1. Trang chủ
  2. » Cao đẳng - Đại học

Bai giang Bien luan so nghiem cua phuong trinh bang do thi

3 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 73,67 KB

Nội dung

Bài giảng: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ.. Do đó đường thẳng ấy quay quanh điểm I..[r]

(1)Bài giảng: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ Bài toán: a) Vẽ đồ thị (C) hàm số y = f(x) b) Dùng đồ thị (C) biện luận theo tham số m số nghiệm phương trình g(x; m) = Cách giải: m  h ( m)   kx  m  Biến đổi phương trình g(x; m) = dạng: f(x) = m( x  a)  b Trong đó k, a, b là các số và h(m) là hàm số theo tham số m 1) y = m là đường thẳng luôn vuông góc với trục Oy 2) y = h(m) là đường thẳng vuông góc với Oy 3) y = kx + m là đường thẳng song song với đường thẳng y = kx và cắt trục Oy điểm M(0; m) 4) y = m(x – a) + b là đường thẳng luôn qua điểm cố định I(a; b) và có hệ số góc là m Do đó đường thẳng quay quanh điểm I Ví dụ 1: a) Khảo sát và vẽ đồ thị (C) hàm số: y  x  x  b) Dùng đồ thị (C) để biện luận theo tham số m số nghiệm phương trình: x  x   m 0 (*) Hướng dẫn b) y (*)  x  x  m (1) Số nghiệm (1) là số giao điểm đồ thị (C) với đường thẳng d: y = m Nhìn vào đồ thị, ta thấy: + m < -4: vô nghiệm + m = - 4: nghiệm x -8 -6 -4 -2 + m > 4: nghiệm -2 -4 -6 -8 Ví dụ 2: x2  5x  y x a) Khảo sát và vẽ đồ thị (C) hàm số: b) Dùng đồ thị (C) để biện luận theo tham số m số nghiệm phương trình: Nguyễn Công Mậu (2) Bài giảng: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ x  (5  m) x   m 0 (*) y Hướng dẫn b) x -4 -2 -2 -4 -6 (*) viết thành: x  x  m( x  1) x2  5x   m x (1) (1) là phương trình hoành độ giao điểm (C) và đường thẳng y = m chạy song song với trục Ox Nhìn vào đồ thị, ta thấy: + m < - (1  2) m > -1 + 2 : nghiệm + m = - (1  2) m = -1+ 2 : nghiệm + -(1 + 2 ) < m < -1 + 2 : vô nghiệm Ví dụ 3: x 1 x a) Khảo sát biến thiên và vẽ đồ thị (C) hàm số: b) Viết phương trình tiếp tuyến với (C) và song song với (d): y = -2x c) Dùng (C) biện luận theo tham số m số nghiệm phương trình: x  (m  1) x  m  0 Hướng dẫn b) Tiếp tuyến song song với (d): y  x nên có hệ số góc y’ = -2  x 0  y  2     x 2  y 3 ( x  1)  Vậy có hai tiếp tuyến cần tìm là: (T1 ) : y  x  1; (T2 ) : y  x  y Hướng dẫn c) x  ( m  1) x  m  0  x  x  m( x  1) 2x2  x x 1   m x x x 1 x 1  2x  m   x  m x x (*) (*) là phương trình hoành độ giao điểm đồ thị (C) với đường thẳng (D): y  x  m ((D) là đường thẳng song song với hai tiếp tuyến câu b)) Nhìn vào đồ thị ta có: + m<-1 m > 7: có nghiệm y x -8 -6 -4 -2 -2 -4 -6 -8 Nguyễn Công Mậu (3) Bài giảng: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ + m = -1 m = 7: có nghiệm + -1< m < 7: Vô nghiệm Ví dụ 4: a) Khảo sát biến thiên và vẽ đồ thị (C) hàm số: y  x  3x  b) Viết phương trình tiếp tuyến với (C) điểm có hoành độ x0 với x0 là nghiệm phương trình y” = c) Dùng (C) biện luận theo tham số m số nghiệm phương trình: x  x  mx  m  0 Hướng dẫn b) y ' 3x  x ; y '' 6 x  ; y " 0  x 1  y 0 Hệ số góc tiếp tuyến là: y '(1)  Phương trình tiếp tuyến là: y  3( x  1) y Hướng dẫn c) x3  x  mx  m  0 x3  3x  m( x  1) (*) (*) là phương trình hoành độ giao điểm (C) với đường thẳng (d): y m( x  1) (d) qua điểm I(1; 0) và có hệ số góc m nên nhìn đồ thị ta thấy: + m  : có nghiệm + m   : có nghiệm x -4 -2 -2 -4 Nguyễn Công Mậu (4)

Ngày đăng: 06/09/2021, 21:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w