1. Trang chủ
  2. » Trung học cơ sở - phổ thông

29 cyclopropanation

11 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

Myers Chem 115 Cyclopropanation Reviews: • Bonding Orbitals in Cyclopropane (Walsh Model): Roy, M.-N.; Lindsay, V N G.; Charette, A B Stereoselective Synthesis: Reactions of Carbon– Carbon Double Bonds (Science of Synthesis); de Vries, J G., Ed.; Thieme: Stuttgart, 2011, Vol 1.; 731–817 Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A B Chem Rev 2003, 103, 977–1050 Davies, H M L.; Beckwith, R E J Chem Rev 2003, 103, 2861–2903 Li, A-H.; Dai, L X.; Aggarwal, V K Chem Rev 1997, 97, 2341–2372 eS (") • Applications of Cyclopropanes in Synthesis eA (") Carson, C A.; Kerr, M A Chem Soc Rev 2009, 38, 3051–3060 Reissig, H.-U.; Zimmer, R Chem Rev 2003, 103, 1151–1196 Gnad, F.; Reiser, O Chem Rev 2003, 103, 1603–1624 ! • Cyclopropane Biosynthesis Thibodeaux, C J.; Chang, W.-c.; Liu, H.-w Chem Rev 2012, 112, 1681–1709 de Meijere, A Angew Chem Int Ed 1979, 18, 809–886 General Strategies for Cyclopropanation: Introduction • via carbenoids "MCH2X" H H HH H H H H H H H H • via carbenes generated by decomposition of diazo compounds RCHN2 R • Cyclopropanes are stable but highly strained compounds (ring strain ~29 kcal/mol) • C–C bond angles = 60º (vs 109.5º for normal Csp3–Csp3 bonds) • Substituents on cyclopropanes are eclipsed H–C–H angle is ~120º As a result, the C–H bonds have higher s character compared to normal sp3 bonds • via Michael addition and ring closure RCH–LG EWG EWG LG EWG R • Because of their inherent strain, the reactivity of cyclopropanes is more closely analogous to that of alkenes than that of alkanes R RCH2 EWG LG EWG LG EWG R Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A B Chem Rev 2003, 103, 977–1050 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • Diastereoselective cyclopropanation is possible in the presence of directing groups: Simmons-Smith Reaction –– Zinc Reagents in Cyclopropanation • Original Report: OH OH CH2I2, Zn(Cu) H CH2I2, Zn(Cu) (±) Et2O, 35 ºC 48% Et2O, 35 ºC 63% (±) OCH3 H CH3O H CH2I2, Zn(Cu) H Et2O, 35 ºC ~60% (±) (±) H H Dauben, W G.; Berezin, G H J Am Chem Soc 1963, 85, 468–472 Simmons, H E.; Smith, R D J Am Chem Soc 1958, 80, 5323–5324 • Interestingly, excess carbenoid can reverse the directing effect of alcohols • Reaction Overview: Zn R1 "ZnCH2I" R1 H R2 OZnR' OZnR' H OBn OBn OZnR' H I CH2 H R1 H R2 R2 Butterfly transition state OBn H Zinc Reagent dr yield Zn(CH2I)2 (1 equiv) >25:1 >95% EtZnCH2I (9 equiv) 1:>25 >95% Charette, A B.; Marcoux, J F Synlett, 1995, 1197–1207 • The reaction is proposed to proceed through a "butterfly" transition state • Directed cyclopropanation is also possible in acyclic systems: Simmons, H E Org React 1973, 20, 1–133 OH OH OH • Zinc cyclopropanating reagents can be generated in various ways Both Zn metal and ZnEt2 can be used Et2Zn, CH2I2 CH3 CH3 CH3 CH2Cl2, –10 °C 97% H H 130 • Many zinc reagents for cyclopropanation have been developed: : Charette, A B.; Lebel, H J Org Chem 1995, 60, 2966–1967 • Diastereoselectrive cyclopropanation has been used in tandem asymmetric organozinc additions: I Simmons and Smith O I I I Zn Zn Zn I H3C Denmark Furukawa F3C Zn I Shi O EtO P EtO Zn HBEt2, PhCH3, 23 ºC Et2Zn, i-PrCHO I Charette Ph General applicability Highly reactive carbenoid for unreactive alkenes Highly stable carbenoid H3C Ph CH3 O N OH H3C OH (4 mol%) –78 ! –10 ºC CH3 CH3 ZnEt2, CH2I2 CH2Cl2, 23 ºC OH CH3 Ph H CH3 75%, 99% ee dr >20:1 Kim, H Y.; Lurain, A E.; Garcia-Garcia, P.; Carroll, P J.; Walsh, P J J Am Chem Soc 2005, 127, 13138–13139 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • Asymmetric Simmons-Smith Reaction Using Chiral Auxiliaries • Stoichiometric Promoter for Asymmetric Simmons-Smith Cyclopropanation • Allylic alcohols: • A chiral dioxaborolane auxiliary prepared from tetramethyltartramide and butylboronic acid has been shown to be effective in the asymmetric cyclopropanation of allylic alcohols • A hydrogen peroxide work-up is employed to remove boron side-products OBn O BnO BnO Et2Zn, CH2I2 Ph O OBn OH O BnO BnO toluene, –35 ! ºC A (1.1 equiv) Ph O OH OH 98%, dr >50:1 via OBn O BnO BnO O Me O Zn EtZn C H2I BnO BnO + >98%, 93% ee then 30% aq H2O2 OBn Ph HO OH ! 23 ºC Tf2O, C5H5N DMF, H2O, C5H5N 160 ºC, 90% Me Et H Zn(CH2I)2, DME, CH2Cl2 O O via H C O O N(CH3)2 (H3C)2N CHO O B n-Bu O O Charette, A B.; Côté, B.; Marcoux, J.-F J Am Chem Soc 1991, 113, 8166–8167 B H A O O Zn Ph H O N(CH3)2 N(CH3)2 I • Allylic amines: Charette, A B.; Juteau, H.; Lebel, H.; Molinaro, C J Am Chem Soc 1998, 120, 11943–11952 Ph OH H3C N CH3 Et2Zn, CH2I2 Ph CH2Cl2, °C Ph OH H3C N CH3 95%, dr = 98:2 • Allylic alcohols are cyclopropanated selectively: Ph CH3 OH • ",#-Unsaturated carbonyls: H H3C O H3C CO2i-Pr O OH i-PrO2C O CO2i-Pr CO2i-Pr OH H O H H3C then 30% aq H2O2 OH 80%, 95% ee Nicolaou, K C.; Sasmal, P K.; Rassais, G.; Reddy, M V.; Altmann, K H.; Wartmann, M.; O'Brate, A.; Giannakakou, P Angew Chem Int Ed 2003, 42, 3515–3520 • The cyclopropanation of allenic alcohols affords spiropentane derivatives: hexanes, –20 °C Et H3C H3C Et2Zn, CH2I2 C5H5NH•OTs, C6H6 80 ºC, 79% pTSA, THF CH3 Zn(CH2I)2, DME, CH2Cl2 H3C Aggarwal, V K.; Fang, G Y.; Meek, G Org Lett 2003, 5, 4417–4420 (EtO)3CH, NH4NO3 (cat.) EtOH, 23 ºC ent-A (1.1 equiv) CH3 H3C H2O, 65 ºC yield not provided O O OH C CO2i-Pr CO2i-Pr Et H A (1.1 equiv) Zn(CH2I)2, DME, CH2Cl2 –10 ! 23 ºC then 10% aq NaOH OH MO Et Et Et H H Et 70%, 97% ee 90%, dr = 97:3 Mash, E A.; Nelson, K A J Am Chem Soc 1985, 107, 8256–8258 Mori, A.; Arai, I.; Yamamoto, H Tetrahedron 1986, 42, 6447–6458 Charette, A B.; Jolicoeur, E.; Bydlinkski, G A S Org Lett 2001, 3, 3293–3295 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • The dioxaborolane promoter can be used to prepare 1,2,3-trisubstituted cyclopropanes • Unfunctionalized alkenes can undergo asymmetric Simmons–Smith cyclopropanation in presence of a valine/proline dipeptide • In the example shown, the intermediate borinate was used directly for Suzuki coupling: • Selectivity is higher for trisubstituted alkenes than for disubstituted alkenes O O (H3C)2N Ph OH Et2Zn CH2Cl2, ºC Ph OZnEt A (1.2 equiv) N(CH3)2 O Ph O B C (1.25 equiv) Ph O n-Bu ZnEt H Ph H O n-Bu B B-Zn Exchange O Pd(PPh3)4 (5 mol%) CH2Cl2, –78 ! –40 ºC Ph H3C N CH3 C absolute stereochemistry not reported Long, J.; Yuan, Y.; Shi, Y J Am Chem Soc 2003, 125, 13632–13633 • Catalytic Enantioselective Simmons-Smith Cyclopropanation Reactions • Chiral bis-sulfonamides have been used to direct asymmetric Simmons–Smith reactions of allylic alcohols: Ph PhI, KOH THF, 65 ºC ºC, CH2Cl2 83%, 90% ee CO2CH3 O B n-Bu O ZnEt Ph Et2Zn, CH2I2 BocHN EtZnI•OEt2, CHI3 N(CH3)2 O H O (H3C)2N ZnI O Ph OH D (10 mol %) 59%, 92% ee, >20:1 dr OH Et2Zn, ZnI2, Zn(CH2I)2 NHSO2CH3 OH CH2Cl2, ºC 92%, 89% ee Zimmer, L E.; Charette, A B J Am Chem Soc 2009, 131, 15624–15626 NHSO2CH3 D • Homoallylic ethers can be cyclopropanated using a zinc phosphate, prepared in situ from a chiral phosphoric acid: OBn B B (1.2 equiv) Et2Zn, CH2I2 OBn CH2Cl2, ºC 85%, 93% ee Denmark, S E.; O'Connor, S P J Org Chem 1997, 62, 584–594 • "Taddolates" can also be used: E via Ar Ar = E (25 mol %) Ar O O P O OH O O P O OZnCH2I Ar Ar OH Zn(CH2I)2, 4Å MS CH2Cl2, ºC 85%, 92% ee OH Et Et O O Ph Ph Ph O i-PrO Ti O Ph Oi-Pr Charette, A B.; Molinaro, C.; Brochu, C J Am Chem Soc 2001, 123, 12168–12175 Lacasse, M.-C.; Poulard, C Charette, A B J Am Chem Soc 2005, 127, 12440–12441 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • A bifunctional Al-complex is an effective cyclopropanation catalyst and is believed to bind both the Zn and the allylic alcohol: ligand (10 mol%) Et2AlCl (10 mol%) TBDPSO OH H3C TBDPSO I TMS CH3 CO2Et LiTMP, HMPA THF, toluene, –95 ºC ligand TMS CO2Et O O NH via Te+ OH Et2Zn, CH2I2 CH2Cl2, 23 ºC 99%, 90% ee • Telluronium ylides can also be used: 81%, 97% ee N OH HO Ph Ph O Zn N Al N O O Cl ZnEt Liao, W.-W.; Li, K Tang, Y J Am Chem Soc 2003, 125, 13030–13031 • Camphor-derived sulfur ylides can be employed for stereoselective cyclopropanations of Michaelacceptor olefins: Shitama, H.; Katsuki, T Angew Chem Int Ed 2008, 47, 2450–2453 Cyclopropanation via Michael Addition and Ring Closure –– Asymmetric Cyclopropanation Through Chiral Ylides • In an early report, optically enriched oxosulfonium F was prepared in steps, which stereoselectively cyclopropanates Michael-acceptors: O H3C S p-tolSO2N3, Cu CH3OH, 65 ºC O p-tol H SO H3C O Ph H F, NaH Ph H3C Me3OBF4 Na2CO3 S N p-tol DMSO, 23 ºC O BF4– CH3 H3C CH3 Br Ph S OH acetone H3C –20 ºC, 92% CH3 Ph CH3 S OH CO2CH3 CO2Me t-BuOK Ph THF, –78 ºC Ph 71% Ph 77%, 99% ee dr > 99:1 S N(CH3)2 H3C p-tol F O H H3C CH3 Ph Ph H 94%, 35% ee – O BF4 H S N(CH3)2 Ph p-tol H O H3C OH Johnson, C R.; Schroeck, C W J Am Chem Soc 1968, 90, 6852–6854 H3C Br H3C S CH3 OH CH3 Ph Ph acetone –20 ºC, 92% H3C S OH CH2 COPh COPh t-BuOK Ph THF, –78 ºC Ph Ph 78%, 96% ee dr > 99:1 Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W,; Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X J Am Chem Soc 2006, 128, 9730–9740 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • Catalytic Enantioselective Ylide Cyclopropanations • Cinchona alkaloids have been employed to generate chiral ammonium ylides, which stereoselectively cyclopropanates Michael-acceptors: O Br + Et2N G (20 mol%) Cs2CO3 O Ph • Chiral sulfoxonium intermediates can be generated in situ by trapping of a rhodium carbenoid: Ph O Ph Et2N CH3CN, 80 ºC 94%, 97% ee N N Ts Rh2(OAc)4 (10 mol%) O + O CO2Et H Na+ O NR3 Cs2CO3 O NR3Br– Et2N O 91% ee, dr = 88:12 " O Ph Et2N O oC catalyst J Rh2(OAc)4 O N O BnEt3N+Cl- (20 mol%) 1,4-dioxane, 40 CO2Et Ph J (20 mol%) N RhII Ph NR3+ Ph Ph H R* S S O N H CH3 O O CO2Et R* CH3 J OCH3 O Cl H (20 mol%) Na2CO3, NaBr O O N H O OCH3 N CH3CN, 80 ºC 79%, 95% ee H G: R = H H: R = CH3 R Aggarwal, V K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M Angew Chem Int Ed 2001, 40, 1433–1436 • Asymmetric cyclopropanation through a chiral iminium intermediate: Papageorgiou, C D.; Cubillo de Dios, M A.; Ley, S V.; Gaunt, M J Angew Chem Int Ed 2004, 43, 4641–4644 Johansson, C C C.; Bremeyer, N.; Ley, S V.; Owen, D R.; Smith, S C.; Gaunt, M J Angew Chem Int Ed 2006, 45, 6024–6028 N H • Lanthanum complexes were also found to be effective: O Li O O OH OH La(O-i-Pr)3 THF, ºC ! 23 ºC MeLi, THF * ºC ! 23 ºC O H3C S CH H3C + Ph CH3 CH3 THF, toluene 4Å MS, –55 ºC 73%, 94% ee La O H H3C CH3 O S Ph H CHCl3, –10 ºC 85%, 95% ee, dr = 30:1 O Ph n-Pr H O H O Li O I * I (10 mol%) NaI (10 mol%) O O O O Li n-Pr * + CO2H (20 mol%) Kunz, R K.; MacMillan, D W C J Am Chem Soc 2005, 127, 3240–3241 O Ph CH3 CH3 Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M J Am Chem Soc 2007, 129, 13410–13411 David W Lin, Fan Liu Myers Chem 115 Cyclopropanation Asymmetric Cyclopropanation using Metal Carbenes • Transition metals catalyze the cyclopropanation of electron-rich olefins via carbenoids formed from electron-deficient diazo compounds • Since the initial report, extensive research has been done to develop other C2-symmetric Cu(I) and Ru(II) oxazoline complexes various linker groups used here • The catalytic cycle proceeds via a Fischer-type (electrophilic) metal carbene formed from diazo precursors: R1 various groups used here R1 N2 R2 R3 R2 ML* R2 R1 R3 MLn N2 R1 R3 t-Bu transition state R2 N t-Bu catalyst • Many alkenes can be used, with styrenes and enol ethers being the most common electron-rich alkene Fischer-type (electrophilic) metal carbene O N H H H MLn O • The reaction proceeds with retention of the olefin geometry: O • This methodology is most effective for three classes of diazo substrates: R • Diazo substrates with one electron-withdrawing group R' OR'' + CO2R'' R' catalyst N2 R R = aryl, alkyl, OR • Diazo substrates with two electron-withdrawing groups • Diazo substrates with one electron-withdrawing group and one electron-donating group • Up to three stereocenters can be formed • Cu(I) and Ru(II) oxazoline complexes typically give trans-1,2-cyclopropanes selectively: • Diazo Substrates with One Electron-Withdrawing Group • The use of C2-symmetric Cu(I) oxazoline complexes for cyclopropanation was first reported by Evans: I (1 mol%) CuOTf (1 mol%) O + Ph OEt N2 t-BuO2C F Ph Ph + CHCl3, 23 ºC 77% CO2Et 99% ee Ph CO2Et O F 97% ee + Ph trans:cis = 81:19 Cu H H3C I (0.12 mol%) CuOTf (0.1 mol%) O + OEt N2 CHCl3, ºC 91%, >99% ee H3C CO2Et H3C CH3 O H3C O N N t-Bu O CH3 F F H Ph 93% ee trans-cyclopropane (major) t-Bu Cu H N N t-Bu disfavored t-Bu CO2t-Bu favored 56% dr = 81:19 t-BuO2C Ph CH3 N N O CH t-Bu CuOTf•I Ot-Bu N2 t-Bu O CH CO2t-Bu O CH3 Ph H F 89% ee cis-cyclopropane (minor) I Evans, D A.; Woerpel, K A.; Hinman, M M.; Faul, M M J Am Chem Soc 1991, 113, 726–728 Haufe, G.; Rosen, T C.; Meyer, O G J.; Fröhlich, R.; Rissanen, K J Fluorine Chem 2002, 114, 189–198 David W Lin, Fan Liu Myers • Examples of Cu(I)- and Ru(II)-catalyzed enantioselective cyclopropanations: I (2.5 mol%) CuOTf (2 mol%) PhNHNH2 (2 mol%) O O Chem 115 Cyclopropanation OEt CO2CH3 N2 • Chiral Ir(III)-salen complexes afford cis-1,2-cyclopropanes with high enantioselectivities: O H EtO2C CH2Cl2, ! 20 ºC 91% ee (crude) CO2Me O H Ot-Bu N2 III (1 mol%) p-CF3C6H4 THF, –78 ºC 73%, 97% ee dr = 97:3 after recrystallization: 53%, >99% ee N F3C N Ir CO2t-Bu O O X Ph Ph O Böhm, C.; Reiser, O Org Lett 2001, 3, 1315–1318 • Intramolecular reactions can also proceed with high enantioselectivities: CH3 O O I (0.12 mol%) [Cu(MeCN)4]PF6 (1 mol%) CH3 O O CH2Cl2, 23 ºC 82%, 90% ee N2 Ot-Bu BzO H F3C Ot-Bu N2 CH2Cl2, ! 20 ºC 85%, 99% ee dr = 96:4 CO2t-Bu IV (1 mol%) DMAP (50 mol%) EtO2C II (0.5 mol%) III, X = p-Tol BzO • Co(II)-porphyrin complexes can cyclopropanate electron-deficient alkenes enantioselectively: Doyle, M P.; Peterson, C S.; Parker Jr., D L Angew Chem Int Ed 1996, 35, 1334–1336 O THF, –78 ºC 87%, 94% ee dr = 96:4 Suematsu, H.; Kanchiku, S.; Uchida, T.; Katsuki, T J Am Chem Soc 2008, 130, 10327–10337 O O N2 III (1 mol%) CO2t-Bu PhCH3, 23 ºC 92%, 91% ee dr = 99:1 O F3C H3C EtO2C CO2t-Bu O Ph H2N O N IV (1 mol%) DMAP (50 mol%) Ru Ph H2O Cl N CO Ph Ph O PhCH3, 23 ºC 77%, 97% ee dr = 99:1 O NH N N HN Co Ot-Bu CH3 CH3 3,5-di-t-BuPh O NH N2 H3C H3C CH3 N N HN O O 3,5-di-t-BuPh CO2t-Bu H2N H3C CH3 IV H3C CH3 O II Ito, J.-i.; Ujiie, S.; Nishiyama, H., Chem.–Eur J 2010, 16, 4986–4990 Chen, Y.; Ruppel, J V.; Zhang, X P J Am Chem Soc 2007, 129, 12074–12075 David W Lin Myers • At low temperatures, rhodium(III) catalysts are compatible with higher !-alkyl-!-diazoesters, which otherwise often undergo undesired "-hydride elimination upon metal carbene formation: O Ph Chem 115 Cyclopropanation n-Bu EtO Rh2[(S)-PTTL]4 (0.5 mol%) hexane, –78 N2 • !-nitro-!-diazo aryl ketones give cis cyclopropanes selectively: O EtO2C oC 93%, 96% ee dr = 99:1 (trans:cis) n-Bu O O Rh O Ph Cl O2N Ph3C O Rh O N2 N OCH3 O Rh2[(S)-TCPTTL]4 (0.1 mol%) Et2O, –50 t-Bu Cl O O2N Cl O oC OCH3 Rh O 68%, 94% ee dr = 96:4 Rh2[(S)-PTTL]3TPA Cl N Rh O O t-Bu CF3 CF3 Rh2[(S)-TCPTTL]4 Boruta, D T.; Dmitrenko, O.; Yap, G P A.; Fox, J M Chem Sci 2012, 3, 1589–1593 • Diazo Substrates with Two Electron-Withdrawing Groups Lindsay, V N G.; Lin, W.; Charette, A B J Am Chem Soc 2009, 131, 16383–16385 • While symmetrical diazomalonates give poor selectivities, unsymmetrical diazomalonates are excellent substrates: O O N OCH3 N2 Ph Rh2[(S)-NTTL]4 (1 mol %) O N DCE, 23 ºC CO2CH3 Ph 79%, 96% ee dr > 30:1 (cis:trans) O Rh O H3CO2C Ph R N2 Ph CH2Cl2, 23 ºC O R NO2 H3C CH3 H3CO2C Ph in situ generated carbene precursor Ph trans (favored for R = OEt, n-Bu) Charette, A B.; Wurz, R P.; Ollevier, T Helv Chim Acta 2002, 85, 4468–4484 O O N N Ph Ph 82%, 91% ee dr = 94:6 (trans:cis) Cu+ SbF6 Ph – V • Alternatively, !-nitro-!-diazo acetates give cis cyclopropanes with cobalt(II)-porphyrin catalysts: O O NO2 NO2 Moreau, B.; Charette, A B J Am Chem Soc 2005, 127, 18014–18015 • For !-nitro-!-diazo carbonyls, the diastereoselectivity is sensitive to the nature of the carbonyl substituent: Rh2(OAc)4 V (2 mol%) Na2CO3 C6H6, 23 ºC t-Bu Marcoux, D.; Charette, A B Angew Chem Int Ed 2008, 47, 10155–10158 NO2 O H3CO2C I O Rh O I NO2 N Rh2[(S)-NTTL]4 O • !-nitro-!-diazo esters give trans cyclopropanes selectively In the example below, the oxidant iodosobenzene can be used to form the carbene precursor from !-nitro esters in situ: R NO2 Ph cis (favored for R = Ph, t-Bu) NO2 O O2N OEt IV (5 mol%) DMAP (50 mol%) hexanes, # 23 ºC 81%, 95% ee dr = 93:7 O2N OEt NO2 N2 Zhu, S.; Perman, J A.; Zhang, X P Angew Chem Int Ed 2008, 47, 8460–8463 David W Lin Myers Chem 115 Cyclopropanation • Diazo Substrates with One Electron-Withdrawing Group and One Electron-Donating Group • Metal carbenes with adjacent electron-donating and electron-withdrawing groups ("push-pull" systems) are relatively stable and reactive • A wide range of electron-withdrawing groups within the diazo substrate are tolerated: O H3CO P H3CO • Rhodium(II) complexes using chiral ligands derived from proline have often been employed: Rh2[(S)-PTAD]4 (2 mol%) Ph N2 Ph t-Bu CO2CH3 N2 Rh2[(S)-TBSP]4 (1 mol%) Ph Ph Ph 83%, 87% ee Rh O F3C CO2CH3 Ph N O Rh O Rh2[(S)-PTAD]4 (1 mol%) Ph N2 Ph Rh2[(S)-TBSP]4 Rh2[(S)-TBSP]4 (1 mol%) H O Rh O Rh2[(S)-PTAD]4 O S O Rh O N Ph Ph Reddy, R P.; Lee, G H.; Davies, H M L Org Lett 2006, 8, 3437–3440 CO2CH3 pentane, 23 ºC PhCF3, 23 ºC 94%, >98% ee dr > 20:1 O H3CO P H3CO CO2CH3 F3C Ph H Ph 2,2-dimethylbutane 50 ºC, 86% 99% ee, dr > 30:1 Denton, J R.; Sukumaran, D.; Davies, H M L Org Lett 2007, 9, 2625–2628 pentane, 23 ºC N2 OCH3 82%, 88% ee dr = 98 : H NC H3CO N2 Doyle, M P.; Zhou, Q.-L.; Charnsangavej, C.; Longoria, M A.; McKervey, M A.; GarcÌa, C F Tetrahedron Lett 1996, 37, 4129–4132 Davies, H M L.; Bruzinski, P R.; Fall, M J Tetrahedron Lett 1996, 37, 4133–4136 • Styrenes can also be considered as electron-donating groups on the diazo substrate: CO2Me N2 Et CO2Me pentane, 23 ºC 65%, >95% ee Et Ph toluene, –78 ºC 86%, 90% ee dr = 97:3 NC Ph H Ph Denton, J R.; Cheng, K.; Davies, H M L Chem Commun 2008, 1238–1240 • N-sulfonyl-1,2,3-triazoles serve as alternatives to diazo compounds as carbene precursors: H3CO2S N N N Rh2[(S)-TBSP]4 (1 mol%) Rh2[(S)-PTAD]4 (2 mol%) Ph H Ph Ph Rh2[(S)-NTTL]4 (0.5 mol%) DCE, 65 ºC K2CO3, MeOH H [Rh] H3CO2S N O H 67%, 98% ee dr > 20:1 O Rh O N Rh O t-Bu O Rh2[(S)-NTTL]4 R H Davies, H M L.; Bruzinski, P R.; Lake, D H.; Kong, N.; Fall, M J J Am Chem Soc 1996, 118, 6897–6907 Chuprakov, S.; Kwok, S W.; Zhang, L.; Lercher, L.; Fokin, V V J Am Chem Soc 2009, 131, 18034 David W Lin Grimster, N.; Zhang, L.; Fokin, V V J Am Chem Soc 2010, 132, 2510 10 Myers Chem 115 Cyclopropanation Selected Transformations of Cyclopropanes Selected Industrial Examples • Cyclopropanes can undergo direct C-H functionalization enantioselectively by Pd(II) complexes with chiral amino acid ligands • A copper-catalyzed diazo decomposition led to the asymmetric cyclopropanation of 2,5-dimethyl2,4-hexadiene in good yield and high enantioselectivities: • A special directing group is required on the cyclopropane substrate to coordinate the Pd(II) complex and direct insertion into the adjacent cis C-H bond H3C • The directing group is readily available and can be hydrolyzed to give the corresponding acid: H3C F OBn O F N H F CuCl (0.2 mol%) Ligand (0.22 mol%) Ph3CPF6 (0.22 mol%) EtOAc, ºC, 92% Ot-Bu n-Bu F OBn O Ag2CO3, NaHCO3 t-Amyl-OH, 40 ºC 62%, 92% ee F CH3 (3.86 g) O F CH3 O CH3 Ph B CH3 O CH3 Pd(OAc)2 (10 mol%) CN ligand (20 mol%) CH3 F N H Ph CN O Cl3C n-Bu O N H F CO2H N2 Ot-Bu H3C H3C H3C H3C H3C F O O N N Ot-Bu H3C 88:12 CH3 71% ee chrysanthemic acid t-butyl ester (a key intermediate to pyrethroid insecticides) H3C CH3 ligand O H3C CH3 96% ee (1.41 g) Ligand F H3C O CH3 CH3 Wasa, Y.; Engle, K M.; Lin, D W.; Yoo, E.-J.; Yu, J.-Q J Am Chem Soc 2011, 133, 19598–19601 Itagaki, M.; Masumoto, K.; Suenobu, K.; Yamamoto, Y Org Proc Res Dev 2006, 10, 245–250 • Cyclopropanes can undergo vinylcyclopropane-cyclopentene rearrangements: • Cinchona alkaloids were applied to the synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid ethyl esters in good yield and modest ee's H TBSO H3C N2 O t-Bu N O Cu O N t-Bu toluene, 110 ºC, 84% H O TBSO H3C O • H O O Br2, CCl4 Et2O, ºC DBU, DMF 50 ºC, 48% TBSO H3C • O • • O Ph N OEt TBSO H3C Corey, E J.; Myers, A G J Am Chem Soc 1985, 107, 5574–5576 Corey, E J.; Myers, A G Tetrahedron Lett 1984, 25, 3559–3562 H O O Br (16.74 g) Ph N CO2Et H2O, ºC Crude yield: A key intermediate in the 78%, 77% ee preparation of many After Chromatography: hepatitis C inhibitors 55%, >99% ee Catalyst Br– HO • Cat (3 mol %) NaOH, toluene Br (11.3 g) Et2AlCl, CH2Cl2 ºC, 80% + N N CF3 F3C Belyk, K M.; Xiang, B.; Bulger, P G.; Leonard, W R.; Balsells, J.; Yin, J.; chen, C.-y Org Proc Res Dev 2010, 14, 692–700 James Mousseau, David W Lin, Fan Liu 11 ... J Am Chem Soc 2007, 129, 13410–13411 David W Lin, Fan Liu Myers Chem 115 Cyclopropanation Asymmetric Cyclopropanation using Metal Carbenes • Transition metals catalyze the cyclopropanation of... 97% H H 130 • Many zinc reagents for cyclopropanation have been developed: : Charette, A B.; Lebel, H J Org Chem 1995, 60, 296 6–1967 • Diastereoselectrive cyclopropanation has been used in tandem... 6447–6458 Charette, A B.; Jolicoeur, E.; Bydlinkski, G A S Org Lett 2001, 3, 3293 – 3295 James Mousseau, Fan Liu Myers Chem 115 Cyclopropanation • The dioxaborolane promoter can be used to prepare 1,2,3-trisubstituted

Ngày đăng: 29/08/2021, 10:35

TỪ KHÓA LIÊN QUAN

w