1. Trang chủ
  2. » Trung học cơ sở - phổ thông

De va dap an GVG suu tam

16 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 376,3 KB

Nội dung

 Quy tr×nh thùc hiÖn: 2,0 ®iÓm Bíc1: Lµm viÖc chung c¶ líp - Nêu vấn đề, xác định nhiệm vụ nhận thức - Tæ chøc c¸c nhãm, giao nhiÖm vô cho c¸c nhãm - Híng dÉn c¸ch lµm viÖc theo nhãm B[r]

(1)ĐỀ THI GIÁO VIÊN GIỎI CẤP HUYỆN Câu 1: a) Anh (chị) hãy nêu đường tiếp cận khái niệm toán học thường dùng dạy học toán THCS b) Theo anh (chị) để tiếp cận khái niệm hàm số thì tiếp cận theo đường nào? Nêu quy trình tiếp cận khái niệm hàm số Câu 2: Một học sinh đã giải bài toán: “ Tìm GTLN biểu thức f(x) = x + ” sau: Điều kiện để f(x) có nghĩa: - 2x - 3x2 >  (x + 1)(1 - 3x) >  -1 < x < (*) Áp dụng bất đẳng thức Bunhiacopxki ta có: f(x) = 1.x +  =  Với x = - thỏa mãn (*) thì -2(x + )2 = Vậy f(x) đạt GTLN là x = - a) Hãy tìm sai lầm lời giải bài toán trên b) Anh (chị) hãy giải lại cho đúng Câu 3: Anh (chị) giải các bài toán sau: a) Tìm số nguyên n để là số nguyên b) Tìm các số x, y, z biết: = ; = và x - y + z = - 49 c) Chứng minh : A = + 1 + + + 99 2 2 <1 Câu 4: Cho bài toán: “Cho hình thang vuông ABCD ( A = B = 90 ) và điểm O là trung điểm AB Đường tròn tâm O, đường kính AB tiếp xúc với CD Chứng minh rằng: COD = 900 ” a) Giải bài toán trên b) Hãy phát biểu bài toán đảo bài toán trên và chứng minh bài toán đảo đó HẾT -ĐÁP ÁN ĐỀ THI GIÁO VIÊN GIỎI CẤP HUYỆN Câu1 a)Có đường thường dùng dạy học toán THCS: - Con đường suy diễn; - Con đường qui nạp (Ngoài còn đường kiến thiết ít dùng) b) Để tiếp cận khái niệm hàm số ta tiếp cận theo đường qui nạp Qui trình: i) Giáo viên nêu lại số kiến thức mà học sinh đã học lớp để học sinh xem xét, ví dụ: + Quãng đường chuyển động tỉ lệ thuận với thời gian + Thời gian hoàn thành khối lượng công việc tỉ lệ nghịch với suất thực công việc đó ii) Giáo viên dẫn dắt học sinh phân tích, so sánh các ví dụ trên để thấy trường hợp có đại lượng nhận giá trị và đại lượng có giá trị tương ứng thuộc tập hợp số thứ hai Nêu bật đặc điểm chung sau: Với phần tử x thuộc tập hợp số A tương ứng phần tử xác định y thuộc tập hợp số B iii) Trên sở nhận xét đạt ii), giáo viên gợi ý để học sinh phát biểu khái niệm hàm số Câu a) - Sai lầm 1: ĐK để f(x) có nghĩa: - 2x - 3x2  - Sai lầm 2: Với x = - thì có BĐT  trở thành đẳng thức nên f(- ) < b) Lời giải đúng: Áp dụng BĐT Cauchy ta có: =  = - x, với x  (2) Do đó f(x)  x + (1 - x) = - => Maxf(x) = <=> + x = - 3x <=> x = (T/m ĐK x  Câu a) Ta có: = = + Để nguyên thì nguyên <=>  (n+1)  n +  => n  b) Từ = ; = => = ; = => = = Theo tính chất dãy tỉ số ta có: = = = = - Suy ra: = => x = - 70; = => y = - 10; = => z = - 84 1 1     98  99 2 => A = 2A – A = <1 c) Ta có: 2A = Câu D M C O A B a) Gọi M là tiếp điểm CD và (O) Ta có ABCD là hình thang vuông A => AD  AB => DA và DM cùng là tiếp tuyến (O) => OD là phân giác Tương tự ta có OC là phân giác => = 900 ( Tính chất phân giác hai góc kề bù ) b) Bài toán đảo: Cho hình thang vuông ABCD ˆ ( Vuông A và B ), O là trung điểm AB thỏa mãn điều kiện COD = 900 Chứng minh đường tròn tâm O, đường kính AB tiếp xúc với CD D K M C A O B Chứng minh: Gọi K là trung điểm CD, suy ra: - Vì = 900 nên COD vuông O => =KDO (1) (3) - Vì O là trung điểm AB nên OK là đường trung bình hình thang ABCD => OK ∥ AD => KOD = ADO ( so le ) (2) Từ (1) và (2) => ADO = KDO => ADO = MDO ( cạnh huyền - góc nhọn) => OM = OA => M  (O) Suy CD tiếp xúc với (O) M (4) §Ò thi lý thuyÕt GVG m«n To¸n THCS C©u 1( ®iÓm) : §ång chÝ h·y cho biÕt nh÷ng u ®iÓm vµ nh÷ng h¹n chÕ cña d¹y häc hîp t¸c theo nhóm Theo đồng chi môn Toán THCS dạng nào thuận lợi triển khai hoạt động dạy học hợp tác theo nhóm ? Câu ( điểm) : Đồng chi hãy giải các bài toán sau Từ đó hớng dẫn học sinh rút bài toán tổng qu¸t : TÝnh : A= B= 1 1 + + + + 2 3 99 100 5 5 + + + + 4 6 98 100 C©u ( ®iÓm) : Cã mét häc sinh gi¶i bµi to¸n nh sau : Đề : Cho tứ giác ABCD, M là trung điểm AD, N là trung điểm BC và độ dài MN= AB+ CD Chøng minh AB // DC Giải : (Giả thiết và kết luận đã ghi đúng) A M B N D C F tia AN chän ®iÒm F cho N lµ trung ®iÓm cña AF XÐt ∆ ANB vµ ∆FNC cã: AN = NF (c¸ch vÏ) ¿❑ ANB = FNC (đối đỉnh) BN = CN ( gi¶ thiÕt) Suy ra: ∆ ANB = ∆FNC (c.g.c) ¿❑ ⇒ ABN = FCN (CÆp gãc t¬ng øng) ⇒ CF // AB ⇒ DF // AB ⇒ DC // AB (®pcm) Theo đồng chi bài giải trên còn sai lầm đâu? Hãy bổ sung để đợc bài giải đầy đủ C©u 4(3 ®iÓm) 1 Cho A= 1.2.3 .2005.2006 (1+ + + .+ Trªn 1 + ) 2005 2006 Chøng minh A lµ mét sè tù nhiªn chia hÕt cho 2007 Câu (4 điểm) Cho a, b, c là độ dài ba cạnh tam giác Chứng minh rằng: 1 1 1 + + ≥ + + a+b − c b+c −a c+ a −b a b c Câu ( điểm): Dựng tam giác ABC biết bán kính đờng tròn ngoại tiếp R, bán kính đờng tròn néi tiÕp b»ng r vµ gãc C b»ng  ( < 90 ❑0 ) §¸p ¸n: C©u 1: u ®iÓm cña d¹y häc hîp t¸c theo nhãm: - Mọi học sinh đợc làm việc, không khí học tập lớp thân thiện - Hiệu làm việc HS cao, nhiều HS đợc dịp thể khản cá nhân và tinh thần giúp đỡ - HS không học tập kiếm thức kĩ mà còn thu nhận đợc kết cách làm việc hợp t¸c cïnh §iÒu nµy gãp phÇn thùc hiÖn mét bèn môc tiªu vÒ häc tËp cña thÕ kû XXI lµ häc c¸ch lµm viÖc cïng H¹n chÕ cña d¹y häc hîp t¸c theo nhãm: - Hiệu học tập phụ thuộc hoạt động các thành viên, có HS nhóm bất hợp tác th× hiÖu qu¶ thÊp - Kh¶n n¨ng bao qu¸t cña GV lµ khã kh¨n, nhÊt lµ sè häc sinh líp, nhãm cßn cao nh hiÖn - Xác định nhiệm vụ nhóm và cá nhân nhóm tuỳ thuộc vào nhiều yếu tố, đó có yêu cầu chungcủa chơng trình và đặc điểm cụ thể HS Đó là việc không dễ dàng Những dạng thuận lợi cho việc triển khai hoạt động dạy học hợp tác theo nhóm: - C¸c bµi tËp rÌn luyÖn kü n¨ng tÝnh to¸n - Mét sè bµi tËp d¹ng tr¾c nghiÖm (5) - Một số hoạt động thực hành lớp nh dùng máy tính, đo góc Một số hoạt động thực hành ngoài trời 1 1 + + + + 2 3 99 100 1 1 1 1− + − + − + − 2 4 99 100 99 = 1− 100 100 1 1 1 1 ( − + − + − + .+ − ) 2 4 6 98 100 1 49 49 ( − ) = ¿ = 2 100 100 40 C©u 2:TÝnh A = = = B = = Qua hai bµi to¸n trªn chóng ta rót bµi to¸n tæng qu¸t nh sau: C= n n n n n + + + + + a1 a2 a2 a3 a3 a a4 a5 a k a k+1 Trong đó : a2 −a 1=a3 − a2=a −a3 = =ak +1 − ak Gi¶i : Trêng hîp : NÕu a2 −a 1=a3 − a2=a −a3 = =ak +1 − ak =n Bài toán này dễ dàng giải đợc theo cách phân tích bài toán vì đó : n a1 a2 = a1 - a2 - ak+ n ak ak +1 Céng tõng vÕ ta cã : C = = ak a1 - ak+ Trêng hîp : NÕu a2 −a 1=a3 − a2=a −a3 = =ak +1 − ak =b ≠ n C= n ( Ta cã : b b b b b b + + + + + ) a1 a2 a2 a3 a3 a a4 a5 a k a k+1 Bài toán này thực chất đã đa dạng bài toán Học sinh dễ dàng tìm đợc kết : C = n ( b a1 - ak+ ) Câu 3: Sai lầm học sinh là đã ngộ nhận ba điểm D, C, F thẳng hàng Nh ta phải chøng minh ba ®iÓm D, C, F th¼ng hµng Bài giải đầy đủ : Gi¶i : A B M D Trªn tia AN chän ®iÒm F cho N lµ trung ®iÓm cña AF XÐt ∆ ANB vµ ∆FNC cã: AN = NF (c¸ch vÏ) ¿❑ ANB = FNC (đối đỉnh) BN = CN ( gi¶ thiÕt) Suy ra: ∆ ANB = ∆FNC (c.g.c) N C F (6) ⇒ ABN = FCN (CÆp gãc t¬ng øng) ⇒ CF // AB vµ CF = AB (cÆp c¹nh t¬ng øng) ¿❑ (1) DF AB+ CD CF+ CD Xét ∆ ADF có MN là đờng trung bình Suy ra: MN= mµ MN= = ( gt vµ (1)) 2 ⇒DF=CF+CD ⇒ D, C, F th¼ng hµngDo: CF // AB ⇒ DF // AB ⇒ DC // AB (®pcm) C©u 4: Ta cã: 1 1 1 1 1 1      (1  )(  )   (  )(  ) 2005 2006 2006 2005 1002 1005 1003 1004 2007 2007 2007 2007      1.2006 2.2005 1002.1005 1003.1004 1 1 2007(     ) 1.2006 2.2005 1002.1005 1003.1004 Suy : A=1 2005 2006 2007( 1 1 + + + + ) 2006 2005 1002 1005 1003 1004 2006 .2006 2006 2006 + + + + ) 2006 2005 1002 1005 1003 1004 2005+1 2004 2006+ + 1001 1003 1004 1006 .2006 VËy A lµ sè tù ¿ 2007 (¿+1 1002 1005 .2006) ¿ 2007( nhiªn chia hÕt cho 2007 C©u 5: Theo B§T C« si cho x B×nh ph¬ng hai vÕ ta cã: 0, y ta cã: x+ y ¿ ≥ xy ¿ x+y ≥ ⇒ xy x+ y x+ y ≥ √ x y 1 + ≥ x y x+ y ⇒ (*) Do a, b, c lµ ba c¹nh cña mét tam gi¸c nªn: a + b- c 0; b + c - a 0; c + a - b ¸p dung B§T (*) ta cã: 1 + ≥ = a+b − c b+c −a a+ b −c +b+ c − a b 1 + ≥ = b+c − a c+ a −b b+ c − a+c +a − b c 1 + ≥ = a+b − c c+ a −b a+ b −c +c +a − b a 1 1 1 Céng c¸c vÕ cña B§T ta cã: 2.( + + )≥ ( + + ) a+ b −c b +c − a c+ a −b a b c 1 1 1 Suy ra: (®pcm) + + ≥ + + a+b − c b+c −a c+ a −b a b c C©u 6: Ph©n tÝch: Gọi tâm đờng tròn ngoại tiếp là O1 , tâm đờng tròn nội tiếp là O2 Giả sử dựng đợc tam giác ABC thoả mãn điều kiện A bµi to¸n Ta cã A O1 B = 2 (v× C = ) Suy ∆ A O1 B dựng đợc (vì O1 A = O1 B = R) Ta cã: C gi¸c) Suy O2 A O2 B = 90 ❑0+ α (v× A O2 , B O2 x O2 lµ tia ph©n n»m trªn cung AB chøa gãc 90 ❑ + α o vµ O2 c¸ch AB mét kho¶ng b»ng r B C¸ch dùng: - Dùng ∆ A O1 B cã A O1 B = 2, O1 A = O1 B = R - §êng th¼ng xy// AB c¸ch AB mét kho¶ng b»ng r y (7) - Dùng cung AB chøa gãc 90 ❑0+ α cắt đừng thảng xy O2 - Dùng ( O2 , r) - D ùng tiÕp tuyÕn At vµ tiÕp tuyÕn Bz c¾t t¹i C Tam gi¸c ABC lµ tam gi¸c cÇn dùng Chøng minh: Ta cã: C = 180 ❑0 -(180 ❑0 -) =  Do O1 A = O1 B = R (c¸ch dùng) vµ A O1 B = 2 Nªn C thuéc cung AB chøa gãc  Vậy tam giác ABC đúng BiÖn luËn: - §êng th¼ng xy c¾t cung AB chøa gãc 90 ❑0+ α tai hai ®iÓm ta cã hai nghiÖm h×nh - §êng th¼ng xy tiÕp xóc cung AB chøa gãc 90 ❑0+ α - §êng th¼ng xy kh«ng c¾t cung AB chøa gãc 90 ❑0+ ta cã mét nghiÖm h×nh α bµi to¸n v« nghiÖm h×nh (8) đề thi GIáO VIÊN GiỏI CấP HUYệN BậC THCS Đồng chí hãy xây dựng đáp án cho đề thi sau: Bài (1.5 điểm): a) Tính Q = 2009(20109 + 20108 + … + 20102 + 2011) + 1 1 b) Số P= + + + n (n+1) Có phải số nguyên không? (với n ∈ N và n ≥1 ) Bài (2.0 điểm): a) Tìm các số thực a, b đa thức x4 + chia hết cho x2 + ax + b b) Tìm các số x, y, z N ❑ để 2x + 2y + 2z = 2336 Bài (2.0 điểm): Giải hệ phương trình ¿ x + y + z=0 xy + yz=−1 x 2+ y + z 2=6 ¿{{ ¿ Bài (3.0 điểm): a) Cho hình vuông ABCD, đường tròn đường kính CD và đường tròn tâm A bán kính AD cắt M ( M ≠ D ) Chứng minh đường thẳng DM qua trung điểm BC b) Tam giác ABC, kẻ đường cao AH Gọi H’ là điểm đối xứng H qua AB và H’’ là điểm đối xứng H qua AC Giao điểm H’H’’ với AC và AB I và K Chứng minh các đường BI, CK là đường cao tam giác ABC Bài (1.5 điểm): Hai số 21994 và 51994 viết liên tiếp Hỏi có tất bao nhiêu chữ số đề thi chọn giáo viên giỏi huyện thcs Môn toán C©u 1: a) T×m nghiÖm nguyªn cñaph¬ng tr×nh: x + y = 2004 b) Tìm m N để 13m + là số chính phơng C©u 2: Gi¶i ph¬ng tr×nh sau: x  - x2+1=0 x 1 C©u 3: T×m gi¸ trÞ nhá nhÊt cña A= x  Câu 4: Khối trờng có 56 em học sinh cần phụ đạo thêm, đó có 32 nam, nhà trờng dự kiến chia thành các tổ phụ đạo cho: - Mçi tæ gåm cã c¸c häc sinh nam, c¸c häc sinh n÷ - Số các học sinh nam, số các học sinh nữ đợc chia vào các tổ -Sè ngêi mçi tæ kh«ng qu¸ 15 em nhng còng kh«ng Ýt h¬n em H·y tÝnh xem nhµ trêng cã thÓ s¾p xÕp nh thÕ nµo vµ cã tÊt c¶ mÊy tæ? Câu 5:Cho đờng tròn tâm (O;R) đờng kính AB và CD vuông góc với Trong đoạn AB lấy điểm M khác O.Đờng thẳng CM cắt đờng tròn (O) điểm thứ hai N.Đờng vuông góc với AB M cắt tiếp tuyến với đờng tròn O N điểm P Chứng minh r»ng: a) Các điểm O, M, N, P cùng nằm trên đờng tròn b) Tø gi¸c CMPO lµ h×nh b×nh hµnh c) CM.CN=2R2 d) Khi M di chuyÓn trªn ®o¹n AB th× P di chuyÓn ë ®©u? Híng dÉn gi¶i: (9) C©u 1: a) x+ y= x + y = 501  x = 501z ; y = 501t víi z, t  N vµ lµ c¸c   z 0   x 0    t 4   y 2004   z 1   x 501    t 1   y 501     z 4   x 2004   t 0   y 0     z 1   x 501  t 1  z + t =2       y 501 2004  sè chÝnh ph¬ng   (x;y)=(0;2004); (501;501); (2004;0) b) 13m + lµ sè chÝnh ph¬ng  13m + 3=x2 víi x  N  13m -1 3=x2-16  13(m-1)=(x-4)(x+4)(1)  x-4 13 hoÆc x+4 13 + Khi x-4 13  x-4=13k víi k  N  x+4=13k+8 thay vµo (1) ta cã:  13(m-1)=13k(13k+8)  m-1=k(13k+8)  m= k(13k+8)+1 + Khi x+4 13  x+4=13p víi p  N  x-4=13p-8 thay vµo (1) ta cã:  13(m-1)=13p(13k-8)  m-1=p(13p-8)  m= p(13p-8)+1 VËy m= k(13k+8)+1 (k  N) hoÆc m= p(13p-8)+1 (p  N) th× 13m + lµ sè chÝnh ph¬ng C©u 2: x  - x2+1=0  x  =1  x= ;1;-1 2 x  x 1  2 x  -( x2-1)=0  x  (1- x  )=0  2 2 x  =0 hoÆc C©u 3: A= x  = x  =1- x  AMin  x  lín nhÊt  x2+1 nhá nhÊt  x=0 Vậy giá trị nhỏ A là -1 đạt đợc x=0 Câu 4: Giả sử xếp đợc x tổ, tổ có y em ta có x.y=56 và x  Ư(24,32); y 15  x  {1;2;4;8} lập bảng tính các giá trị tơng ứng x và y thoã mãn x  {1;2;4;8} và x.y=56 đối chiếu với y 15 ta đợc x=4, y=14  có tổ, tổ có 14 em C©u 5:   a/ Ta cã OMP =1v (GT) , ONP =1v( theo t/c tt)  tø gi¸c OMNP néi tiÕp  ®pcm b/+MP//OD(1) (cïng vu«ng gãc víi AB) x C      + MPO = MNO ( cïng ch¾n cung MO ) mµ MNO = NCO    (v× ON=OC=R)  MPO = NCO mÆt kh¸c ta l¹i cã: xMC     = MCO = NCO (do MP//OD)  xMC = MPO  MC//PO(2) Tõ (1) vµ (2)  Tø gi¸c CMPO lµ h×nh A O M B N b×nh hµnh (®pcm)  c/ CND =1v( góc nội tiếp chắn đờng tròn)  hai tam giác vuông COM và CND đồng dạng với nên ta CM CO cã: CD = CN  CM.CN=2R2(®pcm) I P D J d/ Do CMPO lµ h×nh b×nh hµnh (cmt)  MP=OD=R  M di chuyÓn trªn ®o¹n AB th× P di chuyển trên đoạn thẳng IJ song song với AB và cách AB khoảng R đó AI  AB , BJ  AB, trõ c¸c ®iÓm I,J./ BÀI KIỂM TRA NĂNG LỰC (10) Môn thi: TOÁN Câu (2 điểm): Anh (Chị) hãy nêu chủ đề trọng tâm năm học 2009 – 2010 và năm học 2010 – 2011? Hiện nay, việc thực Kế hoạch dạy học, PPCT và Hướng dẫn dạy học các môn học cấp THCS, người giáo viên phải tuân thủ và các văn pháp qui nào? Câu (3®iÓm) a) Anh (chị) hãy cho biết vấn đề chung yêu cầu đổi phương pháp dạy học môn Toán cấp THCS : - Nêu yêu cầu chung - Nêu yêu cầu cụ thể giáo viên b) Amh (chị) hãy nêu vai trò công nghệ thông tin (CNTT) đổi phương pháp dạy học và cho biết ưu điểm bật ? Câu (5®iÓm) 1) Chứng minh a, b, c là các số không âm và b là số trung bình cộng a và c thì ta có: 1   a b b c c a 2) Cho tam giác ABC vuông A, đường cao AH Gọi M và N theo thứ tự là chân đường vuông góc kẻ từ H đến AB và AC, biết AH = 4AM.AN Tính số đo các góc nhọn tam giác ABC HẾT -HƯỚNG DẪN CHẤM Câu 1- Chủ đề năm học 2009 – 2010 là : « Đổi quản lý và nâng cao chất lương giáo dục » - Chủ đề năm học 2010 – 2011 là : « Năm học tiếp tục đổi quản lý và nâng cao chất lương giáo dục » - Hiện nay, việc thực Kế hoạch dạy học, Phân phối chương trình và Hướng dẫn dạy học các môn học cấp THCS, người giáo viên phải tuân thủ và vào các văn pháp qui sau : Công văn số 6631/BGD ĐT-GDTrH Bộ GD&ĐT ngày 25/7/2008 việc sử dụng SGK phổ thông và tài liệu giảng dạy, học tập ; Công văn số 7608/BGD ĐT-GDTrH ngày 31/8/2009 Bộ GD&ĐT việc ban hành Khung phân phối chương trình THCS, THPT năm học 2009 – 2010 ; Công văn số 1123/SGD ĐT-GDTrH ngày 01/9/2009 Sở GD&ĐT việc Hướng dẫn dạy học các môn học cấp trung học ; Công văn số 1219/HD-SGDĐT-GDTRrH, ngày 15/9/2009 việc Điều chỉnh kế hoạch dạy học và bổ sung PPCT cấp THCS, THPT năm học 2009 – 2010 ; Câu 2a) Những vấn đề chung yêu cầu đổi phương pháp dạy học môn Toán cấp THCS : * Yêu cầu chung : - Dạy học thông qua việc tổ chức các hoạt động học tập học sinh - Dạy học phải kết hợp giữ học tập cá nhân và tập thể ; học cá nhân kết hợp với học theo nhóm, lớp - Dạy học thể mối quan hệ tích cực GV – HS, HS – HS - Dạy học chú trọng đến rèn luyện các kỹ năng, lực, tăng cường thực hành và gắn nội dung bài học với thực tiễn sống (11) - Dạy học chú trọng đến rèn luyện PP tư duy, lực tự học, tự nghiên cứu, thái độ tự tin học tập - Dạy học chú trọng đến việc sử dụng có hiệu phương tiện, thiết bị dạy học, là ứng dụng CNTT - Dạy học chú trọng đến việc đánh giá và hiệu đánh giá - Đổi phương pháp dạy học không có nghĩa là loại bỏ phương pháp truyền thống mà phải vận dụng cách có hiệu các PPDH kết hợp với các PP đại * Yêu cầu cụ thể giáo viên : - Thiết kế, tổ chức, hướng dẫn HS thực các hoạt động học tập trên lớp và nhà… - Đông viên, khuyến khích, tạo hội và điều kiện cho học sinh tham gia học tập cách tích cực, chủ động, sáng tạo… - Thiết kế, hướng dẫn học sinh thực các dạng câu hỏi, bài tập phát triển tư và rèn luyện kỹ Hướng dẫn sử dụng các thiết bị đồ dùng học tập - Sử dụng các phương pháp và hình thức tổ chức dạy học hợp lý, hiệu quả, phù hợp… b) Vai trò công nghệ thông tin đổi phương pháp dạy học : - Làm tăng giá trị lượng thông tin - Trao đổi thông tin nhanh hơn, nhiều hơn, hiệu - Gây hứng thú cho người học - Phát huy vai trò người thầy * Những ưu điểm bật : Sử dụng nhiều lần - Thực các thí nghiệm ảo hay thay GV thực hành, tăng tính động cho người học và cho phép học sinh học theo khả Đi sâu vào nội dung kiến thức - Bài giảng sinh động hơn, câp nhật phát triển KHKT - HS không thụ động, có thời gian suy nghĩ - GV có thời gian nghiên cứu, giúp đỡ học sinh yếu Câu 1) 1   a b b c c a 1     a b c a c a (*) b c Ta có:  a b A   c a c  a b b  c a  c b  a b  c a Theo giả thiết: A   b b c  b a  b c  a c  a  c 2b  b  a c  b , nên:  c a       c  a  c c  a b c  b Đẳng thức (*) nghiệm đúng 2) B H  c a b c (12) A C N Theo giả thiết, ta có : AH2 = 4AM.AN Tam giác AHC vuông H, HN AC nên : AH2 = AC.AN Từ (1) và (2) suy : AC = 4AM = 4HN (1) (2) (3) AC HNE 900 HEN 300 Từ (3) và (4) suy : HE = 2HN Mà nên 1  ECH  HEN  300 150 2 Ta thấy tam giác EHC cân E, nên : ACB 150 Gọi E là trung điểm AC, ta có : EH = EA = EC = (4) hay ⇒ ABC 900  ACB 900  150 750 §Ò thi chän Gi¸o viªn giái huyÖn M«n to¸n C©u 1: (3,0 ®iÓm): Anh (chÞ) h·y nªu quy tr×nh thùc hiÖn ph¬ng ph¸p d¹y häc hîp t¸c nhãm nhá? ¦u ®iÓm vµ h¹n chÕ cña ph¬ng ph¸p nµy lµ g× ? C©u 2: (4,0 ®iÓm): Cho ®a thøc: f(x) = x4 + 6x3 + 11x2 + 6x a/ Ph©n tÝch f(x) thµnh nh©n tö b/ Chøng minh r»ng víi mäi gi¸ trÞ nguyªn cña x th× f(x) + lu«n cã gi¸ trÞ lµ sè chÝnh ph¬ng Câu 3: ( 6,0 điểm) a/ Tìm số có ba chữ số cho chia nó cho 11, ta đợc thơng tổng c¸c ch÷ sè cña sè bÞ chia b/ Gi¶i ph¬ng tr×nh: x  x  1 - x  x  1 = x 2 c/ T×m nghiÖm nguyªn cña ph¬ng tr×nh: x  y 3 C©u 4: ( 2,5 ®iÓm) T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: M 2x  2xy  4x  y  2013 Bµi 5: ( 4,5 ®iÓm) Cho tam gi¸c ABC vµ G lµ giao ®iÓm cña ba trung tuyÕn AD, BE, CF BiÕt r»ng hai trung tuyÕn AD vµ BE vu«ng gãc víi t¹i G S a / BiÕt S ABC  a TÝnh GEF theo a 2 b / CMR: AD  BE CF C©u 1: ( ®iÓm) §¸p ¸n vµ thang ®iÓm: (13)  Quy tr×nh thùc hiÖn: ( 2,0 ®iÓm) Bíc1: Lµm viÖc chung c¶ líp - Nêu vấn đề, xác định nhiệm vụ nhận thức - Tæ chøc c¸c nhãm, giao nhiÖm vô cho c¸c nhãm - Híng dÉn c¸ch lµm viÖc theo nhãm Bíc 2: Lµm viÖc theo nhãm - Phân công theo nhóm, cá nhân làm việc độc lập - Trao đổi ý kiến, thảo luận nhóm - Cử đại diện trình bày kết làm việc nhóm Bíc 3: Th¶o luËn, tæng kÕt tríc toµn líp - C¸c nhãm lÇn lît b¸o c¸o kÕt qu¶ - Th¶o luËn chung - GV tổng kết, đặt vấn đề cho bài vấn đề  ¦u ®iÓm: ( 0,5 ®iÓm) - Học sinh đợc học cách hợp tác trên nhiều phơng diện - Học sinh đợc nêu quan điểm mình, đợc nghe quan điểm bạn khác nhóm, lớp; đợc trao đổi, bàn luận các ý kiến khác và đa lời giải tối u cho nhiệm vụ đợc giao cho nhóm Qua đó, t phê phán, kĩ làm việc hợp tác HS đợc rèn luyện và phát triển - C¸c thµnh viªn nhãm chia sÎ c¸c suy nghÜ, b¨n kho¨n, kinh nghiÖm, hiÓu biÕt thân, cùng xây dựng nhận thức, thái độ và học hỏi lẫn - Học sinh dễ hiểu, dễ nhớ vì họ đợc tham gia trao đổi, trình bày vấn đề nêu HS hào hứng có đóng góp mình vào thành công chung lớp  H¹n chÕ: ( 0,5 ®iÓm) ViÖc ¸p dông PP d¹y hächîp t¸c nhãm nhá thêng bÞ h¹n chÕ bëi: - Không gian chật hẹp lớp học và thời gian hạn định tiết học - Tinh thÇn tham gia cñat c¸c thµnh viªn nhãm NÕu kh«ng ph©n c«ng hîp lý, chØ có vài học sinh khá tham gia còn đa số học sinh khác không hoạt động Câu 2: ( điểm) a/ Lần lợt phân tích để có kết f(x) = x ( x + )( x + )( x + ) 2,0 ®iÓm b/ Tõ kÕt qu¶ cña c©u ta cã: + A = f(x) + = x( x + )( x + )( x + ) + = ( x2 + 3x )( x2 + 3x + ) + 0,5 ®iÓm + §Æt x + 3x = t; ta cã A = t( t + ) + = t2 + 2t + = ( t + )2 1,0 ®iÓm + Do x Z nªn t = x2 + 3x Z; đó t + Z vµ ( t + )2 lµ sè chÝnh ph¬ng 0,5 ®iÓm Hay: A = f(x) + lµ sè chÝnh ph¬ng C©u 3: ( 6,0 ®iÓm)a/ Gäi sè ph¶i t×m lµ: xyz ( xyz  N;  x  9;  y  9;  z  9) 0,5 ®iÓm Ta cã: xyz = 11(x+y+z) 100x +10y + z = 11x +11y + 11z 89x = 10z +y 0,5 ®iÓm 89x = zy Do đó: x =1, y = 9, z = Sè ph¶i t×m lµ 198 1,0 ®iÓm b/ §iÒu kiÖn: Ta cã :  x  x 1 0 x  x  1 0 x  x  1 - x  x  1 = x 2  x  3x  1  x  x  1  x  3x  1  x  1 4 x  x 0   x   0,5 ®iÓm 0,5 ®iÓm 0,5 ®iÓm (14) c/ (x+y)(x-y) = = 3.1 = 1.3 = -3.-1 = -1 -3 2,0 ®iÓm Lập luận tìm đợc cặp nghiệm: ( cặp nghiệm 0,5 điểm) (2,1) ( 2,-1) (-2,-1) (-2,1) 2 C©u 4: ( 2,5 ®iÓm) M x  2xy  y  x  4x   2009 M = (x2 + 2xy +y2 ) + (x2 - 4x + 4) + 2009 0,5 ®iÓm = (x + y)2 + (x – 2)2 + 2009 2009 x, y 1,0 ®iÓm  x  y 0  x 2   x  0   y  0,5 ®iÓm Dấu “=” xảy Vậy minB = 2009 x = vµ y = - 0,5 ®iÓm C©u 5: ( 4,5 ®iÓm) A F E G B D C M a/ XÐt GEF vµ 0,5 ®iÓm GBC  EF // BC và EF = BC ( EF là đờng Tb  GEF  ABC) S MEF  EF         GBC  SGBC  BC    1,0 ®iÓm SGEF  SGBC  MÆt kh¸c G lµ träng t©m cña  SGBC  S ABC ABC nªn: a SGEF  S ABC  12 12 ( ®vdt) b/ VÏ h×nh b×nh hµnh BECMTa cã BE = CM Chỉ đợc:Tứ giác ADMF là hình bình hành  AD = FM Chứng minh đợc: FM  MC áp dụng định lí Pitago tam giác vuông FMC 2 2 2 Ta cã: FM  MC CF hay AD  BE CF 0,5 ®iÓm 1,0 ®iÓm đề thi giáo viên giỏi cấp huyện M«n thi: To¸n (THCS) Bµi 1: ( ®iÓm ) a/ Chøng minh r»ng víi mäi sè tù nhiªn n th× n5 vµ n lu«n cã ch÷ sè tËn cïng gièng 12n  b/ Chøng minh r»ng ph©n sè 30n  lµ ph©n sè tèi gi¶n ( n  N ) Bµi 2: ( ®iÓm )a/ Chøng minh r»ng NÕu a, b, c lµ ba sè tho¶ m·n: a + b + c = 2008 (1) (15) 1 1    vµ a b c 2008 (2) th× ba sè a, b, c ph¶i cã mét sè b»ng 2008 1 1    b/ Gi¶i ph¬ng tr×nh : x  x  x  2 x  2 Bµi 3: ( 1,5 ®iÓm ) Cho ph¬ng tr×nh: x  5mx  4m 0 ( m lµ tham sè ) a/ Tìm m để phơng trình trên có nghiệm b/ Chøng minh r»ng : x1  5mx2  4m 0 ( x1, x2 lµ nghiÖm cña ph¬ng tr×nh ) Bài : ( điểm )Cho đờng tròn (O;R) đờng kính AB cố định H là điểm thuộc đoạn OB cho HB = 2HO Kẻ dây CD vuông góc với AB H Gọi E là điểm di động trên cung nhỏ CB cho E kh«ng trïng víi C vµ B Nèi A víi E c¾t CD t¹i I a/ Chøng minh r»ng AD2 = AI.AE b/ TÝnh AI.AE – HA.HB theo R c/ Xác định vị trí điểm E để khoảng cách từ H đến tâm đờng tròn ngoại tiếp  DIE ng¾n nhÊt Bài 5: ( 1, điểm )Cho tam giác có các số đo ba đờng cao là các số nguyên, bán kính đờng tròn nội tiếp tam giác Chứng minh tam giác đó là tam giác đáp án đề thi giáo viên giỏi cấp huyện môn toán THCS Bµi 1:a/ Ta cã n5 – n = 5(n-1)n(n+1)+(n-2)(n-1)n(n+1)(n+2) Chia hÕt cho vµ  n5  n10  n5 vµ n cã ch÷ sè tËn cïng gièng (1 ®iÓm ) b/ Gäi d lµ íc chung lín nhÊt cña 12n+1 vµ 30n +2  12n  1d ,30n  2d  24n  2d   30n     24n   d  6n d  12n d mµ 12n  1d  1d  d 1 12n  30n  lµ ph©n sè tèi gi¶n 1 1      a  b   b  c   c  a  0 Bµi 2: a/ Tõ (1) vµ (2) suy a b c a  b  c  a+b = kÕt hîp víi (1)  c = 2008 hoÆc b+c = kÕt hîp víi (1)  a = 2008 hoÆc a+c = kÕt hîp víi (1)  b = 2008  VËy ba sè a , b, c cã mét sè = 2008 ( ®iÓm ) ( ®iÓm ) 1 1 1 1 1       1;  2; b/ x  x  x  2 x   x  x   x  2 x  (*) ®kx®: x §Æt a = 2x + 1, b = x - 1, c = - x-  a + b + c = 2x - 1 1    Ph¬ng tr×nh (*) trë thµnh a b c a  b  c theo kÕt qu¶ c©u a ta cã   a  b   b  c   c  a  0 a + b =  x   x  0  x 0(t / m) hoÆc b + c =  x   x  0 ( v« lÝ) hoÆc a + c =  x   x  0  x  0  x 1 ( lo¹i) VËy ph¬ng tr×nh cã nghiÖm lµ: x = ( ®iÓm ) Bµi 3: a/ Ta cã  25m  16m   16 §Ó ph¬ng tr×nh cã nghiÖm th×  25m  16m 0  m 0 hoÆc m 25 ( 0,5 ®iÓm ) x12  5mx1  4m 0  x12 5mx1  4m  b/ V× x1 lµ nghiÖm cña ph¬ng tr×nh nªn ta cã 2  x1  5mx2  4m 5mx1  4m  5mx2  4m 5m  x1  x2  5m.5m 25m 0 ( V× theo viet ta cã x1 + x2 = 5m ) ( ®iÓm ) (16)  AD  AH AB( htl )  Bài 4: a/ AD2 = AE.AI  AE.AI  AH AB (AIH , ABE đồng dạng) ( ®iÓm ) R 16 R b/ Ta cã AI.AE –HA.HB = AD2 – HD2 = AH2 = ( OA+OH)2 =( R+ )2 = ( ®iÓm ) c/ Kẻ Dx  DI D cắt EB kéo dài F  Tứ giác DIEF nội tiếp (tổng hai góc đối = 1800)  đờng tròn ngoại tiếp DIE trùng với đờng tròn ngoại tiếp tứ giác DIEF có đờng kính là IF Gọi K là giao điểm IF và BD  K là tâm đờng tròn ngoại tiếp DIE 4R  HK ng¾n nhÊt  HK  BD K  KD = 3  E  giao ®iÓm cña (O;R) 4R với ( K; 3 ) ( E  cung nhỏ BC đờng tròn tâm O ) ( ®iÓm ) Bài 5: Gọi a, b, c là ba cạnh tam giác ha, hb, hc là ba đờng cao ứng với các cạnh a, b, c r * là bán kính đờng tròn nội tiếp, S là diện tích tam giác Đặt = x, hb= y, hc =z ( x,y,z  N ) Ta cã 2S = ax = by = cz = r(a+b+c)= a + b + c ( v× r = 1) b + c > a ( t/c bất đẳng thức tam giác )  a + b + c > 2a  ax  2a  x  t¬ng tù y >2, z >2 x  y z   Gi¶ sö : 1    x y z z a b c a b c 1       1(*) Ta l¹i cã ax = by = cz = 1/ x 1/ y 1/ z 1/ x  1/ y  1/ z x y z   z 3 1 z mà z >  z =3 thay vào ( *) ta đợc x = y = Vậy tam giác đã cho là tam giác ( 1,5 ®iÓm ) (17)

Ngày đăng: 06/09/2021, 22:09

w