1. Trang chủ
  2. » Khoa Học Tự Nhiên

(The industrial electronics handbook) bogdan m wilamowski, j david irwin industrial communication systems CRC press (2011)

909 29 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • The Industrial Electronics Handbook. Second Edition: Industrial Communication Systems

    • The Industrial Electronics Handbook

    • The Electrical Engineering Handbook Series

    • The Industrial Electronics Handbook. Second Edition: Industrial Communication Systems

    • Contents

    • Preface

    • Preambles

    • Preamble to Part I: T echnical Principles

      • Group 1.1: Layers

      • Group 1.2: Wireless

      • Group 1.3: Integration

      • Group 1.4: Quality of Service

    • Preamble to Part II: A pplication-Specific Areas

    • Preamble to Part III: T echnologies

      • Introduction

      • Group 3.1: Classical Fieldbus Systems

      • Group 3.2: Industrial Ethernet

      • Group 3.3: Building Automation Networks

      • Group 3.4: A utomotive Networks

      • Group 3.5: Safety

      • Group 3.6: Wireless Networks

      • Group 3.7: Industrial Internet

    • Preamble to Part IV: Internet Programming

    • Preamble to Part V: Outlook

    • Acknowledgments

    • Editorial Board

    • Editors

    • Contributors

  • Part 1 Technical Principles

  • Chapter 1 ISO/OSI Model

    • 1.1 Introduction

    • 1.2 Open Standard

      • 1.2.1 Layer Functionalities

        • 1.2.1.1 Layer 1: Physical Layer

        • 1.2.1.2 Layer 2: Link Layer

        • 1.2.1.3 Layer 3: Network Layer

        • 1.2.1.4 Layer 4: Transport Layer

        • 1.2.1.5 Layer 5: Session Layer

        • 1.2.1.6 Layer 6: Presentation Layer

        • 1.2.1.7 Layer 7: Application Layer

    • 1.3 Vertical and Horizontal Communication

    • 1.4 Dynamic Behavior of Services and Protocols

    • 1.5 Extensions, Benefits, and Discussion

    • References

  • Chapter 2 Media

    • 2.1 Introduction

    • 2.2 Wired Links

      • 2.2.1 Physical Properties

      • 2.2.2 Cable Types and Operational Characteristics

      • 2.2.3 Single- Ended and Differential Transmission

      • 2.2.4 Simplex and Duplex Communication

      • 2.2.5 Bit Encoding

      • 2.2.6 Standards

      • 2.2.7 Data Transmission Utilizing Existing Cable Infrastructure

    • 2.3 Optical Links

      • 2.3.1 Physical Properties

      • 2.3.2 Types and Media Access

      • 2.3.3 Transmitters and Receivers

      • 2.3.4 Multiplexing

      • 2.3.5 Implementations and Standards

    • 2.4 Wireless Links

      • 2.4.1 Physical Properties

        • 2.4.1.1 Wavelength

        • 2.4.1.2 Thermal Noise

        • 2.4.1.3 Channel Capacity

        • 2.4.1.4 Free- Space Path Loss, Fresnel Zone

        • 2.4.1.5 Antennas

        • 2.4.1.6 Non– Line of Sight Channels and Moving Antennas/ Objects

        • 2.4.1.7 Link Budget

      • 2.4.2 Types and Media Access

        • 2.4.2.1 Frequencies for Wireless Links

        • 2.4.2.2 Media Access

      • 2.4.3 Modulation

      • 2.4.4 Bit Coding, Multiplexing

        • 2.4.4.1 Bit Coding

        • 2.4.4.2 Multiplexing

      • 2.4.5 Realizations and Standards

    • References

  • Chapter 3 Media Access Methods

    • 3.1 Introduction

    • 3.2 Full- Duplex Media Access

    • 3.3 Synchronous Access Arbitration Concepts

      • 3.3.1 Static Timeslot Mechanisms

      • 3.3.2 Dynamic Timeslot Mechanisms

    • 3.4 Statistic Access Arbitration Concepts

      • 3.4.1 Aloha Mechanisms

      • 3.4.2 Pure Aloha

      • 3.4.3 Slotted Aloha

    • 3.5 Carrier Sense Mechanisms with Exponential Backoff

      • 3.5.1 Using Collision Detection

      • 3.5.2 Using Collision Avoidance

      • 3.5.3 Token Mechanisms

      • 3.5.4 Polling Mechanisms

    • 3.6 Other Media Access Issues

      • 3.6.1 Access Fairness

      • 3.6.2 Access Priorities

      • 3.6.3 Quality of Service

      • 3.6.4 Hidden Stations

    • References

  • Chapter 4 Routing in Wireless Networks

    • 4.1 Introduction

    • 4.2 Routing Protocols and Classification

    • 4.3 Routing Protocol Families for Ad Hoc Networks

      • 4.3.1 Proactive Routing Protocols

      • 4.3.2 Reactive Routing Protocols

        • 4.3.2.1 Hybrid Routing Protocols

    • 4.4 Routing Protocol Families for Wireless Sensor Networks

      • 4.4.1 Flat Routing Protocols

      • 4.4.2 Hierarchical Routing Protocols

      • 4.4.3 Location- Based Routing Protocols

    • 4.5 Summary of the Main Routing Protocols in Wireless Networks

      • 4.5.1 Optimized Link- State Routing Protocol

      • 4.5.2 Topology Dissemination Based on Reverse Path Forwarding

      • 4.5.3 Dynamic Source Routing Protocol

      • 4.5.4 Ad Hoc On- Demand Distance Vector Routing Protocol

      • 4.5.5 Dynamic MANET On- Demand Routing Protocol

      • 4.5.6 Sensor Protocols for Information via Negotiation

      • 4.5.7 Low Energy Adaptive Clustering Hierarchy

      • 4.5.8 Geographic Adaptive Fidelity

    • 4.6 Conclusions

    • Acknowledgment

    • Abbreviations

    • References

  • Chapter 5 Profiles and Interoperability

    • 5.1 Interoperating Components

    • 5.2 Application of Profiles

      • 5.2.1 Function Blocks of IEC 61499

      • 5.2.2 Functional Profiles in LON

      • 5.2.3 Logical Nodes of the IEC 61850

    • 5.3 Achieving Interoperability

    • References

  • Chapter 6 Industrial Wireless Sensor Networks

    • 6.1 Applications

      • 6.1.1 Factory Automation

      • 6.1.2 Building Automation

      • 6.1.3 Industrial Process Automation

      • 6.1.4 Inventory Management

      • 6.1.5 Utility Automation

      • 6.1.6 A utomatic Meter Reading

    • 6.2 Standardization Activities

      • 6.2.1 ZigBee

      • 6.2.2 Wireless Hart

      • 6.2.3 IETF 6loWPAN

      • 6.2.4 Bluetooth and Bluetooth Low Energy

      • 6.2.5 Ultra- Wideband

    • 6.3 Technical Challenges

    • 6.4 Design Goals

    • 6.5 Design Principles and Technical Approaches

      • 6.5.1 Hardware Development

        • 6.5.1.1 Low- Power and Low- Cost Sensor Node Development

        • 6.5.1.2 R adio Technologies

        • 6.5.1.3 Energy- Harvesting Techniques

      • 6.5.2 Software Development

        • 6.5.2.1 A pplication Programming Interface

        • 6.5.2.2 Operating System and Middleware Design

        • 6.5.2.3 System Installation and Commissioning

      • 6.5.3 System Architecture and Protocol Design

        • 6.5.3.1 Network Architecture

        • 6.5.3.2 Data Aggregation and Fusion

        • 6.5.3.3 Cross- Layer Design

    • 6.6 Conclusions and Future Work

    • References

  • Chapter 7 Ad Hoc Networks

    • 7.1 Introduction

      • 7.1.1 Principles and Benefits

      • 7.1.2 Applications

      • 7.1.3 Ad Hoc Network Characteristic

      • 7.1.4 Enabling Technologies

    • 7.2 Protocol Stack

      • 7.2.1 Transport Layer

        • 7.2.1.1 Why TCP Does Not Suit Ad Hoc Networks?

        • 7.2.1.2 Transport Layer Protocols for Ad Hoc Networks

      • 7.2.2 Network Layer

        • 7.2.2.1 Proactive, Reactive, and Hybrid Routing Protocols

        • 7.2.2.2 Flat and Hierarchical Routing Protocols

        • 7.2.2.3 Position- and Nonposition- Based Routing Protocols

      • 7.2.3 MAC Layer

        • 7.2.3.1 Random Access Schemes

        • 7.2.3.2 Reservation- Driven Contention- Based Access

        • 7.2.3.3 Scheduling- Driven Contention- Based Access

      • 7.2.4 Physical Layer

    • 7.3 Performance Evaluation

    • 7.4 Challenges and Issues

      • 7.4.1 Quality- of- Service

      • 7.4.2 Energy Management

      • 7.4.3 Topology and Connectivity

      • 7.4.4 Security

    • References

  • Chapter 8 Radio Frequency Identification

    • 8.1 Prologue

    • 8.2 Bar Code System

    • 8.3 Magnetic Stripes

    • 8.4 Smart Card

    • 8.5 Proximity Card

    • 8.6 HF RFID

    • 8.7 Electronic Cash

    • 8.8 Personal Identity

    • 8.9 Innovation verus Hi- Tech

    • 8.10 Active RFID

    • 8.11 Wake- Up Technology

    • 8.12 Semi- Active RFID

    • 8.13 Backscattering

    • 8.14 Initialization

    • 8.15 Vicinity Card

    • 8.16 Frequency Selection

    • 8.17 UHF RFID

    • 8.18 Supply Chain Management

    • 8.19 International Standard

    • 8.20 Promiscuity

    • 8.21 National Standards

    • 8.22 Hands- Free Bar Code System

    • 8.23 Bar Code Mentality

    • 8.24 Affordable Tag

    • 8.25 Ubiquity of RFID

    • 8.26 Role Reversal

    • 8.27 Historical Development

    • 8.28 Privacy Infringement

    • 8.29 Recent Developments

    • 8.30 Dual Authentication

    • 8.31 Trace- and- Track

    • 8.32 Innovative Applications

    • 8.33 Nonionization Radiation

    • 8.34 Era of Artificial Perception

    • Abbreviations

    • References

  • Chapter 9 RFID Technology and Its Industrial Applications

    • 9.1 Introduction

    • 9.2 RFID Architecture

      • 9.2.1 RFID Tags

      • 9.2.2 RFID Readers

      • 9.2.3 RFID Antenna

      • 9.2.4 RFID Middleware

    • 9.3 Item Tracking and Tracing

      • 9.3.1 Baggage Tracking

      • 9.3.2 Library Book Tracking

      • 9.3.3 Animal Tracking

      • 9.3.4 Hospital Equipment Tracking

      • 9.3.5 Patient Tracking

      • 9.3.6 Newborn Baby Tracking

      • 9.3.7 Tracking Children

      • 9.3.8 Golf Ball Tracking

      • 9.3.9 Crowd Control

    • 9.4 Access Control

      • 9.4.1 Family Access to Babies in Neonatal Care

      • 9.4.2 Vehicle Identification

    • 9.5 Anticounterfeiting

      • 9.5.1 Electronic Drug Pedigree

      • 9.5.2 Bank Notes

      • 9.5.3 Secure Passports and Visas

      • 9.5.4 Automobile Parts

    • 9.6 Conclusion

    • References

  • Chapter 10 Ultralow-Power Wireless Communication

    • 10.1 Introduction

    • 10.2 Hardware Approaches

      • 10.2.1 Overview

      • 10.2.2 Energy Harvesting

    • 10.3 Communication Protocol Approaches

    • 10.4 Application Layer Approaches

    • 10.5 Conclusion and Open Topics

    • References

  • Chapter 11 Industrial Strength Wireless Multimedia Sensor NetworkTechnology

    • 11.1 Introduction

    • 11.2 Wireless Sensor Network

      • 11.2.1 WSN System Requirements

      • 11.2.2 Wireless Multimedia Sensor Networks

    • 11.3 WMSN Architecture

      • 11.3.1 Single- Tier Flat Architecture

      • 11.3.2 Single- Tier Clustered Architecture

      • 11.3.3 Multitier Architecture

    • 11.4 WMSN Hardware

      • 11.4.1 Low- Resolution WMSN Motes

      • 11.4.2 Medium- Resolution WMSN Motes

      • 11.4.3 High- Resolution WMSN Motes

    • 11.5 Applications of WMSNs

      • 11.5.1 Surveillance

      • 11.5.2 Traffic Monitoring

      • 11.5.3 Personal and Health Care

      • 11.5.4 Habitat Monitoring

      • 11.5.5 Target Tracking

    • 11.6 WMSNs' Technical Challenges

      • 11.6.1 WMSN Application- Specific QoS Requirement

      • 11.6.2 Scalable and Flexible Architectures and Protocols to Support Heterogeneous Applications

      • 11.6.3 High Bandwidth

      • 11.6.4 Localized Processing and Data Fusion

      • 11.6.5 Energy- Efficient Design

      • 11.6.6 Reliability and Fault Tolerance

      • 11.6.7 Multimedia Coverage

      • 11.6.8 Integration with IP and Various Other Wireless Technologies

    • 11.7 Conclusion

    • References

  • Chapter 12 A Survey of Wireless Sensor Networks for Industrial Applications

    • 12.1 Introduction

    • 12.2 Wireless Sensor Network Basics

      • 12.2.1 Wireless Sensor Node

      • 12.2.2 Wireless Sensor Network Stack

    • 12.3 Motivation and Drivers for Wireless Instrumentation

    • 12.4 Industrial Applications and Requirements

      • 12.4.1 Standardized Solutions

      • 12.4.2 R eliable Network Performance

      • 12.4.3 Battery Lifetime

      • 12.4.4 Friendly Coexistence with Wireless Local Area Networks

      • 12.4.5 Security

      • 12.4.6 Operation in Harsh and Hazardous Environments

    • 12.5 Technology Survey and Evaluation

      • 12.5.1 IEEE Std 802.15.4

      • 12.5.2 ZigBee

      • 12.5.3 WirelessHART

      • 12.5.4 ISA- 100

      • 12.5.5 Coexistence in the 2.4 GHz Band

    • 12.6 Conclusion

    • Abbreviations

    • References

  • Chapter 13 Vertical Integration

    • 13.1 Introduction

    • 13.2 Historical Background

    • 13.3 Network Interconnections

    • 13.4 Application View

    • 13.5 Security Aspects in Vertical Integration

    • 13.6 Trends in Vertical Integration

    • Abbreviations

    • References

  • Chapter 14 Multimedia Service Convergence

    • 14.1 Introduction

    • 14.2. Background

      • 14.2.1 Computer Telephony Integration

      • 14.2.2 Voice over Internet Protocol

      • 14.2.3 Interactive Voice Response Telecom

    • 14.3 Service- Oriented Architecture

      • 14.3.1 Service Meta Architectures

    • 14.4 T ailorability

    • 14.5 Multimedia Convergence Using Service Architecture

      • 14.5.1 Converged Services

      • 14.5.2 MC2 Interact Reconfigurable Convergence Architecture

      • 14.5.3 Converged Voice Plugins

    • 14.6 Conclusion

    • References

  • Chapter 15 Virtual Automation Networks

    • 15.1 Introduction

    • 15.2 Virtual Automation Network: Basics

      • 15.2.1 Domains

      • 15.2.2 Components

      • 15.2.3 VAN System Architecture

    • 15.3 Name- Based Addressing and Routing, Runtime Tunnel Establishment

    • 15.4 Maintenance of the Runtime Tunnel Based on Quality- of- Service Monitoring and Provider Switching

    • 15.5 VAN Telecontrol Profile

    • Abbreviations

    • References

  • Chapter 16 Industrial Agent Technology

    • 16.1 Introduction

    • 16.2 Agents and Multi- Agent Systems

      • 16.2.1 Intelligent Agents Definition

      • 16.2.2 Multi- Agent Systems

      • 16.2.3 Ontologies

      • 16.2.4 Self- Organization and Emergence

      • 16.2.5 The Holonic Paradigm

      • 16.2.6 Holonic Multi- Agent Systems

      • 16.2.7 How Agents Can Be Implemented

    • 16.3 Agents and Multi- Agent Systems in Industry

    • 16.4 Application Areas

      • 16.4.1 Resource Handling

      • 16.4.2 Order Handling

      • 16.4.3 Comparison

      • 16.4.4 Challenges of Industrial Agents' Usage

      • 16.4.5 Other Application Areas in Brief

    • 16.5 Agents and Multi- Agent Systems in Industry: Conclusions

    • Abbreviations

    • References

  • Chapter 17 Real-Time Systems

    • 17.1 Introduction on Real- Time Systems

      • 17.1.1 Definition

      • 17.1.2 Real- Time Constraints Characterization

      • 17.1.3 Typical Application Domains

      • 17.1.4 Real- Time Scheduling and Relevant Metrics

    • 17.2 Real- Time Communication

      • 17.2.1 Deterministic vs. Statistical Communication

      • 17.2.2 Best Effort vs. Guaranteed Service

      • 17.2.3 Performance Metrics

      • 17.2.4 Analytical Methods to Assess Performance of Real- Time Networks

    • 17.3 Design Paradigms for Real- Time Systems

      • 17.3.1 Centralized vs. Distributed Architectures

      • 17.3.2 Composability and Scalability

      • 17.3.3 Time- Triggered vs. Event- Triggered Systems

      • 17.3.4 Comparison of the Real- Time Support Provided by Notable Approaches

    • 17.4 Design Challenges in Real- Time Industrial Communication Systems

      • 17.4.1 Real- Time and Security

      • 17.4.2 Real- Time and Flexibility

      • 17.4.3 Offering Real- Time Support to Wireless Communication

    • References

  • Chapter 18 Clock Synchronization in Distributed Systems

    • 18.1 Introduction

    • 18.2 Precision Time Protocol

    • 18.3 IEEE 1588 System Model

    • 18.4 Service Access Points

    • 18.5 Ordinary Clocks

    • 18.6 Boundary Clocks

    • 18.7 Precision Time Protocol, IEEE 1588– 2008 ( PTPv2)

    • 18.8 Network Time Protocol

    • 18.9 Network Time Protocol Strata

    • 18.10 Architecture, Protocol, and Algorithms

    • 18.11 NTP Clock Synchronization Hardware Requirements

    • 18.12 Synchronization Algorithms of NTP

    • References

  • Chapter 19 Quality of Service

    • 19.1 Introduction

    • 19.2 Relationship with Information Security Topics

    • 19.3 Quality of Service for IP Networks

      • 19.3.1 Integrated Services ( IntServ) Model

      • 19.3.2 Differentiated Services ( DiffServ) Model

      • 19.3.3 Classification and Marking

      • 19.3.4 Queuing and Congestion Management

    • 19.4 Special Considerations for Managing the Quality of Service

      • 19.4.1 Congestion Avoidance

      • 19.4.2 High Availability Solutions for the Routers

    • References

  • Chapter 20 Network-Based Control

    • 20.1 Introduction

    • 20.2 Mutual Concepts in Control and in Communications

    • 20.3 A rchitecture of Networked- Based Control

      • 20.3.1 Connection Types

        • 20.3.1.1 Shared- Network Control Systems

        • 20.3.1.2 R emote Control Systems

    • 20.4 Network Effects in Control Performance

    • 20.5 Design in NBC

      • 20.5.1 Design Constraints in the Network Side

      • 20.5.2 Design Constraints in the Control Side

      • 20.5.3 Network and Control Co- Design

    • 20.6 Summary

    • References

  • Chapter 21 Functional Safety

    • 21.1 Introduction

    • 21.2 The Meaning of Safety

    • 21.3 Safety Standards

      • 21.3.1 Overview of Safety Standards

      • 21.3.2 Basics of IEC61508

    • 21.4 The Safety Lifecycle and Safety Methods

      • 21.4.1 Generic Lifecycle

      • 21.4.2 HAZOP

      • 21.4.3 FMEA

      • 21.4.4 Fault Tree Analysis

      • 21.4.5 Safety Cases

    • 21.5 Safety Approach for Industrial Communication System

      • 21.5.1 Overview of Safety- Related Systems

      • 21.5.2 Hazard and Risk Analysis

      • 21.5.3 Failure Mitigation

    • Acronyms

    • References

  • Chapter 22 Security in Industrial Communication Systems

    • 22.1 Introduction to Security in Industrial Communication

    • 22.2 Planned Approach to Security: Defense in Depth

    • 22.3 Security Measures to Counteract Network Attacks

      • 22.3.1 Virtual Private Networks

      • 22.3.2 Firewalls

      • 22.3.3 Cryptography

      • 22.3.4 DoS Prevention and Detection

    • 22.4 Security Measures to Counteract Device Attacks

      • 22.4.1 Protected Hardware and Security Token

      • 22.4.2 Secure Software Environments

    • 22.5 State of the Art in Automation Systems

      • 22.5.1 Security in Building Automation Systems

      • 22.5.2 Security in Industrial Communication

      • 22.5.3 Security in IP- Based Networks

      • 22.5.4 Security in Wireless Communication Systems

    • 22.6 Outlook and Conclusion

    • Abbreviations

    • References

  • Chapter 23 Secure Communication Using Chaos Synchronization

    • 23.1 Introduction

    • 23.2 Chaos Synchronization

      • 23.2.1 Feedback Control for Chaos Synchronization via Partial States

      • 23.2.2 Adaptive Control for Chaos Synchronization via Partial States

      • 23.2.3 Impulsive Control for Chaos Synchronization via Partial States

      • 23.2.4 Practical Impulsive Synchronization of Chaotic Systems with Parametric Uncertainty and Mismatch

    • 23.3 Secure Communication Using Chaos Synchronization

      • 23.3.1 Secure Communication Schema

      • 23.3.2 The Encrypter

      • 23.3.3 The Decrypter

      • 23.3.4 Synchronization Time Estimation

      • 23.3.5 Implementation

    • References

  • Part 2 Application-Specific Areas

  • Chapter 24 Embedded Networks in Civilian Aircraft Avionics Systems

    • 24.1 Introduction

    • 24.2 Avionics Systems Evolution and AR INC Context

    • 24.3 Classic Avionics and AR INC 429

    • 24.4 Integrated Modular Avionics

    • 24.5 ARINC 629 Multiplexed Data Bus

      • 24.5.1 Basic Protocol

      • 24.5.2 Combined Protocol

    • 24.6 AR INC 664: Avionics Full- Duplex Ethernet

      • 24.6.1 Full- Duplex Switched Ethernet

      • 24.6.2 The AR INC 664 Standard

      • 24.6.3 Virtual Link Paradigm

      • 24.6.4 Virtual Link Properties

        • 24.6.4.1 VL Bandwidth Guarantee

        • 24.6.4.2 VL Latency Guarantee

        • 24.6.4.3 VL Jitter Issues

      • 24.6.5 Network Redundancy for Safety and Fault Tolerance

    • 24.7 AFDX End- to- End Delay Analysis

    • 24.8 Conclusion

    • Abbreviations

    • References

  • Chapter 25 Process Automation

    • 25.1 Introduction

    • 25.2 Structures and Models of Batch Manufacturing Systems

      • 25.2.1 Process Model

      • 25.2.2 Physical Model

      • 25.2.3 Procedural Control Model

      • 25.2.4 Equipment Entities

      • 25.2.5 Recipes

      • 25.2.6 Classification of Process Cells

      • 25.2.7 Tasks and Functions of a Batch Management and Operation System

      • 25.2.8 Integration of Batch Management and Operation System with Other Information Systems

    • 25.3 Currently Applied Communication Systems

    • 25.4 Upcoming Requirements of Distributed Process Automation

    • 25.5 Industrial Ethernet as the " Silver Bullet" for Future Process Automation Communication Needs

    • References

  • Chapter 26 Building and Home Automation

    • 26.1 Introduction

    • 26.2 Building Automation

      • 26.2.1 Motivation and Overview

      • 26.2.2 Distributed Functions

      • 26.2.3 Technologies and Integration Aspects

      • 26.2.4 Applications

    • 26.3 Home Automation

      • 26.3.1 Motivation and Overview

      • 26.3.2 Technologies and Integration Aspects

      • 26.3.3 Applications

    • 26.4 Outlook and Further Challenges

    • References

  • Chapter 27 Industrial Multimedia

    • 27.1 Introduction

    • 27.2 Multimedia Compression: A Review

      • 27.2.1 Image Compressors

      • 27.2.2 Video Compressors

      • 27.2.3 Quality Evaluation

    • 27.3 Industrial Multimedia Applications

      • 27.3.1 Monitoring Applications

      • 27.3.2 Computer Vision Applications

    • 27.4 Image Transmission

      • 27.4.1 IEEE 1394

      • 27.4.2 IP- Based Networks

    • 27.5 Conclusions

    • Acknowledgment

    • References

  • Chapter 28 Industrial Wireless Communications Security (IWCS)/C42

    • 28.1 Introduction

    • 28.2 Wireless LAN Security

      • 28.2.1 Security Issues/ Attacks on WiFi

      • 28.2.2 Security Mechanisms

        • 28.2.2.1 Wireless Encryption Protocol

        • 28.2.2.2 WiFi Protected Access

        • 28.2.2.3 WiFi Protected Access 2

        • 28.2.2.4 T KIP, CCMP, WAPI

      • 28.2.3 Deployment Issues

    • 28.3 PAN Security

    • 28.4 Summary

    • References

  • Chapter 29 Protocols in Power Generation

    • 29.1 Introduction

    • 29.2 Power Plant Automation Systems and Intra- Plant Communications

      • 29.2.1 Example of Nuclear Power Plant Automation Systems

      • 29.2.2 Safety Requirements and System Classifications ( IEC 61226, F1A, F1B, F2)

    • 29.3 Power Plant Information Systems and Extra- Plant Communications

      • 29.3.1 Common Information Model

      • 29.3.2 Distributed Energy Resource Model

    • 29.4 Conclusions

    • References

  • Chapter 30 Communications in Medical Applications

    • 30.1 Introduction

    • 30.2 Requirements

    • 30.3 Localization

    • 30.4 Clinical Monitoring

      • 30.4.1 Controller Area Network

      • 30.4.2 Profibus DP

      • 30.4.3 IEEE 802.15.4

      • 30.4.4 Bluetooth

      • 30.4.5 IEEE 802.11

      • 30.4.6 Nonindustrial Technologies

    • 30.5 Automation

      • 30.5.1 Smart Homes

      • 30.5.2 Healthcare Robotics

    • 30.6 Issues and Challenges

      • 30.6.1 Security and Privacy

      • 30.6.2 Safety and Reliability

      • 30.6.3 Standardization

      • 30.6.4 Timeliness

    • References

  • Part 3 Technologies

  • Chapter 31 Controller Area Network

    • 31.1 Introduction

    • 31.2 CAN Technology Basics

      • 31.2.1 Physical Layer

      • 31.2.2 Data Link Layer

      • 31.2.3 Detecting and Signaling Errors

      • 31.2.4 Network Topology

    • 31.3 CAN- Based Upper Layer Protocols

      • 31.3.1 CANopen

      • 31.3.2 DeviceNet

      • 31.3.3 TT CAN

      • 31.3.4 FTT - CAN

    • 31.4 CAN Limitations

      • 31.4.1 Consequences of Faults at the Node Level

    • List of Acronyms

    • References

  • Chapter 32 Profibus

    • 32.1 Introduction

    • 32.2 Physical Transmissions

      • 32.2.1 Asynchronous ( RS- 485)

      • 32.2.2 Manchester Bus Powered

      • 32.2.3 Fiber Optics

    • 32.3 Fieldbus Data Link

      • 32.3.1 Services

      • 32.3.2 Framing

      • 32.3.3 Media Access

    • 32.4 DP System

      • 32.4.1 DP- Master Class 1: Controllers

      • 32.4.2 DP- Master Class 2: Engineering Stations

      • 32.4.3 DP- Slaves: Field- Devices

      • 32.4.4 A pplication Relations

    • 32.5 Cyclic Data Exchange: MS0— Relation

      • 32.5.1 Device Model

      • 32.5.2 Initialization and Supervision of the Relation

      • 32.5.3 Status of the Controller and Fail- Safe Functionality

      • 32.5.4 Diagnostics of the Field- Device

      • 32.5.5 Distributed Database

      • 32.5.6 Synchronization of the Applications

    • 32.6 Acyclic Data Exchange: MS1/ MS2 Relations

      • 32.6.1 Variables

      • 32.6.2 Device Model including Identification and Maintenance

      • 32.6.3 Alarm Handling

      • 32.6.4 Procedure Calls

    • 32.7 Application Profiles

    • References

  • Chapter 33 INTERBUS

    • 33.1 INTERBUS Overview

    • 33.2 INTERBUS Protocol

    • 33.3 Diagnostics

    • 33.4 Performance Evaluation

    • 33.5 Summary

    • References

  • Chapter 34 WorldFip

    • 34.1 Introduction

    • 34.2 Physical Layer

    • 34.3 Data Link Layer

      • 34.3.1 Transmission of Cyclic Traffic

      • 34.3.2 Bus Arbitrator Table

      • 34.3.3 Transmission of Asynchronous Traffic

    • 34.4 A pplication Layer

    • 34.5 Timing Properties of WorldFIP Networks

      • 34.5.1 Concept of Producer/ Distributor/ Consumer

      • 34.5.2 Buffer Transfer Timings

      • 34.5.3 Bus Arbitrator Table

      • 34.5.4 WorldFIP Aperiodic Buffer Transfers

      • 34.5.5 Setting the WorldFIP BAT : Rate Monotonic Approach

        • 34.5.5.1 Model for the Periodic Buffer Transfers

        • 34.5.5.2 Building the WorldFIP BAT ( RM Approach)

        • 34.5.5.3 Setting the WorldFIP BAT : Earliest Deadline Approach

        • 34.5.5.4 Building the WorldFIP BAT ( EDF Approach)

        • 34.5.5.5 R esponse Time Analysis for the Aperiodic Traffic

        • 34.5.5.6 Upper Bound for the Dead Interval

        • 34.5.5.7 A periodic Busy Interval

        • 34.5.5.8 Worst- Case Response Time

        • 34.5.5.9 Example of Aperiodic Traffic Scheduling

    • References

  • Chapter 35 Foundation Fieldbus

    • 35.1 Introduction

    • 35.2 Foundation Fieldbus Overview

    • 35.3 Topology

    • 35.4 Drivers ( DD, EDDL, and FDT/ DTM)

    • 35.5 Cables

    • 35.6 Segment Design

    • 35.7 FFPS— Fieldbus Power Supplies

    • 35.8 Installation of Segment in Safe Areas

    • 35.9 Installation of Segments in Classified Areas

      • 35.9.1 FISCO— Fieldbus Intrinsically Safe COncept

      • 35.9.2 High- Energy Trunk– Fieldbus Barrier Solution

    • 35.10 Project Documentation

    • 35.11 Installations and Commissioning

    • 35.12 Maintenance

    • References

  • Chapter 36 Modbus

    • 36.1 Introduction

    • 36.2 Modbus Interaction and Data Models

    • 36.3 Modbus Protocol Architecture

    • 36.4 Modbus Application Layer

      • 36.4.1 Data Access Functions

      • 36.4.2 Diagnostic Functions

      • 36.4.3 Device Classes

      • 36.4.4 Error Handling

    • 36.5 Modbus Serial

      • 36.5.1 Frames

      • 36.5.2 RT U Mode

      • 36.5.3 A SCII Mode

      • 36.5.4 Error Detection

      • 36.5.5 Physical Layer

    • 36.6 Modbus TCP

      • 36.6.1 Frames

    • 36.7 Example

    • Acronyms

    • References

  • Chapter 37 Industrial Ethernet

    • 37.1 Introduction

    • 37.2 Industrial Ethernet

      • 37.2.1 What Does Ethernet Mean?

      • 37.2.2 What Does Industrial Mean?

        • 37.2.2.1 Redundancy

        • 37.2.2.2 Definition of Application Domain Profiles

      • 37.2.3 Classification of Industrial Ethernet Solutions

    • 37.3 Standardized Solutions of IEC 61158 and IEC 61784

      • 37.3.1 EtherNet/ IP

      • 37.3.2 Foundation Fieldbus High- Speed Ethernet

      • 37.3.3 SERCOS III

      • 37.3.4 " Exotic Solutions": EPA, Tcnet, Vnet/ IP, PNET on IP

    • 37.4 Features of Major Industrial Ethernet Solutions

    • 37.5 Synthesis

    • Abbreviations

    • References

  • Chapter 38 EtherCAT

    • 38.1 Introduction

    • 38.2 Physical Layer

    • 38.3 Communication Protocol

      • 38.3.1 Commands

    • 38.4 Addressing

      • 38.4.1 Physical Addressing

      • 38.4.2 Logical Addressing: FMMU

    • 38.5 SyncManager

    • 38.6 Distributed Clock

    • 38.7 Application Layer

      • 38.7.1 Mailbox Services

    • References

  • Chapter 39 Ethernet POWERLINK

    • 39.1 Introduction

    • 39.2 EPL Protocol

    • 39.3 Frame Mapping

    • 39.4 Network Configurations

    • 39.5 Redundancy Aspects

      • 39.5.1 Medium Redundancy

      • 39.5.2 MN Redundancy

    • 39.6 Security Aspects

      • 39.6.1 POWERLINK Safety

    • 39.7 Performance Analysis

      • 39.7.1 Jitter

      • 39.7.2 Turn- Around Time

      • 39.7.3 Cycle Time

      • 39.7.4 Acyclic Traffic

    • References

  • Chapter 40 PROFINET

    • 40.1 Introduction

      • 40.1.1 Device Classes in PROFINET IO

      • 40.1.2 Performance

      • 40.1.3 Conformance Classes

      • 40.1.4 Prerequisites

    • 40.2 PROFINET IO Basics

      • 40.2.1 Device Model

      • 40.2.2 Address Resolution

      • 40.2.3 Cyclic Data Traffic

      • 40.2.4 Acyclic Data Traffic

      • 40.2.5 Diagnostics

    • 40.3 IRT Communication in PROFINET IO

      • 40.3.1 Flexible Communication Based on RT _ CLASS_ 2 ( Orange Interval)

      • 40.3.2 Communication Based on RT _ CLASS_ 3 ( Red Interval)

      • 40.3.3 Cycle Duration and Constrains

    • 40.4 Engineering and Commissioning

      • 40.4.1 GSD File

      • 40.4.2 Device Addressing

      • 40.4.3 System Power- Up

      • 40.4.4 Neighborhood and Topology Detection

      • 40.4.5 Redundancy

    • 40.5 Integration of Fieldbus Systems and Web Applications

      • 40.5.1 Integration via Proxy

      • 40.5.2 Web Integration

    • Acronyms

    • Bibliography

  • Chapter 41 LonWorks

    • 41.1 Introduction

    • 41.2 System Components

    • 41.3 LonTalk Protocol

      • 41.3.1 Physical Layer

      • 41.3.2 Link Layer

      • 41.3.3 Network Layer

      • 41.3.4 Transport and Session Layer

      • 41.3.5 Application and Presentation Layer

    • 41.4 The Application Layer Programming Model

    • 41.5 Function Block- Based Design and System Integration

    • 41.6 Network Design Tools

    • 41.7 Automatic Design Approaches

    • References

  • Chapter 42 KNX

    • 42.1 Introduction and Overview

    • 42.2 Medium- Independent Layers

    • 42.3 Medium- Dependent Layers

    • 42.4 Runtime Interworking

    • 42.5 Devices

    • 42.6 Configuration

    • 42.7 Conclusion and Outlook

    • Abbreviations

    • References

  • Chapter 43 Protocols of the Time-Triggered Architecture: TTP, TTEthernet, TTP/A

    • 43.1 Introduction

    • 43.2 The Time- Triggered Paradigm

      • 43.2.1 Sparse Time

      • 43.2.2 Flow Control and Temporal Firewall

    • 43.3 Time- Triggered Communication

    • 43.4 Time- Triggered Protocol ( TT P)

      • 43.4.1 Fault Hypothesis and Fault Handling

      • 43.4.2 Fault Tolerance

      • 43.4.3 Membership

    • 43.5 Time- Triggered Ethernet

      • 43.5.1 Principles of Operation

      • 43.5.2 Time Format

      • 43.5.3 Periods

      • 43.5.4 Fault- Tolerant TT Ethernet Configuration

      • 43.5.5 Clock Synchronization

    • 43.6 TT P/ A

      • 43.6.1 Interface File System

      • 43.6.2 The Three Interfaces of a Smart Transducer

      • 43.6.3 Principles of Operation

    • Acknowledgments

    • References

  • Chapter 44 FlexRay

    • 44.1 Introduction

    • 44.2 Protocol

      • 44.2.1 Communication Cycles

      • 44.2.2 Framing

      • 44.2.3 Startup of a Cluster

      • 44.2.4 Physical Layer

    • 44.3 System Architecture

      • 44.3.1 Topologies

      • 44.3.2 Node Architecture

      • 44.3.3 Star Couplers

    • 44.4 System Design Considerations

      • 44.4.1 Configuration

      • 44.4.2 AUTOSAR

    • References

  • Chapter 45 LIN-Bus

    • 45.1 LIN Background

    • 45.2 LIN History and Versions

    • 45.3 Communication Concept

    • 45.4 Physical Layer

      • 45.4.1 Signal Specification

      • 45.4.2 Topology

    • 45.5 LIN Message Frames

      • 45.5.1 Break Field

      • 45.5.2 Sync Byte Field

      • 45.5.3 Identifier

      • 45.5.4 Data Field

      • 45.5.5 Checksum

      • 45.5.6 Frame Length

      • 45.5.7 Time- Triggered Data Transmission

      • 45.5.8 Frame Types

        • 45.5.8.1 Unconditional Frame

        • 45.5.8.2 Event- Triggered Frame

        • 45.5.8.3 Sporadic Frame

      • 45.5.9 Diagnostic Frame

    • 45.6 Network and Status Management

    • 45.7 Transport Layer Protocol

    • 45.8 Configuration

    • 45.9 R elationship between SAE J2602 and LIN2.0

    • 45.10 Conclusion

    • References

  • Chapter 46 Profisafe

    • 46.1 Introduction

      • 46.1.1 Standardization Framework

      • 46.1.2 Black Channel Principle

    • 46.2 Profisafe Communication

      • 46.2.1 Error- Detection Requirements

      • 46.2.2 Error Types and Safeguards

      • 46.2.3 Cyclic/ Acyclic Communication

      • 46.2.4 Cyclic Communication PDU

      • 46.2.5 Virtual Consecutive Number

      • 46.2.6 Time- Out with Receipt

      • 46.2.7 Code Name for Sender/ Receiver

      • 46.2.8 Data Consistency Check

      • 46.2.9 Detected Safety Data Failures

    • 46.3 Deployment

      • 46.3.1 Power Supplies and Electrical Safety

      • 46.3.2 Increased Immunity

      • 46.3.3 Installation Guidelines

      • 46.3.4 Wireless Transmission and Security

      • 46.3.5 Response Time

    • Acronyms

    • References

  • Chapter 47 SafetyLon

    • 47.1 Introduction

    • 47.2 The General SafetyLon Concept

    • 47.3 The Safety- Related Lifecycle

    • 47.4 The Hardware

    • 47.5 The Safety- Related Firmware

    • 47.6 The SafetyLon Tools

    • Acronyms

    • References

  • Chapter 48 Wireless Local Area Networks

    • 48.1 Introduction

    • 48.2 T he 802.11 Family

    • 48.3 Physical Layer

      • 48.3.1 Frequency Bands

      • 48.3.2 Modulation Techniques

    • 48.4 Medium Access Control

      • 48.4.1 Distributed Coordination Function

      • 48.4.2 Point Coordination Function

      • 48.4.3 Enhanced Distributed Channel Access

      • 48.4.4 HCF Controlled Channel Access

      • 48.4.5 Direct Link Protocol and Block ACK

    • 48.5 Limitations of DCF and HCF for QoS Support in Industrial Environments

    • 48.6 Security Mechanisms

    • 48.7 Fast Handover

      • 48.7.1 Mechanisms on the AP Side

      • 48.7.2 Mechanisms on the Client Side

    • 48.8 Future Enhancements

    • References

  • Chapter 49 Bluetooth

    • 49.1 Introduction

      • 49.1.1 History and Technical Background

      • 49.1.2 Bluetooth Specifications

        • 49.1.2.1 Bluetooth 1.0 and 1.0B

        • 49.1.2.2 Bluetooth 1.1

        • 49.1.2.3 Bluetooth 1.2

        • 49.1.2.4 Bluetooth 2.0 + EDR

        • 49.1.2.5 Bluetooth 2.1 + EDR

        • 49.1.2.6 Bluetooth 3.0 + HS

    • 49.2 Bluetooth Core Architecture Blocks

      • 49.2.1 Channel Manager

      • 49.2.2 L2CAP Resource Manager

      • 49.2.3 Device Manager

      • 49.2.4 Link Manager

      • 49.2.5 Baseband Resource Manager

      • 49.2.6 Link Controller

      • 49.2.7 R adio Frequency

      • 49.2.8 Bluetooth Networks

        • 49.2.8.1 Piconet

        • 49.2.8.2 Scatternet

      • 49.2.9 Bluetooth Security

    • 49.3 Bluetooth Protocol Stack

    • 49.4 Bluetooth Profiles

      • 49.4.1 Four Bluetooth General Profiles

      • 49.4.2 Bluetooth General Profiles

    • 49.5 Competitive Technologies

    • 49.6 Future of the Bluetooth Technology: Challenges

    • References

  • Chapter 50 ZigBee

    • 50.1 Introduction

    • 50.2 ZigBee and Mesh Networks

    • 50.3 ZigBee in the Context of Other Wireless Networks

    • 50.4 ZigBee Stack

    • 50.5 IEEE 802.15.4

      • 50.5.1 Physical Layer

      • 50.5.2 MAC Layer

        • 50.5.2.1 Unslotted Mode

        • 50.5.2.2 Slotted Mode

      • 50.5.3 Network Layer

      • 50.5.4 Application Layer

    • 50.6 Development and Industrial Applications

      • 50.6.1 ZigBee Development Platforms

      • 50.6.2 Industrial Applications

    • 50.7 Conclusion

    • References

  • Chapter 51 6LoWPAN: IP for Wireless Sensor Networks and Smart Cooperating Objects

    • 51.1 Introduction

    • 51.2 Why IP in WSN and For Smart Cooperating Objects?

      • 51.2.1 IP as Open Standard Protocol Instead of Proprietary Protocols

      • 51.2.2 IP Routers Instead of Complex Gateways

      • 51.2.3 Use of Already Existing Protocols, Tools, and Applications

      • 51.2.4 New Architectural Styles like Service- Oriented Architectures

      • 51.2.5 IP Support in Operating Systems

      • 51.2.6 Lessons Learned From Maintaining the Internet

    • 51.3 Introduction in 802.15.4

    • 51.4 802.15.4 and 6LoWPAN

    • 51.5 6LoWPAN

      • 51.5.1 Address Autoconfiguration

      • 51.5.2 Frame Types and Fragmentation

      • 51.5.3 Mesh Frame Type

      • 51.5.4 Broadcast and Multicast Address Mapping

      • 51.5.5 Header Compression

        • 51.5.5.1 IPv6 Header Compression

        • 51.5.5.2 UDP Header Compression

      • 51.5.6 Scopes

      • 51.5.7 Summary of Frame Types and Compression Schemes

      • 51.5.8 Security

    • 51.6 Summary

    • References

  • Chapter 52 WiMAX in Industry

    • 52.1 Introduction

    • 52.2 The WiMAX Broadband Technology

      • 52.2.1 Backhaul/ Access Network Applications

      • 52.2.2 Relationship with Other Wireless Technologies

      • 52.2.3 WiMAX vs. Wi- Fi

    • 52.3 WiMAX Architecture

      • 52.3.1 MAC Layer/ Data Link Layer

      • 52.3.2 PHYsical Layer

      • 52.3.3 WiMAX Equipment

    • 52.4 The WiMAX Forum and Working Groups

    • 52.5 Integration with Other Networks

      • 52.5.1 WiMAX- DSL Integration

      • 52.5.2 WiMAX- 3GPP Integration

    • 52.6 Conclusion

    • References

  • Chapter 53 Wireless HART, ISA100.11a, and OCARI

    • 53.1 Introduction

    • 53.2 WirelessHART

      • 53.2.1 The WirelessHART Physical Layer

      • 53.2.2 The WirelessHART Data Link Layer

        • 53.2.2.1 The Data Link Layer Datagram

      • 53.2.3 Time Keeping

      • 53.2.4 The WirelessHART Network Layer and Topologies

        • 53.2.4.1 The Network Layer Datagram

      • 53.2.5 The WirelessHART Upper Layers

    • 53.3 ISA100.11a

      • 53.3.1 The ISA100.11a Physical Layer

      • 53.3.2 The ISA100.11a Data Link Layer

      • 53.3.3 Time Keeping

      • 53.3.4 The ISA100.11a Network Layer and Topologies

      • 53.3.5 The ISA100.11a Upper Layers

    • 53.4 OCAR I

      • 53.4.1 Physical Layer

      • 53.4.2 MAC Layer

      • 53.4.3 Network Layer and Topologies

      • 53.4.4 Application Layer

    • 53.5 Coexistence of the Three Protocols

    • 53.6 Example of Platform Providers

    • 53.7 Conclusions

    • References

  • Chapter 54 Wireless Communication Standards

    • 54.1 Introduction

    • 54.2 A Wireless Standards Taxonomy

    • 54.3 Regulations and EMC

    • 54.4 Conclusion

    • References

  • Chapter 55 Communication Aspects of IEC 61499 Architecture

    • 55.1 Introduction

    • 55.2 Illustrative Example

    • 55.3 Logic Encapsulated in Basic FB

    • 55.4 Extension

    • 55.5 Distribution

    • 55.6 Communication FBs

    • 55.7 Communication Using Services of Internet Protocol Suite

    • 55.8 A dding Distribution and Communication to the Sample System

    • 55.9 Internals of Communication FBs: Modbus

    • 55.10 Communication via the CIP

    • 55.11 Impact of Communication Semantics on Application Behavior

    • 55.12 Failures in Distributed Applications

    • 55.13 Conclusion

    • References

  • Chapter 56 Industrial Internet

    • 56.1 Introduction

    • 56.2 Application of Internet Technologies in Industry

    • 56.3 Technologies

      • 56.3.1 Transport and Communication Related Technologies

        • 56.3.1.1 HyperText Transfer Protocol

        • 56.3.1.2 Simple Network Management Protocol

        • 56.3.1.3 Web Services Using Simple Object Access Protocol

      • 56.3.2 Technologies for Information Description and Presentation

        • 56.3.2.1 HyperText Markup Language

        • 56.3.2.2 eXtensible Markup Language

      • 56.3.3 Technologies for Server- Side and Client- Side Functions

    • 56.4 Application Examples

      • 56.4.1 Description Technologies

      • 56.4.2 Browser- Based Applications

      • 56.4.3 Machine– Machine Communication Using Web Services

    • 56.5 Conclusions and Outlook

    • Acronyms

    • References

  • Chapter 57 OPC UA

    • 57.1 Introduction

    • 57.2 Overview of OPC UA System Architecture

      • 57.2.1 UA Client Application Architecture

      • 57.2.2 UA Server Architecture

    • 57.3 Overview of UA AddressSpace

    • 57.4 Overview of UA Services

      • 57.4.1 General Services

      • 57.4.2 Discovery Service Set

      • 57.4.3 SecureChannel Service Set

      • 57.4.4 Session Service Set

      • 57.4.5 NodeManagement Service Set

      • 57.4.6 View Service Set

      • 57.4.7 Query Service Set

      • 57.4.8 A ttribute Service Set

      • 57.4.9 Method Service Set

      • 57.4.10 MonitoredItem Service Set

      • 57.4.11 Subscription Service Set

    • 57.5 Implementations and Products

    • 57.6 Conclusion

    • References

  • Chapter 58 DNP3 and IEC 60870-5

    • 58.1 Requirements for SCADA Data Collection in Electric Power and Other Industries

    • 58.2 Features Common to IEC 60870- 5 and DNP3: Data Typing, Report by Exception, Error Recovery

    • 58.3 Differentiation between IEC 60870- 5 and DNP3 Operating Philosophy, Message Formatting, Efficiency, TCP/ IP Transport

    • References

  • Chapter 59 IEC 61850 for Distributed Energy Resources

    • 59.1 Introduction

    • 59.2 Basic Concept

    • 59.3 Modeling the Automation Functions

    • 59.4 Communication Services

      • 59.4.1 Client/ Server Communication

      • 59.4.2 GOOSE

      • 59.4.3 Transmission of Sampled Analog Values

      • 59.4.4 Clock Synchronization

    • 59.5 Modeling with System Configuration Language

    • 59.6 Different Types of DER

      • 59.6.1 Wind Power Plants

      • 59.6.2 Hydropower Plants

      • 59.6.3 Other Specific Types of Distributed Energy Resources

    • References

  • Part 4 Internet Programming

  • Chapter 60 User Datagram Protocol—UDP

    • 60.1 Introduction

    • 60.2 Protocol Operation

      • 60.2.1 UDP Datagram

      • 60.2.2 Port Number Assignments

      • 60.2.3 Connectionless Service— Flow and Error Control

    • 60.3 Programming Samples

    • References

  • Chapter 61 Transmission Control Protocol—TCP

    • 61.1 Introduction

    • 61.2 Protocol Operation

      • 61.2.1 TCP Segment

      • 61.2.2 Port Number Assignments

      • 61.2.3 Connection Establishment

      • 61.2.4 Maintaining the Open Connection

      • 61.2.5 Flow Control and Sliding Window Protocol

      • 61.2.6 Improving Flow Control

      • 61.2.7 Error Control

      • 61.2.8 Congestion Control

      • 61.2.9 Connection Termination

    • 61.3 State Diagram

    • 61.4 Programming Samples

    • References

  • Chapter 62 Development of Interactive Web Pages

    • 62.1 Introduction

    • 62.2 Installations

      • 62.2.1 WAMP Server

    • 62.3 Introduction to PHP

      • 62.3.1 Variables

      • 62.3.2 Conditional Statements

      • 62.3.3 Loops

      • 62.3.4 Functions

      • 62.3.5 Include Function

      • 62.3.6 $_ GET and $_ POST function

    • 62.4 MySQL

      • 62.4.1 Creating a Database

      • 62.4.2 Creating a Table

      • 62.4.3 Modifying Tables

        • 62.4.3.1 T o View Data

        • 62.4.3.2 WHERE Clause

        • 62.4.3.3 ORDER BY Keyword

    • 62.5 Creating Dynamic Web Sites Using PHP and MySQL

      • 62.5.1 Connecting to Database

      • 62.5.2 SQL Queries with PHP

      • 62.5.3 Creating a Database

      • 62.5.4 Creating a Table

      • 62.5.5 Insert, Update and Delete queries

        • 62.5.5.1 Select Query

    • References

  • Chapter 63 Interactive WebSite Design Using Python Script

    • 63.1 Introduction

      • 63.1.1 Python

      • 63.1.2 Django

    • 63.2 Software Installation

    • 63.3 Database- Driven Web Site Design

      • 63.3.1 Create a Project

      • 63.3.2 Run the Project

      • 63.3.3 Setup Database

      • 63.3.4 Create Model

      • 63.3.5 Activate Model

      • 63.3.6 Activate the Admin Site

      • 63.3.7 Add the Application

      • 63.3.8 Customize the Admin Site

    • 63.4 Conclusion

    • References

  • Chapter 64 Running Software over Internet

    • 64.1 Introduction

    • 64.2 Most Commonly Used Network Programming Tools

      • 64.2.1 Hypertext Markup Language

      • 64.2.2 JavaScript

      • 64.2.3 Java

      • 64.2.4 A ctiveX

      • 64.2.5 CORBA and DCOM

      • 64.2.6 Common Gateway Interface

      • 64.2.7 PERL

      • 64.2.8 PHP

    • 64.3 Examples

      • 64.3.1 Neural Network Trainer through Computer Networks

      • 64.3.2 Web- Based C++ Compiler

      • 64.3.3 SPICE- Based Circuit Analysis Using Web Pages

    • 64.4 Summary and Conclusion

    • References

  • Chapter 65 Semantic Web Services for Manufacturing Industry

    • 65.1 Background

    • 65.2 Aims

    • 65.3 Approach

      • 65.3.1 Ontology- Driven Architecture

      • 65.3.2 Multisite Issues and Rapid Reconfigurability

      • 65.3.3 Customizations of Product and Materials Flow Monitoring

      • 65.3.4 Optimization

      • 65.3.5 Data, Process and Timing Consistency and Conformance

      • 65.3.6 Customer- Centered Design through the Concept of Customer Value

    • 65.4 Conclusion

    • References

  • Chapter 66 Automatic Data Mining on Internet by Using PERL Scripting Language

    • 66.1 Introduction

      • 66.1.1 PERL Scripting Language

      • 66.1.2 R egular Expressions

      • 66.1.3 Web Browser

    • 66.2 Examples

      • 66.2.1 Extract E- Mail Addresses from Excel Files

      • 66.2.2 Extract Data from PDF Files

      • 66.2.3 Extract Paper Information from IEEE XPLORE

      • 66.2.4 List Papers Only in a Specific Subject from TIE Webpage

      • 66.2.5 Using PERL with Google Scholar in Searching Data

    • 66.3 Summary and Conclusion

    • References

  • Part 5 Outlook

  • Chapter 67 Trends and Challenges for Industrial Communication Systems

    • 67.1 Introduction

    • 67.2 Ubiquitous Global Connectivity and Digital Identity

    • 67.3 Vertical Integration

    • 67.4 Hybrid Local Networks and Quality of Service

    • 67.5 M2M Communication

    • 67.6 Scalability in Hardware and Software

    • References

  • b10603-70

  • Chapter 68 Processing Data in Complex Communication Systems

    • 68.1 Introduction

    • 68.2 An Archetype for Future Automation

    • 68.3 Bottom- Up versus Top- Down Design: Behavioristic Model versus Functional Model

    • 68.4 Automated Methods for Sensor and Actuator Systems

    • 68.5 The Diagnostic System

      • 68.5.1 Error Detection

      • 68.5.2 Statistical Generative Models

      • 68.5.3 Online Parameter Updates

      • 68.5.4 Results

    • 68.6 Intelligent Surveillance Systems

      • 68.6.1 Architecture

    • 68.7 The Human Mind as an Archetype for Cognitive Automation

      • 68.7.1 Perception in Automation: A Historic Overview

    • References

Nội dung

The Industrial Electronics Handbook SEcond EdITIon IndustrIal communIcatIon systems © 2011 by Taylor and Francis Group, LLC The Industrial Electronics Handbook SEcond EdITIon Fundamentals oF IndustrIal electronIcs Power electronIcs and motor drIves control and mechatronIcs IndustrIal communIcatIon systems IntellIgent systems © 2011 by Taylor and Francis Group, LLC The Electrical Engineering Handbook Series Series Editor Richard C Dorf University of California, Davis Titles Included in the Series The Avionics Handbook, Second Edition, Cary R Spitzer The Biomedical Engineering Handbook, Third Edition, Joseph D Bronzino The Circuits and Filters Handbook, Third Edition, Wai-Kai Chen The Communications Handbook, Second Edition, Jerry Gibson The Computer Engineering Handbook, Vojin G Oklobdzija The Control Handbook, Second Edition, William S Levine CRC Handbook of Engineering Tables, Richard C Dorf Digital Avionics Handbook, Second Edition, Cary R Spitzer The Digital Signal Processing Handbook, Vijay K Madisetti and Douglas Williams The Electric Power Engineering Handbook, Second Edition, Leonard L Grigsby The Electrical Engineering Handbook, Third Edition, Richard C Dorf The Electronics Handbook, Second Edition, Jerry C Whitaker The Engineering Handbook, Third Edition, Richard C Dorf The Handbook of Ad Hoc Wireless Networks, Mohammad Ilyas The Handbook of Formulas and Tables for Signal Processing, Alexander D Poularikas Handbook of Nanoscience, Engineering, and Technology, Second Edition, William A Goddard, III, Donald W Brenner, Sergey E Lyshevski, and Gerald J Iafrate The Handbook of Optical Communication Networks, Mohammad Ilyas and Hussein T Mouftah The Industrial Electronics Handbook, Second Edition, Bogdan M Wilamowski and J David Irwin The Measurement, Instrumentation, and Sensors Handbook, John G Webster The Mechanical Systems Design Handbook, Osita D.I Nwokah and Yidirim Hurmuzlu The Mechatronics Handbook, Second Edition, Robert H Bishop The Mobile Communications Handbook, Second Edition, Jerry D Gibson The Ocean Engineering Handbook, Ferial El-Hawary The RF and Microwave Handbook, Second Edition, Mike Golio The Technology Management Handbook, Richard C Dorf Transforms and Applications Handbook, Third Edition, Alexander D Poularikas The VLSI Handbook, Second Edition, Wai-Kai Chen © 2011 by Taylor and Francis Group, LLC The Industrial Electronics Handbook SEcond EdITIon IndustrIal communIcatIon systems Edited by Bogdan M Wilamowski J david Irwin © 2011 by Taylor and Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S Government works Printed in the United States of America on acid-free paper 10 International Standard Book Number: 978-1-4398-0281-6 (Hardback) This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe Library of Congress Cataloging‑in‑Publication Data Industrial communication systems / editors, Bogdan M Wilamowski and J David Irwin p cm “A CRC title.” Includes bibliographical references and index ISBN 978-1-4398-0281-6 (alk paper) Computer networks Data transmission systems Telecommunication systems I Wilamowski, Bogdan M II Irwin, J David, 1939- III Title TK5105.5.I477 2010 004.6 dc22 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2011 by Taylor and Francis Group, LLC 2010020567 Contents Preface xiii Preambles xv Acknowledgments xxiii Editorial Board xxv Editors xxvii Contributors����������������������������������尓������������������������������������尓������������������������������������尓 xxxi Part Iâ•…Technical Principles ISO/OSI Model 1-1 Media 2-1 Media Access Methods 3-1 Routing in Wireless Networks 4-1 Profiles and Interoperability 5-1 Industrial Wireless Sensor Networks 6-1 Ad Hoc Networks 7-1 Radio Frequency Identification 8-1 RFID Technology and Its Industrial Applications 9-1 10 Ultralow-Power Wireless Communication 10-1 Gerhard Zucker and Dietmar Dietrich Herbert Schweinzer, Saleem Farooq Shaukat, and Holger Arthaber Herbert Haas and Manfred Lindner Teresa Albero-Albero and Víctor-M Sempere-Payá Gerhard Zucker and Heinz Frank Vehbi Cagri Gungor and Gerhard P Hancke Sajjad Ahmad Madani, Shahid Khattak, Tariq Jadoon, and Shahzad Sarwar Edward Kai-Ning Yung, Pui-Yi Lau, and Chi-Wai Leung Vidyasagar Potdar, Atif Sharif, and Elizabeth Chang Joern Ploennigs, Volodymyr Vasyutynskyy, and Klaus Kabitzsch vii © 2011 by Taylor and Francis Group, LLC ... Group, LLC The Industrial Electronics Handbook SEcond EdITIon IndustrIal communIcatIon systems Edited by Bogdan M Wilamowski J david Irwin © 2011 by Taylor and Francis Group, LLC CRC Press Taylor... Edition, Bogdan M Wilamowski and J David Irwin The Measurement, Instrumentation, and Sensors Handbook, John G Webster The Mechanical Systems Design Handbook, Osita D.I Nwokah and Yidirim Hurmuzlu... Data Industrial communication systems / editors, Bogdan M Wilamowski and J David Irwin p cm “A CRC title.” Includes bibliographical references and index ISBN 978-1-4398-0281-6 (alk paper) Computer

Ngày đăng: 07/10/2021, 11:38