1. Trang chủ
  2. » Cao đẳng - Đại học

Toán rời rạc 2 chương 1 định nghĩa và biểu diễn

19 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 421,9 KB

Nội dung

CH NG Đ NH NGHƾA VĨ BI U DI N 1.1 Đ nh nghƿa đồ th Khái niệm đồ th - Đ̀ tḥ l̀ ṃt ću tŕc r̀i ṛc g̀m ćc đ̉nh v̀ ćc c̣nh ńi ćc đ̉nh đ́, ḱ hịu G = (V, E), đ́ V l̀ ṭp ḥp ćc đ̉nh (Vertex), E l̀ ṭp ḥp ćc c̣nh (Edge) - Các đ̉nh đực biểu diễn điểm đ́nh ś từ đến n - Các c̣nh đực biểu diễn đọn thẳng cung ńi đ̉nh đ́nh ś từ đến m - Nếu c̣nh không kể hướng  đ̀ tḥ vơ hướng - Nếu c̣nh có hướng  đ̀ tḥ có hướng Mơ hình đồ th thực tế  Ṃng lưới giao thông đừng ḅ, ṃng thông tin,  Sơ đ̀ tổ chức quan, … CuuDuongThanCong.com https://fb.com/tailieudientucntt 1) Đồ th vô h ớng - Đơn đ̀ tḥ vô hướng G = (V, E) g̀m V  ćc đ̉nh v̀ ṃt ṭp E ćc c̣nh l̀ cặp không thứ ṭ ćc đ̉nh phân bịt - Đa đ̀ tḥ vô hướng G = (V, E) g̀m ṭp đ̉nh V  , ṭp c̣nh E v̀ h̀m f từ E tới ṭp {(u,v) | u, v  V, u  v} Hai c̣nh e1 v̀ e2 g̣i l̀ song song hay c̣nh ḅi f(e1) = f(e2) - Gỉ đ̀ tḥ vô hướng G = (V, E) g̀m ṭp đ̉nh V  , ṭp c̣nh E v̀ h̀m f từ E tới ṭp {(u, v) | u, v V} Ṃt c̣nh g̣i l̀ ṃt khuyên f(e) = (u, u) Hình Đơn đ̀ tḥ vơ hướng Hình Đa đ̀ tḥ vơ hướng Hình Gỉ đ̀ tḥ vô hướng CuuDuongThanCong.com https://fb.com/tailieudientucntt 2) Đồ th có h ớng - Đơn đ̀ tḥ có hướng G = (V, E) g̀m V   ćc đ̉nh v̀ ṃt ṭp E ćc cung (c̣nh) l̀ ćc cặp có thứ ṭ ćc đ̉nh phân bịt - Đa đ̀ tḥ có hướng G = (V, E) g̀m ṭp đ̉nh V  , ṭp cung (c̣nh) E v̀ h̀m f từ E tới {(u, v) | u, v  V, u  v} e1 v̀ e2 g̣i l̀ song song hay c̣nh ḅi f(e1) = f(e2) Hình Đơn đ̀ tḥ ć hướng Hình Đa đ̀ tḥ ć hướng CuuDuongThanCong.com https://fb.com/tailieudientucntt 1.2 Nh̃ng thụt ng̃ c - Hai đ̉nh u v̀ v  đ̀ tḥ vô hướng G g̣i l̀ lìn k̀ (ĺng gìng) (u, v) l̀ ṃt c̣nh G Nếu e = (u, v)  e g̣i l̀ c̣nh liên thục với u v̀ v; hay c̣nh ńi u v̀ v Ćc đ̉nh u v̀ v g̣i l̀ ćc đỉm đ̀u ḿt c̣nh (u, v) - Ḅc  đ̀ tḥ G vô hướng l̀ deg(v) = ś ćc c̣nh liên thục với v, riêng khuyên ṭi ṃt đ̉nh đực t́nh hai l̀n:  Nếu G ć m c̣nh  2m =  deg(v) Trong G ś ćc đ̉nh ḅc l̉ l̀ ṃt ś ch̃n v V  Đ̉nh cô ḷp l̀ đ̉nh không ńi với b́t k̀ đ̉nh ǹo  Đ̉nh treo l̀ đ̉nh ć ḅc b̀ng CuuDuongThanCong.com https://fb.com/tailieudientucntt - G l̀ đ̀ tḥ ć hướng, (u,v) l̀ c̣nh  G  u g̣i l̀ ńi tới v, v g̣i l̀ đực ńi từ u Đ̉nh u g̣i l̀ đ̉nh đ̀u, v l̀ đ̉nh cúi c̣nh (u,v) Đ̉nh đ̀u v̀ cúi khuyên l̀ tr̀ng - Ḅc- v̀o v  G có hướng l̀ deg-(v) = ś c̣nh ć đ̉nh cúi l̀ v Ḅc- l̀ deg+(v) l̀ ś ćc c̣nh ć đ̉nh đ̀u l̀ v:  G = (V, E) l̀ ṃt đ̀ tḥ ć hướng m c̣nh   deg-(v) =  deg-(v) = m vV vV - G l̀ đ̀ tḥ ć hướng Nếu b̉ qua hướng  nḥn đực đ̀ tḥ vô hướng ǹn Đ̀ tḥ ć hướng v̀ đ̀ tḥ vô hướng ǹn ń ć c̀ng ś c̣nh - Đ̀ tḥ vô hướng G = (V, E) l̀ đ̀ tḥ đ̀y đ̉, m̃i cặp đ̉nh đ̀u ć c̣nh ńi ch́ng - Đ̀ tḥ ć hướng G = (V, E) g̣i l̀ đ̀ tḥ đ̀y đ̉, m̃i cặp đ̉nh đ̀u ć cung ńi ch́ng (chìu cung ć thể t̀y ́) Hình Đ̀ tḥ vơ hướng đ̀y đủ Hình Đ̀ tḥ ć hướng đ̀y đủ CuuDuongThanCong.com https://fb.com/tailieudientucntt - Đ̀ tḥ G đ̀ tḥ có tṛng ś  m̃i c̣nh đực ǵn ṃt ś (nguyên tḥc) g̣i l̀ tṛng ś ứng với c̣nh đ́ - G l̀ đ̀ tḥ phân đôi (hai phía)  ṭp ćc đ̉nh V l̀ ḥp hai ṭp  r̃ng, r̀i V1 v̀ V2 cho m̃i c̣nh đ̀ tḥ ńi ṃt đ̉nh  V1 với ṃt đ̉nh  V2 - Km,n g̣i l̀ đ̀ tḥ phân đôi đ̀y đ̉  ṭp đ̉nh V ć thể phân l̀m hai ṭp không r̃ng, r̀i V1 ć m đ̉nh v̀ V2 ć n đ̉nh cho ć ṃt c̣nh đ̉nh v̀ ch̉ ṃt đ̉nh thục V1 v̀ đ̉nh thứ hai thục V2 - Đừng đ̣ d̀i n từ u tới v  G d̃y ćc đ̉nh x0, x1, , xn , x0 = u, xn = v (xi-1, xi) E - Đừng g̣i l̀ chu tr̀nh b́t đ̀u v̀ kết th́c ṭi c̀ng ṃt đ̉nh, tức l̀ u = v - Đừng chu tr̀nh g̣i l̀ đơn không chứa ṃt c̣nh qú ṃt l̀n - Đừng g̣i l̀ đừng sơ ćp qua ćc đ̉nh không qú ṃt l̀n, trừ đ̉nh đ̀u v̀ đ̉nh cúi - Đừng sơ ćp ć đ̉nh đ̀u v̀ đ̉nh cúi tr̀ng đực g̣i l̀ chu tr̀nh sơ ćp CuuDuongThanCong.com https://fb.com/tailieudientucntt 1.3 Phơn loại đồ th 1) Đồ th chu trình (v̀ng): - Ćc ṃng LAN hay viễn thông ć ću tŕc vòng Ring (tròn) C3 C4 C5 2) Đồ th hình b́nh xe: - Ṃng LAN ć ḍng h̀nh b́nh xe W4 W3 W5 W6 CuuDuongThanCong.com https://fb.com/tailieudientucntt 3) Đồ th khối n chi u: - Đ̀ tḥ kh́i chìu, chìu kết ńi ḅ vi xử lý Ṃng kiểu đừng thẳng Ṃng kiểu lưới CuuDuongThanCong.com https://fb.com/tailieudientucntt 4) Đồ th - Đ̀ tḥ H = (W, F) g̣i l̀ đ̀ tḥ đ̀ tḥ G = (V, E)  W V v̀ F  E - Nếu b̉ bớt ṃt ś c̣nh ṃt ś đ̉nh v̀ ćc c̣nh liên thục với ch́ng nḥn đực đ̀ tḥ H G - Ḥp hai đ̀ tḥ G1 =(V1,E1) v̀ G2 = (V2,E2) l̀ ṃt đ̀ tḥ đơn ć ṭp ćc đ̉nh l̀ V1V2 v̀ ṭp ćc c̣nh l̀ E1E2 Ḱ hịu ḥp ćc đ̀ tḥ l̀ G1G2 CuuDuongThanCong.com https://fb.com/tailieudientucntt 5) Đồ th đầy đủ G = (V, E) đ̀y đủ  Hai đ̉nh b́t k̀ G đ̀u ć c̣nh ńi 6) Đồ th hai phía G = (V, E) l̀ đ̀ tḥ hai phía  V = V1 V2, V1  , V2   V1 ∩ V2 = ; E ch̉ ć c̣nh ńi ćc đ̉nh x  V1 y  V2 10 CuuDuongThanCong.com https://fb.com/tailieudientucntt 1.4 Bi u di n đồ th Bi u di n đồ th ma tṛn k : - Đ́nh ś đ̉nh đ̀ tḥ từ đến n - Ma tṛn k̀ A l̀ ma tṛn vuông ćp n với:  A[i, j] = ć c̣nh ńi i với j,  A[i, j] = khơng ć c̣nh ńi i với j Hình Ma tṛn k̀ đ̀ tḥ vơ hướng Hình Ma tṛn k̀ đ̀ tḥ ć hướng 11 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ghi chú: Ma tṛn k̀ đ̀ tḥ vô hướng ma tṛn đ́i xứng Ṭp lịu vào đ́i với ma trân tṛng ś thừng có khn ḍng:  Dòng đ̀u chứa ś n  n dòng tiếp theo, m̃i dòng chứa n ś tṛng ś 12 CuuDuongThanCong.com https://fb.com/tailieudientucntt Bi u di n đồ th ma tṛn trọng số Đ́nh ś đ̉nh đ̀ tḥ từ đến n - Ma tṛn tṛng ś A ma tṛn vuông ćp n với:  A[i, j] = cij ć c̣nh ńi i với j,  A[i, j] = c đặc bịt không ć c̣nh ńi i với j Hình 10 Ma tṛn tṛng ś đ̀ tḥ ć hướng với c = 13 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ghi chú: Ṭp lịu vào đ́i với ma trân tṛng ś thừng có khn ḍng:  Dòng đ̀u chứa ś n  n dòng tiếp theo, m̃i dòng chứa n ś tṛng ś 14 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ghi chú: Ma tṛn tṛng ś đ̀ tḥ vô hướng ma tṛn đ́i xứng Ṭp lịu vào đ́i với ma trân tṛng ś thừng có khn ḍng:  Dịng đ̀u chứa ś n  n dòng tiếp theo, m̃i dòng chứa n ś tṛng ś 15 CuuDuongThanCong.com https://fb.com/tailieudientucntt Bi u di n đồ th danh śch cạnh Đ́nh ś đ̉nh đ̀ tḥ từ đến n, c̣nh từ đến m  Lịt kê m c̣nh, m̃i c̣nh lịt kê đ̉nh đ̀u i đ̉nh cúi j,  i, j  n  Đ̀ tḥ có tṛng ś, m̃i c̣nh lịt kê đ̉nh đ̀u i đ̉nh cúi j,  i, j  n tṛng ś cij Danh śch cạnh đồ th hình 9: 4 Danh śch cạnh đồ th hình 11: 4 40 96 115 45 16 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ghi chú: Ṭp lịu vào đ́i với danh sách c̣nh thừng có khn ḍng:  Dịng đ̀u chứa hai ś n, m  m dòng tiếp theo, m̃i dòng chứa ś đ̉nh đ̀u đ̉nh cúi tṛng ś 17 CuuDuongThanCong.com https://fb.com/tailieudientucntt Bi u di n đồ th danh śch k Đ́nh ś đ̉nh đ̀ tḥ từ đến n Lịt kê đ̉nh k̀ với m̃i đ̉nh i,  i  n Danh śch k đồ th hình 8: 3 2 Danh śch k đồ th hình 9: 4 Ghi chú: Ṭp lịu vào đ́i với danh sách k̀ thừng có khn ḍng:  Dịng đ̀u chứa ś n  n dòng tiếp theo, m̃i dòng chứa đ̉nh k̀ với đ̉nh i,  i  n 18 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ma tṛn liên thục - G = (V, E) V = {v1, v2, , vn} E = {e1, e2, , em} - Ćc ma tṛn liên thục c̃ng ć thể đực d̀ng để biễu diễn ćc c̣nh ḅi v̀ khuyên Ćc c̣nh ḅi đực biểu diễn ma tṛn liên thục b̀ng ćch d̀ng ćc c̣t ć ćc ph̀n tử gíng ḥt v̀ ćc c̣nh ǹy đực ńi với c̀ng ṃt cặp ćc đ̉nh - Đ́nh ś ćc đ̉nh từ đến n, đ́nh ś ćc c̣nh từ đến m - Ma tṛn liên thục ćp mxn đ̀ tḥ G l̀ M = [mij], đ́ mij =1 c̣nh ej liên thục với đ̉nh vi v̀ = c̣nh ej không liên thục với đ̉nh vi 19 CuuDuongThanCong.com https://fb.com/tailieudientucntt ... đực đ̀ tḥ H G - Ḥp hai đ̀ tḥ G1 =(V1,E1) v̀ G2 = (V2,E2) l̀ ṃt đ̀ tḥ đơn ć ṭp ćc đ̉nh l̀ V1V2 v̀ ṭp ćc c̣nh l̀ E1E2 Ḱ hịu ḥp ćc đ̀ tḥ l̀ G1G2 CuuDuongThanCong.com https://fb.com/tailieudientucntt... E) l̀ đ̀ tḥ hai phía  V = V1 V2, V1  , V2   V1 ∩ V2 = ; E ch̉ ć c̣nh ńi ćc đ̉nh x  V1 y  V2 10 CuuDuongThanCong.com https://fb.com/tailieudientucntt 1. 4 Bi u di n đồ th Bi u di n... liên thục - G = (V, E) V = {v1, v2, , vn} E = {e1, e2, , em} - Ćc ma tṛn liên thục c̃ng ć thể đực d̀ng để biễu diễn ćc c̣nh ḅi v̀ khuyên Ćc c̣nh ḅi đực biểu diễn ma tṛn liên thục b̀ng

Ngày đăng: 13/09/2021, 13:31

w