, 472,474, 475, 491,492, 493, 494,495, 496, 497,498, 501, 502 Bioplastics, 178, 347, 348, 349, 350, 351, 352, 353, 355, 356, 399, 400-431, 437,438-440, 451, 452,454, 455, 456,463, 558 Biopolyethylene, 581 582 INDEX Biopolymers, 46, 47, 48, 347, 349, 200-201, 469, 472, 473, 474, 475,479, 501, 502 Bio-resin, 46, 47, 48 Biosensor, 10 Biotechnology, 473, 474 Blends, 373,375, 376, 379,385, 390, 391, 392, 393 Blow molding, 378 Bulk density, 20 Cancer therapy, 10 Carbohydrate, 476, 482, 494 Carbohydrate polymer, 178 Carbon fibers, 430, 431,432, 439 Carbon nanotubes, 471, 473, 488 Carman-Kozeny equation, 54, 67 Cassava bagasse, 481,484, 486, 487, 488, 494 Cell density, 272, 277, 278,281 Cellulose, 78, 83, 86, 96,101,104,115,119, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356 polyesters, Cellulose acetate butyrate (CAB), 386 Cellulose microfibrils, 482, 483, 484, 485, 487,492, 502 Cellulose nanofibers, 13,451, 452, 456-460, 463-466 Chaetamorpha melagonicum, 349 Chain scission, 374, 381, 382 Characterization, 184 Characterization of biocomposites, 247 blended film of chitosan starch, 251-53 starch/OMMT nanocomposites for packaging application, 248-51 thermoplastic starch / monomorillonate nanocomposites, 253-54 Chitin, 87, 96,105,108,115, 348 Chitin and chitosan, 10 Chitosan, 348, 353 Ciprofloxacin hydrochloride, 353 Comparison of various composite manufacturing processes, 256-58 Composites, 373,375, 376, 379, 380, 381, 382, 384, 386, 387, 388 Composite film of blend of chitosan and starch, 238 chemically modified starch blend, 241 starch-polycaprolactone, 242 Composite materials, 195, 509 advantages and limitations, 195-96 manufacturing methods, 254-56 Compost bags, Compostability, 399, 431, 439, 440 Compostable, Compounding blenders, extruders, mills, mixers, pulverizers, Compressive strength, 272, 278 Continuity equation, 49, 58 Control release, 352, 353 Conventional composites, 471,473 Copolyesters (bio-based), 423, 424 Cradle to grave, 6, Crystallinity, 373, 375,378, 379, 380, 383, 387, 391, 393, 452, 460,462 Crystallization, 374, 375, 379, 380,383, 386 Damping energy (Tan δ), 300 Darcy velocity, 59 Darcy's law, 49, 50, 59 Degradation, 374 abiotic, 390, 391 acid, 376 bio-, 390, 391, 392 biotic, 390 chemical, 390 extracellular, 391 mechnical, 390 photo, 390 thermal, 380, 381, 382, 393 thermo-oxidative, 390 Degradation test, 290, 312 Density, Depolymerization, 391 Derivatization of guar gum, 180 Differential scanning calorimetry (DSC), 379 Diisocyanate, 271, 272,273 Dimethylsuphoxide, 353 Diols, 521 1,2-propanediol, 523 1,3-propanediol, 521 1,3-propanediol, Clostridium pasteurianum, 522 1,3-propanediol, Cor terra polymers, 522 1,3-propanediol, Sorona 3GT, 522 INDEX 1,4-butanediol, 523 1,5-pentadiol, 523 1,6-Hexanediol, 524 ethylene glycol, 521 isosorbide, 524 methyl-l,4-butanediol, 524 Drug delivery, Dry ingredients, properties, 20-22 Duelscale porous media, 51 Durability, 397, 398,419, 433,440 Dynamic mechanical analysis (DMA), 290,299 Dynamic mechanical analyzer (DMA), 386 Ecoflex or PBAT, Ecovio, Effect of blending of chitosan and starch, 246 degradation and mineralization, 246 hygroscopy, 244-46 influence of fibers, 242-43 starch composition on structure of foams, 247 various parameters on behavior of packaging, 242-47 water absorption, 244 Elastic modulus, Electrospinning, 457, 465 Elongation at break, 90,92, 94,101,110, 112, 383, 384, 385, 386 Engineered pulp, 13 Engineering applications automotive, 3,11 biomédical, 3,9 civil, 3, construction & building, 3, general engineering, 12 packaging, 3, Environment friendly, 472, 473 Enzymatic hydrolysis, 485, 490,493,495 Epoxy resins (bio-based), 400, 429, 430, 431,437 Exfoliation, 388 Extruders, twin screw, 19-20 Extrusion, 374, 378 Feeders agitated, 22-24 fiber, 40-42 FlexWall, 24-25 loss-in-weight, 34-39 single screw, 27-30 twin screw, 30-31 vibratory, 31-32 volumetric, 26 weigh belt, 32-33 Feedstock handling, Fiber, 469, 470, 472 abaca, 375, 392 bamboo, 375, 381, 384, 386, 388, 392 bundle tensile test, 294 cellulose, 375,380,387 coir, 375, 380, 384, 388, 392 flax, 375,384, 392 in bio-composite production, 39 jute, 375, 392 kenaf, 375,380, 381 lignocellulosic flour, 375, 380, 386, 387 natural, 373,375, 380, 381, 383, 384, 392, 393 pineapple, 375, 380, 381 recycled wood, 375, 382, 384, 385, 386 reinforced polymers, wheat straw, 375, 380, 384, 392 Fiber-reinforced PLA composites, 232 Flexural properties, Flexural testing, 290,299 Foaming conventional, 5, 7,9 microcellular, 5, nanocellular, Forming, Fourier transmission infrared (FTIR) analysis, 292 Frequency studies, 303 Furanic resins, 431, 437 Furans, 527 2,5-bis(hydroxymethyl)furan, 529 2,5-bis(hydroxymethyl)furan, C u / C r catalysts, 529 2,5-furandicarboxylic acid, 529 furfural resins, 529 furfyryl alcohol, 529 Futuristic research outlook, 259 Gas barrier, 472, 474, 501 Gelatinization, 479, 493, 496 Gene vectors, 10 Generalized Hooke's law, 216 Glass-fibers, 430, 431, 432, 436, 439 Global permeability, 60 Glossary of terminology, 259-61 583 584 INDEX Gluconacetobacter xylinus, 349, 352 Glycerol, 479, 480, 481,493, 494,496, 497, 498 Graft copolymerization, Grafting, 181 Grafting of vinyl monomers, 181 Green composites, Green polymeric materials, 2, Guar gum, 177 Hoppers agitated, 22-24 flexible walled, 24-25 storage, 22, 26 Hybrid materials and composites, 510 Hydrolysis, 374, 381, 391 Hydrophilicity, Hydroxyapatite (HA), 9, 375, 390, 392 Hydroxylation, 270 Hytrel, Impact strength, 90,91, 92,94, 374, 378, 383 Implant, 9, 347, 348, 349, 352, 354, 355 Inorganic fillers, 2, 373, 375, 393 Intercalation, 388 Interfacial engineering, Laplace equation, 50 Lignins, 477, 482,483, 485, 538 lignin as chemical source, 538 lignin cracking, 539 lignin oxidation, 540 lignin pyrolysis, 539 Lignocellulosic fibers, 474,475, 483 Lignocellulosic fillers, 277 Lipid platform, 513 triglycérides, 513 Twitchell process, 513 Liquid absorption, 51, 52 Liquid composite molding (LCM), 43,44,48 Long fibre reinforced plastics, 553 Macroporosity, 10 Mechanical properties, 472, 474, 479, 481, 484, 488, 491, 493,496, 498, 501, 502 influence of fibers of cassava starch foam on, 242-43 of starch modified by Ophiostoma SPP for food packaging, 230 Mechanics of fiber composite laminate, 212 Mechanism, 182 6-mercaptopurine, 353 Microcellular components, 379, 380, 383, 384, 385, 386 injection molding, 373, 376, 377, 378, 379, 393 Microcomposites, 474, 491, 494 Microfibrillated cellulose, 481, 487,491 Microfibrils, 453, 454,457,459, 476,481, 482, 483, 484, 485, 487,489, 492, 502 Microfillers calcium carbonate, 414,416 silica, 416 talc, 414, 416 Microwave irradiation, 183 Mineralization, 391 Miscroscopy, 457, 459, 460 Modified starches, 193 Modulus, 374, 383,384, 386, 387 Molding, 5,13 Montmorillonite, 90, 91, 92, 94 Morphological study of Kenaf fiber, 291 Morphology, 451, 460 Mulch films, Nanoclay, 375,380, 381, 382, 384, 385, 386, 388, 392 Nanocellulose, 452, 459, 464, 465, 466 Nanocomposites, 451, 460, 461, 463, 464, 465, 466,469, 470, 471, 472, 473, 474, 475, 477, 479, 480, 481,483, 485, 487, 489, 491, 492, 493, 494,495, 496,497, 498, 499, 501, 502 cellulose nanocomposites with starch matrix, 238 characterization of starch/OMMT nanocomposite, 248-51 characterization of thermoplastic starch/ monomorillonate nanocomposite, 253-54 MMT-filled potato starch based, 236 sweet potato starch/OMMT based, 236-37 Nanofillers organically-modified MMT, 410,414, 419 Nanomaterials, 470, 471, 472,475,483, 487 Nanorods, 481, 501 Nanotechnology, 471, 472, 502 NaOH treatment, Native cellulose, 475, 476 INDEX Natual fiber injection moulding compounds, 566 Natural fibers, 46, 208, 269, 270, 281, 452, 453, 454, 456, 459,463,464, 466 abaca, 432,434 bamboo, 423, 437 banana fibers, 209 coir, 432 coir fibers, 210 cotton, 431,432 cotton fibers, 211 curara, 432 flax, 432,435 flax fibers, 210 hemp, 399,431, 432 hemp fibers, 211 jute, 430, 432, 435,437 jute fibers, 209 kenaf, 418,431, 432, 433 palmyra fibers, 211 ramie, 418,432,433 ramie fibers, 209 sisal, 431, 432 sisal fibers, 209 wood, 399, 431,436 Natural fiber sheet moulding for composites, 562 Natural fillers, Neural engineering, 10 Olefin platform (biogenic), 514 sovay process, 514 Opto-electronic packaging, 222 Organically modified montmorillonite (OMMT), 380, 381, 389, 391 Packaging, 374, 376, 378,392,393, 470, 472, 473,475, 501 active and passive type, 221 flexible type, 221 functions of, 216-17 intelligent type, 221 introduction of, 216-17 necessity in food industry of, 219 opto-electronic type, 222 testing standards and norms of, 222-26 Packaging materials applications, 217-18 characteristics, 217 starch based, 219 vivid kinds of, 217-18 585 Palm oil, 270,271 Permeability, 6, 49,50,53,54, 55, 56, 57, 60, 61, 62, 67, 80, 92, 94,106,110, 113,115 PHA, 81,109 Pharmaceutical engineering, 347,352, 353, 355 PHB, 81,109 PHBV, 81,110 Phenols, 533 cashew nut shell liquid CNSL, 533 Novolac-type phenolic resins, 533 PLA, 79, 89 Plasticizers, 78,81, 90,92,96,99,479, 481,493 Plastizers, 526 epoxidized plant oils, 527 Lipases Novozym, 435 rosin acids, 526 NiMO catalyst, 526 Raney nickel catalyst, 526 sterols, 526 terpene phenolic resin, 526 Platelets, 474, 483 Poly3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), 373, 374, 375, 376, 377, 378, 379,380, 381, 382, 383 butylène adipate-co-terephthalate (PBAT), 375,379, 382, 383, 384, 385, 386, 387, 392 butylène succinate (PBS), 375, 392 caprolactone (PCL), 375, 386, 392 d,l-lactide (PDLLA), 383 ethylene glycol (PEG), 383 ethylene oxide (PEO), 379, 383 ethylene succinate (PES), 375, 379,392 glycidyl methacrylate (PGMA), 383 hydroxyalkanoates (PHAs), 374,391, 393 hydroxyethylmethacrylate (PHEMA), 375,392 1-lactic acid (PLLA), 386, 390 olefines, 374, 375, 392 polystyrene (PS), 373 propylene (PP), 373,374, 375 propylene carbonate (PPC), 383 Poly(trimethylene terephthalate), poly( vinyls), 178 Polyamides (bio-based) PA 4,10 (bio-based), 404,410 PA 5,10 (bio-based), 409,411 586 INDEX PA (bio-based), 405, 411 PA 6, (bio-based), 405, 411 PA 6,9 (bio-based), 405 PA 6,10 (bio-based), 401, 404, 409, 410-411 PA 10,10 (bio-based), 404, 408, 409, 411 PA 10,12 (bio-based), 404, 411 PA 11 (bio-based), 403, 404,405, 407, 410 Polyesters (bio-based), 13 polybutylene succinate, PBS (bio-based), 401, 423 polylactic acid, PLA, 401,413-422 polytrimethylene terephthalate, PTT (bio-based), 401,422 unsaturated polyester resins, UPRs (bio-based), 400, 429, 437 Polyhydroalkonates (PHAs), 2, Polyhydroxyalkanoates, 455, 473, 474 Polylactic acid (PLA), 2, 202-03 Polylactic acid (PLA) Foam extruded foam, 164 foam properties, 168 heat deflection temperature, 171 mechanical properties, 169 particle (bead) foam, 168 sheet foam, 168 thermal insulation, 169 Polylactides, 348, 473, 474 Polymer blends, 414, 416,420,424 Polymer matrix composites, 269 270 Polyols, 270, 271, 272,273, 274, 275, 276, 278, 279, 280, 524 erythritol, 524 modified polyols, 525 polyglyserols, 525 polyol fats, 525 Polyolefins (bio-based) polyethylene, PE (bio-based), 401, 425 polypropylene, PP (bio-based), 401, 425 Polyphenol, 13 Polysaccharides, 474,477, 482, 483 Polyurethanes, 13, 272, 273, 274, 275, 276 PURs (bio-based) thermoplastic polyurethanes, TPUs (bio-based), 426, 428 thermosetting polyurethane foams (bio-based), 427, 428 Pore-averaged, 49 PORE-FLOW, 49, 68 Porosity, 61 Potato starch based nanocomposites MMT-filled, 236 sweet potato/OMMT type, 236-37 Processing, 406,407, 409, 437 Processing of Bioplastics, Properties, 373,374, 375, 376 barrier, 392 insulation, 378 material, 373, 393 mechanical, 373, 374, 375, 376, 377,378, 383, 384,390, 392, 393 morphological, 392, 393 physical, 375 thermal, 373, 374, 375, 376, 378, 379, 380, 392 viscoelastic, 373,378, 387, 388, 393 Protein, 80, 95 Pultruded composites, 295 Pultrusion, Reaction injection molding, 269,275, 276 Reaction polymers, 509 amino-formaldehyde resins, 510 epoxyresins, 510 phenol-formaldehyde resins, 510 polyimines, 510 unsaturated polyesters, 509 urethanes, 509 Recent advances in starch based composites for packaging applications, 226 Recycling, 11,438 Renewability, 472, 473,474 Renewable materials, 469,484 Representative elementary volume, 50 Rétrogradation, 479, 480, 496 Rigid polymeric foams, 269 RTM, 44,45,48, 60 Rule of mixture for unidirectional biocomposite lamina, 212-16 Saturated permeability, 57 Scaffold, 351, 352,355 shape of polymer nanostructures, 358 Shaping methods molten state, rubbery state, wet state, Shopping bags, Single Kenaf fiber, 291 Sink, 58 INDEX Skin regeneration, 11 Sol-gel-bioactive glass (SGBG), 375,392 Sorona, Soy based plastics, Soybean oil, 270,271 Spherulites, 380, 383 Starch, 348, 352 aliphatic polyester-grafted starch, 207 as a source of bio-polymer, 203-07 characteristics, 190-91 different sources of, 192-93 foam, film and coated composites for packaging applications, 238 history of, 190-91 improving the properties of, 194-95 introduction of, 189-90 structure of, 192 Starch as a source of bio-polymer (agro-polymer), 203-07 banana, 205-06 barley, 206 buckwheat, 206 cassava, 295 maize, 204-05 potato, 203 rice, 203 rye, 207 sweet potato, 203 taro, 207 wheat, 203-04 Starch based plastics, Starch nanocrystals, 83, 87, 96,101,105, 108,112,115 Starch, 79, 87, 95,112 starch hybrid resins, 424, 425 thermoplastic starch, TPS, 424 Starch/rubber composite, 232 Starch-based biocomposites classification of, 196-98 completely biodegradable polymer materials, 234 nano-clay composites, 235 nanocomposites for packaging applications, 226 packaging materials, 219 Starch-based composite foams egg albumen-cassava containing sunflower-oil droplets type, 240 jute and reinforced type, 240 loose-fill packaging type, 241 587 Starch-based composites for packaging applications plasticized starch and fiber reinforced composite type, 226 plasticized wheat starch and cellulose fiber composite type, 226-27 thermoplastic composite type, 228-29 Storage modulus, 299 Structural, 2, 9,12 Succinic anhydrides, 353 Sugar platform, 513 D-glucose, 513 hemicellulose hexoses (glucose, mannose, galactose), 513 hemicellulose pentoses (xylose, arabinose), 513 Supercritical fluids (SCF), 377, 378, 381 Surfactant, 85,93,96 Sustainable, 373 Swelling, 51,52, 69 Synthetic polymers polycarbonate, polyethylene, polypropylene, polystyrene, Polyvinylchloride, Tannins, 537 gallo tannins, 537 tannic acid, 537 Temporary housings, Tensile strength, 94,101,110,112,476, 487, 495,497,498, 499, 501 Terpenes, 530 benzoazines, 533 limonene, 531 limonene oxide, 532 p-Cymene, 532 terpinolene, 532 a- and ß-pinene, 531 Testing standards and norms of packaging, 222-26 Thermal stability, 374, 375, 380, 381, 382, 481, 487, 494, 501 Thermogravimetric analysis (TGA), 309 Thermogravimetric analyzer (TGA), 381,382 Thermoplastic starch, 479, 494, 495 Thermoplastic starch and bacterial cellulose based biocomposite, 231 588 INDEX Thermoplastics (bio-based), 398, 400, 401-427, 438,439 Thermoset composites (bio-based), 428, 429, 439 Thermosetting resins (bio-based), 400, 427-431, 437, 439 Tissue engineering, 9, 347,350,351, 352, 356 Tissues, 10 Toughness, 6, 374, 375, 383, 384, 385, 386 Transmittance, 107 Tricalcium phosphate (TCP), 375, 392 Tunicin, 86,105,108 Unsaturated permeability, 57 Valonia ventricosa, 349 Vegetable oil based plastics, 2, Volume-averaged, 49 Waste collagen hydrolysate cured with dialdehyde starch based packing material, 227-28 Water absorption behavior, 312 Water uptake, 91,106,113 Wheat gluten, 79, 82, 88,112 Wollastonite, 375, 380, 392 Young's modulus, 102,112,476, 488, 497, 498,499, 501 Also of Interest Check out these published and forthcoming related titles from Scrivener Publishing Biopolymers: Biomédical and Environmental Applications Edited by Susheel Kalia and Luc Avérous Forthcoming August 2011 ISBN 978-0-470-63923-8 Plastics Sustainability Michael Tolinski Forthcoming December 2011 ISBN 978-0-470-93878-2 Polymers from Renewable Resources Ram Nagarajan Forthcoming Spring 2012 ISBN 9780470626092 Green Chemistry for Environmental Remediation Edited by Rashmi Sanghi and Vandana Singh Forthcoming September 2011 ISBN 978-0-470-94308-3 Polymer Nanotube Nanocomposites: and Applications Synthesis, Properties, Edited by Vikas Mittal Published 2010 ISBN 978-0-470-62592-7 Handbook of Engineering and Specialty Part 1: Polyolefins and Styrenics By Johannes Karl Fink Published 2010 ISBN 978-0-470-62483-5 Thermoplastics Part 2: Water Soluble Polymers By Johannes Karl Fink Published 2011 ISBN 978-1-118-06275-3 Part 3: Polyethers and Polyesters Edited by Sabu Thomas and Visakh P.M Published 2011 ISBN 978-0-470-63926-9 Part 4: Nylons Edited by Sabu Thomas and Visakh P.M Forthcoming August 2011 ISBN 978-0-470-63925-2 A Concise Introduction to Additives for Polymers Thermoplastic By Johannes Karl Fink Published 2010 ISBN 978-0-470-60955-2 Introduction to Industrial Polyethylene: Catalysts, Processes Properties, By Dennis P Malpass Published 2010 ISBN 978-0-470-62598-9 The Basics of Troubleshooting in Plastics Processing By Muralisrinivasan Subramanian Published 2011 ISBN 978-0-470-62606-1 Miniemulsion Polymerization Edited by Vikas Mittal Published 2010 ISBN 978-0-470-62596-5 Technology ... Pilla (ed .) Handbook of Bioplastics and Biocomposites Engineering Applications, (1 -1 6) © Scrivener Publishing LLC HANDBOOK OF BIOPLASTICS AND BIOCOMPOSITES ENGINEERING APPLICATIONS millions of years... Processing of Bioplastics and Biocomposites 1.2.2 Packaging Applications of Bioplastics and Biocomposites 1.2.3 Civil Engineering Applications of Bioplastics and Biocomposites 1.2.4 Biomédical Applications. .. Biomédical Applications of Bioplastics and Biocomposites 1.2.5 Automotive Applications of Bioplastics and Biocomposites 1.2.6 General Engineering Applications of Bioplastics and Biocomposites 1.3 Conclusions