1. Trang chủ
  2. » Công Nghệ Thông Tin

Señales y sistemas michael j roberts 1ed solutions

682 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 682
Dung lượng 6,82 MB

Nội dung

http://www.elsolucionario.blogspot.com LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS LOS SOLUCIONARIOS CONTIENEN TODOS LOS EJERCICIOS DEL LIBRO RESUELTOS Y EXPLICADOS DE FORMA CLARA VISITANOS PARA DESARGALOS GRATIS M J Roberts - 7/12/03 Chapter - Mathematical Description of Signals Solutions If g( t) = 7e −2 t − write out and simplify (a) g( 3) = 7e −9 (b) g(2 − t) = 7e −2( − t ) − = 7e −7 + t (c) t − −11  t  g + 4 = 7e  10  (d) g( jt) = 7e − j t − (e) (f) g( jt) + g(− jt) e − j 2t + e j 2t = 7e −3 = 7e −3 cos(2 t) 2  − jt − 3  jt − 3 g   + g     e − jt + e jt =7 = cos( t) 2 If g( x ) = x − x + write out and simplify (a) g( z) = z − z + (b) g( u + v ) = ( u + v ) − ( u + v ) + = u + v + uv − u − v + (c) g(e jt ) = (e jt ) − e jt + = e j t − e jt + = (e jt − 2) (d) g(g( t)) = g( t − t + ) = ( t − t + ) − ( t − t + ) + 2 2 g(g( t)) = t − t + 20 t − 16 t + (e) g(2) = − + = What would be the numerical value of “g” in each of the following MATLAB instructions? (a) t = ; g = sin(t) ; (b) x = 1:5 ; g = cos(pi*x) ; (c) f = -1:0.5:1 ; w = 2*pi*f ; g = 1./(1+j*w) ; 0.1411 [-1,1,-1,1,-1] Solutions 2-1 M J Roberts - 7/12/03 0.0247 + 0.0920 +    0.0920 − 0.0247 − j 0.155  j 0.289     j 0.289  j 0.155  Let two functions be defined by 1 , sin(20πt) ≥ x1 ( t) =  −1 , sin(20πt) < and t , sin(2πt) ≥ x ( t) =  − t , sin(2πt) < Graph the product of these two functions versus time over the time range, −2 < t < x(t) -2 t -2 For each function, g( t) , sketch g(− t) , − g( t) , g( t − 1) , and g(2t) (a) (b) g(t) g(t) t -1 t -3 g(-t) g(-t) -g(t) -g(t) t -2 -1 t -3 g(t-1) g(t-1) g(2t) 4 t t t -1 t -3 g(2t) -3 A function, G( f ) , is defined by Solutions 2-2 t -1 2 -3 t M J Roberts - 7/12/03  f G( f ) = e − j 2πf rect    2 Graph the magnitude and phase of G( f − 10) + G( f + 10) over the range, −20 < f < 20  f + 10   f − 10  − j 2π f +10 G( f − 10) + G( f + 10) = e − j 2π ( f −10) rect    + e ( ) rect      |G( f )| -20 f 20 Phase of G( f ) π -20 f 20 -π Sketch the derivatives of these functions (All sketches at end.) (a) g( t) = sinc( t) (b) g( t) = (1 − e −t g′ ( t) = π t cos(πt) − π sin(πt) πt cos(πt) − sin(πt) = πt (πt) e − t , t ≥ 0 − t g′ ( t) =   = e u( t) 0 , t < 0 ) u(t) (a) (b) x(t) x(t) 1 -4 t -1 -1 dx/dt 1 -1 t -1 dx/dt -4 t -1 t -1 Sketch the integral from negative infinity to time, t, of these functions which are zero for all time before time, t = Solutions 2-3 M J Roberts - 7/12/03 g(t) g(t) 1 t ∫ g(t) dt 3 t ∫ g(t) dt 1 2 t t Find the even and odd parts of these functions (a) g( t) = t − 3t + t − 3t + + 2(− t) − 3(− t) + t + 12 g e ( t) = = = 2t + 2 2 t − 3t + − 2(− t) + 3(− t) − −6 t g o ( t) = = = −3t 2 (b) π  g( t) = 20 cos 40πt −   4 π π   20 cos 40πt −  + 20 cos −40πt −     4 g e ( t) = Using cos( z1 + z2 ) = cos( z1 ) cos( z2 ) − sin( z1 ) sin( z2 ) g e ( t) =     π  π  20 cos( 40πt) cos −  − sin( 40πt) sin −   4       +20 cos(−40πt) cos − π  − sin(−40πt) sin − π           4       π  π    20 cos( 40πt) cos  + sin( 40πt) sin    4       +20 cos( 40πt) cos π  − sin( 40πt) sin π           4     g e ( t) = Solutions 2-4 M J Roberts - 7/12/03 20 π  g e ( t) = 20 cos  cos( 40πt) = cos( 40πt)  4 π π   20 cos 40πt −  − 20 cos −40πt −    4 4 g o ( t) = Using cos( z1 + z2 ) = cos( z1 ) cos( z2 ) − sin( z1 ) sin( z2 )     π  π  20 cos( 40πt) cos −  − sin( 40πt) sin −   4       −20 cos(−40πt) cos − π  − sin(−40πt) sin − π           4     g o ( t) = g o ( t) =   π  π    20 cos( 40πt) cos  + sin( 40πt) sin    4       −20 cos( 40πt) cos π  − sin( 40πt) sin π           4     20 π  g o ( t) = 20 sin  sin( 40πt) = sin( 40πt)  4 (c) t − 3t + g( t) = 1+ t t − 3t + t + 3t + + 1− t + t g e ( t) = (2t g e ( t) = g e ( t) = − 3t + 6)(1 − t) + (2 t + 3t + 6)(1 + t) (1 + t)(1 − t) t + 12 + t + t = − t2 2(1 − t ) t − 3t + t + 3t + − 1− t + t g o ( t) = Solutions 2-5 M J Roberts - 7/12/03 (2t g o ( t) = − 3t + 6)(1 − t) − (2 t + 3t + 6)(1 + t) (1 + t)(1 − t) −6 t − t − 12 t 2t + g o ( t) = = −t − t2 2(1 − t ) sin(πt) sin(−πt) + t π −πt = sin(πt) g e ( t) = πt (d) g( t) = sinc( t) (e) g( t) = t(2 − t )(1 + t ) g o ( t) = g( t) = {t (2 − t )(1 + t ) 4 odd 12312 even even Therefore g( t) is odd, g e ( t) = and g o ( t) = t(2 − t )(1 + t ) (f) g( t) = t(2 − t)(1 + t) g e ( t) = t(2 − t)(1 + t) + (− t)(2 + t)(1 − t) g e ( t) = t g o ( t) = t(2 − t)(1 + t) − (− t)(2 + t)(1 − t) g o ( t) = t(2 − t ) 10 Sketch the even and odd parts of these functions Solutions 2-6 M J Roberts - 7/12/03 g(t) g(t) 1 t 1 t -1 g e(t) g e(t) 1 t 1 t -1 g o(t) g o(t) 1 t 1 t -1 (a) (b) 11 Sketch the indicated product or quotient, g( t) , of these functions (a) (b) 1 -1 -1 t -1 t -1 g(t) g(t) Multiplication -1 t Multiplication -1 t -1 g(t) g(t) 1 -1 -1 t -1 -1 Solutions 2-7 t M J Roberts - 7/12/03 (c) (d) 1 t -1 t g(t) g(t) Multiplication 1 Multiplication t t g(t) g(t) -1 t -1 -1 t (e) (f) 1 -1 t t -1 g(t) -1 g(t) Multiplication Multiplication -1 t t -1 g(t) g(t) -1 1 t t -1 -1 (g) (h) 1 t -1 -1 -1 t g(t) Division 1 g(t) π Division t g(t) t g(t) t -1 -1 t 12 Use the properties of integrals of even and odd functions to evaluate these integrals in the quickest way Solutions 2-8 M J Roberts - 7/12/03 1 −1 −1 even ∫ (2 + t)dt = ∫ (a) 1 −1 odd 2{ dt + ∫ {t dt = ∫ dt = (b) 20 20 ∫ [4 cos(10πt) + sin(5πt)]dt = ∫ − 20 − 20 ∫ (c) − 20 20 cos(10πt) dt + 14243 even 20 20 − 20 odd t{ cos(10πt) dt = 1424 odd even 142 43 odd 1   10 10 cos(10πt)   cos(10πt) (d) ∫ t{ sin(10πt) dt = ∫ t sin(10πt) dt = − t + dt  424 10π ∫0 10π odd odd   − 142 43   10 even 10 10   10 sin(10πt)   = (10π3t)dt == 2 + ∫1 odd{t sin  424 100π (10π )  50π odd − 142  43  10 10 even (e) 1 [ −t −t −t −t ∫ e{ dt = 2∫ e dt = 2∫ e dt = −e −1 even ] = 2(1 − e −1 ) ≈ 1.264 (f) ∫ −t t{ e{ dt = odd2 even −1 odd 13 Find the fundamental period and fundamental frequency of each of these functions (a) g( t) = 10 cos(50πt) f = 25 Hz , T0 = s 25 (b) π  g( t) = 10 cos 50πt +   4 f = 25 Hz , T0 = s 25 (c) g( t) = cos(50πt) + sin(15πt)  15  = 0.4 s f = GCD 25,  = 2.5 Hz , T0 =   2.5 (d) (5π3t)dt = ∫ cos(10πt)dt = ∫ 81sin 424 10π 3π   g( t) = cos(2πt) + sin( 3πt) + cos 5πt −   4 Solutions 2-9 M J Roberts - 7/12/03 z − 1.3942 z + 0.5392 z z − 1.3942 z + 0.5392 z = 9762 z − 2.404 z + 1.864 z − 0.4602 z − z − 1.404 z + 0.4602 H −1 ( z) = 0.9762 2.5 z 1.999 z 0.4756 z − + z − z − 0.8818 z − 0.5219 H −1 ( z) = [ ] h −1[ n ] = 2.5 − 1.999(0.8818) + 0.4756(0.5219) u[ n ] n h- 1(t) n Unit Step Response 2.451 0.1885 t Bilinear-z Unit Sequence Response h [n] -1 2.4541 30 (c) n s2 + H( s) = s + 12 s + 32 [ ] h( t) = δ ( t) − 17e −8 t + 5e −4 t u( t) s2 + 0.125 0.04688 0.3215 0.2656 = − + − s s( s + 12 s + 32) s s s+4 s+8 H −1 ( s) = [ ] h −1 ( t) = 0.125 t − 0.04688 + 0.3215e −4 t − 0.2656e −8 t u( t) H( z) = 0.6617 z − 1.9752 z + z − 1.25 z + 0.3802 z − 1.9752 z + z z − 1.9752 z + z = 6617 z − 2.25 z + 1.631z − 0.3802 z − z − 1.25 z + 0.3802 H −1 ( z) = 0.6617 H −1 ( z) = [ 0.125 z 1.08 z 1.617 z − + z −1 z − 0.7285 z − 0.5219 ] h −1[ n ] = 0.125 − 1.08(0.7285) + 1.617(0.5219) u[ n ] n 12-52 n M J Roberts - 7/12/03 h- 1(t) Unit Step Response 2.3562 t Bilinear-z Unit Sequence Response h- 1[n] 0.662 30 n 32 Design a digital-filter approximation to each of these ideal analog filters by sampling a truncated version of the impulse response and using the specified window In each case choose a sampling frequency which is 10 times the highest frequency passed by the analog filter Choose the delays and truncation times such that no more than 1% of the signal energy of the impulse response is truncated Graphically compare the magnitude frequency responses of the digital and ideal analog filters using a dB magnitude scale versus linear frequency % Program to generate the FIR impulse responses of some approximations to % ideal filters and plot a comparison of the magnitude frequency responses of % the approximate and ideal filters close all ; % % Bandpass, Rectangular Window % fc = [10 20] ; type = 'BP' ; fs = 10*fc(2) ; h = FIRDF(type,fc,fs,'RE',0.01) ; N = length(h) ; Ts = 1/fs ; n = [0:N-1]' ; F = [0:0.001:1/2]' ; [H,F] = DTFT(n,h,F) ; subplot(2,2,1) ; p = xyplot(F*fs,20*log10(abs(H)),[0,fs/2,-140,0],'\itf ', '|H(\ite^{{\itj}2{\pi}{\itf}{\itT}_s} )|', 'Times',18,'Times',14, 'Bandpass - Rectangular Window','Times',24,'n','c') ; subplot(2,2,2) ; p = xyplot(F*fs,20*log10(abs(H)),[0,fs/10,-5,0],'\itf ', '|H(\ite^{{\itj}2{\pi}{\itf}{\itT}_s} )|', 'Times',18,'Times',14, 'Bandpass - Rectangular Window','Times',24,'n','c') ; % % Bandpass, Blackman Window % h = FIRDF(type,fc,fs,'BL',0.01) ; N = length(h) ; Ts = 1/fs ; n = [0:N-1]' ; F = [0:0.001:1/2]' ; [H,F] = DTFT(n,h,F) ; subplot(2,2,3) ; p = xyplot(F*fs,20*log10(abs(H)),[0,fs/2,-140,0],'\itf ', '|H(\ite^{{\itj}2{\pi}{\itf}{\itT}_s} )|', 'Times',18,'Times',14, 'Bandpass - Blackman Window','Times',24,'n','c') ; 12-53 M J Roberts - 7/12/03 subplot(2,2,4) ; p = xyplot(F*fs,20*log10(abs(H)),[0,fs/10,-5,0],'\itf ', '|H(\ite^{{\itj}2{\pi}{\itf}{\itT}_s} )|', 'Times',18,'Times',14, 'Bandpass - Blackman Window','Times',24,'n','c') ; % Function to design a digital filter using truncation of the % impulse response to approximate the ideal impulse response The % user specifies the type of ideal filter, % % LP lowpass % BP bandpass % % the cutoff frequency(s) fcs (a scalar for LP and HP a 2-vector % for BP and BS), the sampling rate, fs, the type of window, % % RE rectangular % VH von Hann % BA Bartlett % HA Hamming % BL Blackman % % and the allowable truncation error, % err, as a fraction of the total impulse response signal energy % % The function returns the filter coefficients as a vector % % function h = FIRDF(type,fcs,fs,window,err) % function h = FIRDF(type,fcs,fs,window,err) if fs == | fs == inf | fs == -inf, disp('Sampling rate is unusable') ; else fs Ts = 1/fs ; type = upper(type) ; window = upper(window) ; switch type case 'LP', fc = fcs(1) ; zc1 = 1/(2*fc) ; N = 200*zc1/Ts ; n = [0:N]' ; Etotal = sum(sinc(2*fc*n*Ts).^2) E = ; N = ; while abs(E-Etotal) > Etotal*err, N = 2*N ; n = [0:N]' ; E = sum(sinc(2*fc*n*Ts).^2) ; end delN = floor(N/10) ; while abs(E-Etotal)1, N = N-delN ; n = [0:N]' ; E = sum(sinc(2*fc*n*Ts).^2) ; delN = floor(delN/2) ; end N = ceil(N/2)*2 ; % Make number of pts even nmid = (N/2-1) ; 12-54 M J Roberts - 7/12/03 w = makeWindow(window,n,N) ; h = w.*sinc(2*fc*(n-nmid)*Ts) ; h = h/sum(h) ; case 'BP' fl = fcs(1) ; fh = fcs(2) ; fmid = (fh + fl)/2 ; df = abs(fh-fl) ; zc1 = 1/df ; N = 200*zc1/Ts ; n = [0:N]' ; Etotal = sum((2*df*sinc(df*n*Ts).* cos(2*pi*fmid*n*Ts)).^2) ; E = ; N = ; while abs(E-Etotal) > Etotal*err, N = 2*N ; n = [0:N]' ; E = sum((2*df*sinc(df*n*Ts).* cos(2*pi*fmid*n*Ts)).^2) ; end delN = floor(N/10) ; while abs(E-Etotal)1, N = N-delN ; n = [0:N]' ; E = sum((2*df*sinc(df*n*Ts).* cos(2*pi*fmid*n*Ts)).^2) ; delN = floor(delN/2) ; end N = ceil(N/2)*2 ; % Make number of pts even nmid = (N/2-1) ; n = [0:N-1]' ; w = makeWindow(window,n,N) ; h = w.*2.*df.*sinc(df*(n-nmid)*Ts).* cos(2*pi*fmid*(n-nmid)*Ts) ; h = h/sum(h.*cos(2*pi*fmid*(n-nmid)*Ts)) ; end end function w = makeWindow(window,n,N) switch window case 'RE' w = ones(N,1) ; case 'VH' w = (1-cos(2*pi*n/(N-1)))/2 ; case 'BA' w = 2*n/(N-1).*(0

Ngày đăng: 07/10/2021, 12:24