1. Trang chủ
  2. » Trung học cơ sở - phổ thông

14 asymmetric allylation reactions

16 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,37 MB

Nội dung

Myers Chem 115 Asymmetric Allylation Reactions Brown Allylation and Crotylation Reactions Enantioselective Allylboration Et2O –78 A 23 °C; O Reviews: H + (–)-Ipc2B R R NaOH, H2O2 Srebnik, M.; Ramachandran, P V Aldrichimica Acta 1987, 20, R Roush, W R In Comprehensive Organic Synthesis, Trost, B M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol 2, pp 1-53 Synthesis of B-Allyldiisopinocampheylborane H 3C CH3 CH3 CH3 CH3 = (1R)-(+)-_-Pinene 91.3% ee H3B•S(CH3)2 THF, °C h,72% 72 h, 72% BH BH (–)-Ipc2BH CH3OH, h °C, 100% yield (%) ee (%)a ee (%)b CH3 74 93 •99 n-C3H7 71 86 - n-C4H9 72 87 96 t-C4H9 88 83 •99 C 6H 81 96 96 aAllylboration carried out without filtration of Mg salts bAllylboration carried out at –100 °C under Mg-salt free conditions 98.9% ee OH • The reaction is quite general; the stereochemistry of the addition is the same in all cases examined • Lower reaction temperatures (0 A –78 A –100 °C) lead to increased enantioselectivity CH3 BB CH3 MgBr 98.9% ee BOCH33 BOCH –78 A 25 °C 25 °C, h 98.9% ee • Only Mg-salt free reagent can be used at –100 °C because the reactive borane is sequestered by ate complex formation with CH3OMgBr at this temperature • Allylboration of aldehydes is essentially instantaneous at –78 or –100 °C in the absence of Mg salts • Prolonged incubation at °C affords enantiomerically enriched Ipc2BH This is due to equilibration of tetraisopinocampheyldiborane with _-pinene and triisopinocampheyldiborane; the symmetrical dimer crystallizes preferentially H 3C H 3C • Both enantiomers of _-pinene are commercially available and inexpensive.(Aldrich: (1R)-(+)-_-pinene, 91% ee, $100/500mL; (1S)-(–)-_-pinene, 87% ee, $42/100mL) • B-Allyldiisopinocampheylborane can be prepared and used in situ after filtration of the magnesium salts produced during its formation Brown, H C.; Desai, M C.; Jadhav, P K J Org Chem 1982, 47, 5065-5069 Brown, H C.; Singaram, B J Org Chem 1984, 49, 945-947 Jadhav, P K.; Bhat, K S.; Perumal, P T.; Brown, H C J Org Chem 1986, 51, 432-439 H H H H H CH3 H B O H3C H CH3 CH3 • Allylation of aldehydes proceeds through a chair-like TS where R occupies an equatorial position and the aldehyde facial selectivity derives from minimization of steric interactions between the axial Ipc ligand and the allyl group R H Brown, H C.; Jadhav, P K J Am Chem Soc 1983, 105, 2092-2093 Brown, H C.; Bhat, K S J Am Chem Soc 1986, 108, 5919-5923 Racherla, U S.; Brown, H C J Org Chem 1991, 56, 401-404 M Movassaghi Diastereoselective Allylboration of Chiral, _-Substituted Aldehydes Asymmetric Isoprenylation of Aldehydes (+)-Ipc2BH + • CH3 THF CH3 –25 °C, h (+)-Ipc2B • The diastereofacial selectivity of the B-allyldiisopinocampheylborane reagent typically overrides any facial preference of the aldehyde for nucleophilic attack CH3 CH3 • Hydroboration of allenes is an efficient method for preparing B-prenyldiisopinocamphenylboranes B-allyldiisopinocamphenylboranes O allylboration H3C (+)-Ipc2B CH3 CH3 RCHO, Et2O –78 °C, 12 h; NaOH, H2O2 R yield (%) ee (%) CH3 73 91 n-C4H9 79 92 CH2=CH 70 95 (CH3)2C=CH 85 OH H OH H 3C + Et2O, –78 °C H3C 81% R H3C CH3 O H 3C H3C (–)-Ipc2BCH2CH=CH2 (+)-Ipc2BCH2CH=CH2 MATCHED: MISMATCHED: 96 OH H3C allylboration H : : 96 95 OH H 3C Et2O, –78 °C OBz H3C (92% de) (90% de) OH H3C + OBz OBz 80% Brown, H C.; Jadhav, P K Tetrahedron Lett 1984, 25, 1215-1218 Jadhav, P K.; Bhat, K S.; Perumal, P T.; Brown, H C J Org Chem 1986, 51, 432-439 MISMATCHED: Methallylation of Aldehydes CH3 (+)-Ipc2BOCH3 + Li (–)-Ipc2BCH2CH=CH2 (+)-Ipc2BCH2CH=CH2 MATCHED: Et2O CH3 (+)-Ipc2B –78 °C, h R CH3 RCHO, Et2O –78 °C, 12 h; NaOH, H2O2 yield (%) 56 OH CH3 R n-C3H7 54 90 n-C4H9 56 91 t-C4H9 55 90 CH2=CH 57 92 96 (88% de) (92% de) • Although the stereochemical outcome of the allylboration of aldehydes using B-allyldiisopinocampheylborane is typically reagent controlled, this selectivity may be challenged with certain substrates: ee (%) 90 : : 94 O H 3C H Ph OH allylboration Et2O, –78 °C OH + H 3C H 3C Ph Ph 72% MISMATCHED: MATCHED: (–)-Ipc2BCH2CH=CH2 (+)-Ipc2BCH2CH=CH2 67 : : 33 98 (34% de) (96% de) • The yields for methallylation of aldehydes are generally lower than in simple allylation reactions Brown, H C.; Jadhav, P K.; Perumal, P T Tetrahedron Lett 1984, 25, 5111-5114 Jadhav, P K.; Bhat, K S.; Perumal, P T.; Brown, H C J Org Chem 1986, 51, 432-439 Brown, H C.; Bhat, K S.; Randad, R S J Org Chem 1987, 52, 319-320 Brown, H C.; Bhat, K S.; Randad, R S J Org Chem 1989, 54, 1570-1576 M Movassaghi Chair TS's Produce syn Adducts from (Z)-Crotylboranes and anti Adducts from (E)Crotylboranes (Z)-Crotylboranes CH3 H3C (–)-Ipc2BOCH3 n-BuLi, KOt-Bu H3C K CH THF –45 °C CH3 OCH3 – B K –78 °C + CH3 BF3•OEt2 –78 °C H3C H H H H B H Ipc "(Z)-crotylborane" H3C H H3C H H CH3 H B O H3C H B CH3 B aldehyde NaOH, H2O2 yield (%) A:B CH3 ee (%) "syn adduct" H3C H CH3 R CH3 A CH3 CH3 O H3C R CH3 R RCHO –78 °C; OH + R CH3 CH3 H H OH OH OH CH3 – CH3CHO 75 + CH3CHO 72 – C2H5CHO 70 + C2H5CHO 78 – CH2=CHCHO 63 95:5 90 – C6H5CHO 72 94:6 88 R CH3 CH3 95:5 4:96 95:5 4:96 90 92 90 92 R H "(E)-crotylborane" "anti adduct" • The crotylboranes are used immediately after decomplexation of methoxide from the ate complex by BF3•OEt2 at –78 °C to avoid crotyl isomerization "Superbases" for Organic Synthesis • These adducts can be viewed as protected aldol products; "deprotection" is brought about by dihydroxylation/periodate cleavage or by ozonolysis Brown, H C.; Bhat, K S J Am Chem Soc 1986, 108, 293-294 Brown, H C.; Bhat, K S J Am Chem Soc 1986, 108, 5919-5923 Roush, W R In Comprehensive Organic Synthesis, Trost, B M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol 2, pp 1-53 • The "superbase" prepared by mixing n-butyllithium and potassium t-butoxide (1:1) can metalate hydrocarbons of low acidity, in particular olefins • Allylic methyl groups are much more readily metalated than allylic methylene or methine centers • cis-2-alkenes generally react faster than their trans-isomers K R2 • The large atomic radius of potassium favors !3-bonding in allyl, crotyl and prenyl derivatives: R1 R1, R2 = H, CH3 Schlosser, M Pure & Appl Chem 1988, 60, 1627-1634 Schlosser, M.; Stahle, M Angew Chem., Int Ed Engl 1980, 19, 487-489 M Movassaghi (E)-Crotylboranes H3C CH3 Diastereo- and Enantioselective vic-Diol Synthesis n-BuLi, KOt-Bu CH3 THF –45 °C CH3 OCH3 – B (–)-Ipc2BOCH3 K –78 °C K CH3 (–)-Ipc2BOCH3 s-BuLi OCH3 + THF, –78 °C Li OCH3 CH3 OCH3 Li + – B BF3•OEt2 –78 °C OH + R B R CH3 C CH3 D Ipc aldehyde yield (%) – CH3CHO 78 + CH3CHO 76 – C2H5CHO 70 + C2H5CHO 69 – CH2=CHCHO 65 – C6H5CHO 79 NaOH, H2O2 C:D 95:5 BF3•OEt2 –78 °C CH3 RCHO –78 °C; OH ee (%) CH3 CH3 O B OH NH2 B RCHO, –78 °C; + R + R OCH3 E (crystalline) CH3 OH OCH3 F • Treatment of the crude product mixture with ethanolamine allows for easy removal of the reagent by-product as a crystalline adduct; this is an alternative to oxidative work-up 90 Ipc aldehyde yield (%) E:F ee (%) 90 – CH3CHO 57 95:5 90 92 + CH3CHO 59 95:5 90 – C2H5CHO 65 94:6 88 + C2H5CHO 68 – CH2=CHCHO 63 94:6 88 – C6H5CHO 72 95:5 90 95:5 4:96 OCH3 HOCH2CH2NH2 92 4:96 OCH3 –78 °C • The crotylboranes are used immediately after decomplexation of methoxide from the ate complex by BF3•OEt2 at –78 °C to avoid crotyl isomerization 4:96 96:4 5:95 92 92 90 • Other vinyl ethers may be used, such as methoxymethyl vinyl ether (affording the MOM-protected vic-diol) Brown, H C.; Bhat, K S J Am Chem Soc 1986, 108, 293-294 Brown, H C.; Bhat, K S J Am Chem Soc 1986, 108, 5919-5923 Brown, H C.; Jadhav, P K.; Bhat, K S J Am Chem Soc 1988, 110, 1535-1538 M Movassaghi Preparation of (E)- and (Z)-Crotylboronate Reagents Roush Allylation and Crotylation Reactions Roush, W R In Comprehensive Organic Synthesis, Trost, B M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol 2, pp 1-53 Roush, W R.; Palkowitz, A D.; Ando, K J Am Chem Soc 1990, 112, 6348-6359 Roush, W R.; Halterman, R L J Am Chem Soc 1986, 108, 294-296 O B • The stability of allylboronate reagents permits their purification by distillation Allyl diisopinocamphenyl reagents cannot be distilled + O THF –78 A –25 °C 45 toluene CO2i-Pr yield (%) ee (%) n-C9H19CHO 86 79 c-C6H11CHO 77 78 C6H5CHO 78 71 HR FAVORED R CH3 O CO2i-Pr •99% Z 70-75 % H O R OR H H O B O O H OH OR DISFAVORED OH + R R –78 °C, 4Å-MS CH3 R reagent yield (%) n-C9H19 90 n-C9H19 70 c-C6H11 94 c-C6H11 90 TBSOCH2CH2 71 TBSOCH2CH2 68 aee CH3 anti:syn 95:5 1:>99 >99:1 2:98 •98:2 2:•98 ee (%)a 86 77 86 83 85 72 of major diastereomer OH OH R 1N HCl, Et2O DIPT, MgSO4 (R,R)-2 or (R,R)-3 toluene O H OR H H H 3C K O B • Essentially identical results are obtained with a range of commercially available tartrate esters (CH3, Et, i-Pr) O O O B O O B(Oi-Pr)3 –78 °C • Competition experiments have shown that (E)-crotylboronates react faster with aldehydes than the corresponding (Z)-isomers Proposed Origin of Selectivity in Tartarate DerivedAllylboronate AllylboronateAdditions Additions Tartrate Derived H 70-75 % • Tartrate modified (E)- and (Z)-Crotylboronates can be stored for several months at –20 °C in Tartrate-modified neat form or in solution with little noticeable deterioration R –78 °C, 4Å-MS aldehyde OR H H •98% E OH • Enantioselectivities are typically moderate • 4Å-MS are necessary to achieve the highest levels of selectivity O Pr CO2i-Pr O • Crotylboronates are configurationally stable at or slightly above room temperature CO2i-Pr H H3C 1N HCl, Et2O DIPT, MgSO4 n-BuLi, KOt-Bu CH3 CH3 R THF –78 A –50 °C 15 H 3C O B CO2i-Pr 77% O B n-BuLi, KOt-Bu CO2i-Pr B(Oi-Pr)3 –78 °C CO2i-Pr O 2N HCl, Et2O (+)-DIPT, MgSO4 O CH3 CO2i-Pr B(OCH3)3 Et2O, –78 °C MgBr H 3C K R • The favored transition state is believed to minimize unfavorable lone-pair lone-pair lone pair-lone pair interactions Roush, W R.; Walts, A E.; Hoong, L K J Am Chem Soc 1985, 107, 8186-8190 Roush, W R.; Ando, K.; Powers, D B.; Palkowitz, A D.; Halterman, R L J Am Chem Soc 1990, 112, 6339-6348 Roush, W R.; Palkowitz, A D.; Palmer, M A J J Org Chem 1987, 52, 316-318 M Movassaghi (–)-Bafilomycin A1: Reaction of Tartrate-Derived Allyl- or Crotylboronates with Chiral Aldehydes MATCHED: CO2i-Pr CO2i-Pr CH3 OTBS OHC O B + CH3 CO2i-Pr O OTBS OH 71%, 78% de MISMATCHED: CO2i-Pr CH3 O B OTBDPS + OHC O MATCHED: + H 3C CH3 OTBS OHC + O B H 3C O CO2i-Pr MATCHED H 3C OTBDPS + O B H 3C O CO2i-Pr + OHC (R,R)-2 OPMB CH3 (S,S)-2 (S,S)-1, Toluene –78 °C TBSOTf MISMATCHED 85%, •96% de (R,R)-1, Toluene (R,R)-2 –78 °C, h 92%, 70% de OTBS DMPO OTBS OH H 3C OPMB CH3 CH3 CO2i-Pr CH3 O B CH3 CH3 OH 80%, 94% de MISMATCHED: CO2i-Pr DMP = 3,4-dimethoxyphenyl CO2i-Pr CH3 CO2i-Pr O (S,S)-2 OTBDPS OH 72%, 74% de OHC CHO H 3C CH3 CO2i-Pr O B DMPO CH3 CH3 CH3 CH3 O CO2i-Pr OTBDPS OH 85%, 76% de MATCHED: CO2i-Pr CH3 OHC OTBS O B + CH3 CH3 O CO2i-Pr OH 71%, 90% de CH3 MISMATCHED: TESOTBSO OH OH B(OH)2 H3C CH3 O B OTBDPS + CO2i-Pr CH3 Pd(PPh3)4, TlOH THF, 23 °C, 30 65% KOH, 1,4-dioxane; 2,4,6-trichlorobenzoyl chloride, i-Pr2NEt, THF; DMAP, toluene, reflux 52% OTBS OH 28% de • All reactions were performed in toluene at –78 °C in the presence of 4Å-MS CH3O O O TBSO Roush, W R.; Walts, A E.; Hoong, L K J Am Chem Soc 1985, 107, 8186-8190 Roush, W R.; Palkowitz, A D.; Palmer, M A J J Org Chem 1987, 52, 316-318 CH3 CH3 CH3 CH3 OCH3 CH3 OCH3 CH3 CH3 O CO2CH3 I + CO2i-Pr CH3 OHC OTBS CH3 CH3 OTES O H 3C H 3C CH3 CH3 OCH3 CH3 M Movassaghi CH3O TBSO H 3C OTES O O TBSO O + H CH3 CH3 O OH OH Catalytic, Enantioselective Addition of Allylsilanes to Aldehydes H 3C H 3C CH3 OCH3 CH3 CH3 CH3 (S)-(–)-BINOL CH3 O TMSCl, Et3N, LHMDS CH2Cl2, –78 °C, 30 1, BF3•OEt2, –78 °C, 30 R H + Si(CH3)3 (S)-(–)-BINOL (20 mol%) TiF4 (10 mol%) CH2Cl2, CH3CN, °C OH R Bu4NF, THF aldehyde time (h) yield (%) ee (%) 85% CHO 90 94 20 93 84 91 94 20 92 93 20 81a 74 PhCHO 85 80 c-C6H11CHO 72 60 PhCH2CH2CHO 69 61 H3C CH3 CH3O TBSO H 3C O OH OTBSO CH3 CH3 OTES O H 3C CH3 CH3 OCH3 CH3 CH3 (CH3)3CCHO CHO Ph CH3 TASF, DMF, H2O 23 °C, h TASF = [(CH3)2N]3S[(CH3)3SiF2] CHO TIPSO H3C CH3 O O 93% H 3C H 3C HO CH3 O CH3O O OH O CH3 CH3 OH H 3C aBased HO CHO CH3 CH3 CH3 OCH3 CH3 on 25% recovered aldehyde • Allyltrimethylsilane initially reacts with the HF produced during catalyst preparation to give propene and (CH3)3SiF (–)-Bafilomycin A1 • It is important that the reaction be conducted in the presence of small amounts of CH3CN to solubilize the polymeric TiF4 Scheidt, K A.; Tasaka, A.; Bannister, T D.; Wendt, M D.; Roush, W R Angew Chem., Int Ed Engl 1999, 38, 1652-1655 Roush, W R.; Bannister, T D Tetrahedron Lett 1992, 33, 3587-3590 • _,_-Disubstituted aldehydes afford the highest enantioselectivities Gauthier, D R Jr.; Carreira, E M Angew Chem., Int Ed Engl 1996, 35, 2363-2365 M Movassaghi Enantioselective Allylation Using a Stoichiometric Chiral Controller Group Catalytic, Enantioselective Addition of Allyltin Reagents to Aldehydes O R1 R2 Sn(n-Bu)3 H + CF33 CF (S)-(–)-BINOL (10 mol%) Ti(Oi-Pr)4 (10 mol%) 4Å-MS F3C F Ph OH R2 FF33CC R1 CH2Cl2, –20 °C Ph CF CF33 S N B N S O O O Br O R1 C 6H R2 time (h) H 70 yield (%) ee (%) 88 95 R2 Sn(n-Bu)3 C 6H CH3 60 75 91 c-C6H11 H 70 66 94 c-C6H11 CH3 48 50 84 (E)-C6H5CH=CH H 70 42 89 (E)-C6H5CH=CH CH3 12 68 87 PhCHO C6H5CH2CH2 H 70 93 96 C6H5CH2CH2 CH3 40 97 98 i-C3H7 H 70 89 96 furyl H 70 73 96 furyl CH3 12 99 99 p-CH3OC6H4 CH3 48 61 93 p-CH3OC6H4CH2OCH2 H 70 81 96 BnOCH2 H 60 84 95 • Addition occurs to the re face of the aldehyde with the catalyst prepared from (R)-(+)-BINOL 1, PhCH3 23 °C HO H R2 R1 R1CHO –78 °C aldehyde yield (%) ee (%) H 92 96 PhCHO Cl 80 90 c-C6H11CHO H 84 92 c-C6H11CHO Cl 76 88 R2 • Reagent is produced from the corresponding (R,R)-bis-sulfonamide by reaction with BBr3 in CH2Cl2 • Transmetallation of allyltin reagents with the chiral B-bromoboron B-Bromoboron reagent in toluene is complete in 3-20 h • This procedure allows for the efficient asymmetric methallylation of aldehydes, typically a difficult transformation • The (R,R)-bis-sulfonamide can be recovered from the reaction mixture Keck, G E.; Krishnamurthy, D Org Syn 1998, 75, 12-18 Corey, E J.; Kim, S S Tetrahedron Lett 1990, 31, 3715-3718 Keck, G E.; Tarbet, K H.; Geraci, L S J Am Chem Soc 1993, 115, 8467-8468 Keck, G E.; Krishnamurthy, D.; Grier, M C J Org Chem 1993, 58, 6543-6544 M Movassaghi Diastereoselective Allyltitanation of Chiral Aldehydes Enantioselective Allyltitanation of Aldehydes Ph Ph O HO HO CH3 + Ti Cl CH3 Cl Cl O Ph Ph (R,R)-TADDOL Et3N, Et2O 23 °C Ph Cl or cyclohexane, reflux Ti O O Ph Ph O Ph Ph O O Ph Ph Ph Ph R O O Ph M Ti O O R M = Li, MgX CH3 CH3 Ph Cl Ti O O Ph Ph O O M R1 Ph Ti O O R1 Et2O, °C CH3 CH3 Ph Ph R1 R2 ee (%) H H H CH3 Ph (CH3)3Si EtO CH3 (CH3)3Si Ph (CH3)2CH CH2=CH Ph Ph Ph Ph CH3(CH2)8 CH3(CH2)8 95 97 95 98 97 •98 95 •98 •98 H3C H3C : 95 • Exceptionally high reagent selectivity is observed in the mismatched allylation of (R)-2-phenylbutyraldehyde (90% de) (cf., (–)-Ipc2BCH2CH=CH2: 34% de) Ph O R2CHO, –74 °C CHO O H3C yield (%) 97 •98 •98 75 •98 •98 93 88 79 89 54 68 77 86 69 • (E)-Crotyltitanation of aldehydes affords anti products, presumably by a chair-like TS + O N H3C Boc CH3 R2 O NH4F, H2O CH3 O CH3 de (%) OH OH CH3 CH3 OH Ph OH Ph + O Ph Ph 0.5 OH Ph MISMATCHED reagent Ph H3C : 99.5 H H3C • (E)-Crotyltitanium reagents are produced from (E)- or (Z)-crotyl anion precursors Ph H3C TiCpL(R,R) 91-94% 91–94% Ph + MATCHED • The chiral diol is readily available in both enantiomeric forms from the corresponding tartrate esters • Complex formation is driven to completion by neutralization of HCl with Et3N, or by removal of HCl by heating • The complex may be used in crude form, as prepared in solution, or the complex may be crystallized and isolated Ti O Cl O 91–94% 91-94% OH Ph H H3C CH3 CH3 O OH TiCpL(R,R) R1 N CH3 O H3C Boc N Boc CH3 yield TiCpL(R,R) 93 98.1 1.9 TiCpL(S,S) 95 0.5 99.5 TiCp(Oi-Pr)2 89 37.3 62.7 MgCl 86 55.1 44.9 OH CHO O H 3C H 3C TiCpL(R,R) N CH3 Boc 93% O N CH3 CH3 Boc a single diastereomer H3 C Hafner, A.; Duthaler, R O; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F J Am Chem Soc 1992, 114, 2321-2336 Duthaler, R O.; Hafner, A.; Riediker, M Pure & Appl Chem 1990, 62, 631-642 M Movassaghi Myers Chem 115 Asymmetric Allylation Reactions Proposed Catalytic Cycle: Krische Allylation and Crotylation Reactions: Hassan, A.; Krische, M J Org Proc Res Devel 2011, 15, 1236 Han, S B.; Kim, I S.; Krische, M J Chem Commun 2009, 7278 OAc General Allylation Reaction: OAc [Ir(cod)Cl]2 (2.5 mol %) (R)-BINAP (5 mol %) OH + R R = aryl, alkyl m-NO2BzOH (10 mol %) Cs2CO3 (20 mol %) THF, 100 °C NO2 O P P IrIr O R OAc + R H R = aryl, alkyl m-NO2BzOH (10 mol %) Cs2CO3 (20 mol %) i-PrOH (200 mol %) THF, 100 °C OH III P P NO2 Ir CH3 + R = aryl, alkyl 4-CN-3-NO2BzOH (10 mol %) Cs2CO3 (20 mol %) THF, 90 °C O O OH R CH3 65-73% yield 86-97% ee 4:1 to 8:1 dr OAc CH3 [Ir(cod)Cl2] (2.5 mol %) (S)-SEGPHOS (5 mol %) O + H R R = aryl, alkyl OH O O O O I NO2 Ir Base P P H H P P NO2 III Ir O R III NO2 Ir O H H R • The Ir catalyst (generated in situ) undergoes addition to aldehyde via a 6-membered chair-like transition state to generate the IrIII alkoxide This does not undergo further dehydrogenation as the olefin is thought to occupy a coordination site, blocking !-hydride elimination • Ligand exchange with the reactant alcohol (or isopropanol) generates the homoallylic alcohol • The Ir alkoxide undergoes !-hydride elimination to produce the IrIII hydride Dissociation of the aldehyde produces an IrIII hydride which undergoes deprotonation by the base to provide the IrI anion • Oxidative addition of allyl acetate to regenerates "-allyl IrIII catalyst (S)-SEGPHOS O R O P P PPh2 PPh2 O OH R R O R NO2 O General Crotylation Reaction: [Ir(cod)Cl2] (2.5 mol %) (S)-SEGPHOS (5 mol %) H OAc III Ir R Hexa-Coordinate 18 Electron Complex R O 55-80% yield 90-93% ee P P O H R • Couplings of primary alcohols or aldehydes with allyl acetate utilizing Ir catalysts generate allylation products without the use of stoichiometric allyl-metal(oid) reagents OH NO2 III Ir AcO– TMBTP = 2,2',5,5'-Tetramethyl-4,4'-bis(diphenylphoshino)-3,3'-bithiophene OAc O O O P P O O O 55-80% yield 90-93% ee [Ir(cod)Cl2] (2.5 mol %) (–)-TMBTP (5 mol %) [Ir(cod)Cl]2 AcOH OH (X-Ray) O m-NO2BzOH III 4-CN-3-NO2BzOH (10 mol %) Cs2CO3 (20 mol %) i-PrOH (200 mol %) THF, 90 °C OH R • To use aldehydes as substrates in lieu of an alcohol, the use of a terminal reductant (isopropanol) is necessary for the catalytic cycle to proceed • Enantioselectivites are high for both alcohol and aldehyde reactants CH3 66-82% yield 96-98% ee 6:1 to 13:1 dr Kim, I S.; Ngai, M, -Y.; Krische, M J J Am Chem Soc 2008, 130, 6340-6341 Kim, I S.; Nagi, M -Y.; Krische, M J J Am Chem Soc 2008, 130, 14891-14899 Anne-Marie Schmitt, Fan Liu 10 Myers Chem 115 Asymmetric Allylation Reactions Stereochemical Model in Asymmetric Crotolation Reactions: • Couplings of aldehydes display higher diastereoselectivities than with alcohols, as higher concentrations of aldehyde promote rapid capture of the kinetically formed trans-crotyl iridium complex H R' R' R [Ir] O [Ir] O H R Bis Allylation and Crotylation of Glycols OAc [Ir(cod)Cl]2 (5 mol %) (S)-Cl,MeO-BIPHEP (10 mol %) OH OH Cs2CO3 (40 mol %) 4-Cl-3-NO2-BzOH (20 mol %) Dioxane (0.2 M) 90 °C H H • Kinetically formed trans-crotyl iridium complex generates the anti diastereomer • Equilibration to the cis-crotyl iridium complex causes erosion in diastereoselectivity OH OH 70%, >30:1 dr >99% ee • Equivalent bis aldehyde counterparts are unstable or unknown Kim, I S.; Han, S B.; Krische, M J J Am Chem Soc 2009, 131, 2514–2520 O Other allyl donors have been used with alcohols and aldehydes as reactants: Ph2 Ir P P Ph2 O O O Allyl Donor Products Generated OH OBz R OBz OH OH O R = aryl, alkyl 58-74% Yield 93-99% ee R O O OH OH OBz R = aryl, alkyl 57-80% Yield 87-99% ee R CF3 CF3 OH OH CN OH OH R = aryl, alkyl 62-77% Yield 96-99% ee O O OAc NO2 CH3 CH3 CH3 CH3 CH3 THF:H2O (4:1, 1.6 M) K3PO4 (100 mol %) 70 °C pseudo-C2 symmetric 62%, >6:1 dr >99% ee • Predominantly of 16 possible stereoisomers was formed • Chromatographic isolation of the pre-formed iridium catalyst allows crotylations to be run at lower temperatures Application to the Total Synthesis of Roxaticin • Catalyst Generation: OH OH OBz R = aryl, alkyl 58-78% Yield 90-99% ee R SiMe3 SiMe3 [Ir(cod)Cl]2 O (R)-Cl,MeO-BIPHEP O Cl OAc NO2 Cs2CO3 Dioxane, 110 °C Cl OCH3 Ph2 Ir P P Ph2 OCH3 Cl O Cl NO2 (R)-I Generated in situ O O EtO OBoc EtO OH R R = aryl, alkyl 58-79% Yield 92-99% ee Han, S B.; Han, H Krische, M J J Am Chem Soc 2010, 132, 1760–1761 Zhang, Y J.; Yang, J H.; Kim, S H.; Krische, M J J Am Chem Soc 2010, 132, 4562–4563 Gao, X.; Zhang, Y J.; Krische, M J Angew Chem Int Ed 2011, 50, 4173–4175 Han, S B.; Gao, X.; Krische, M J J Am Chem Soc 2010, 132, 9153–9156 Hassan, A.; Zbieg, J R.; Krische, M J Angew Chem Int Ed 2011, 50, 3493–3496 O O OH [Ir(cod)Cl]2 OAc O (S)-SEGPHOS Cs2CO3 CN THF, 80 °C NO2 92% (isolated via precipitation) Ph2 P Ir P Ph2 O O O O (S)-II NC NO2 Anne-Marie Schmitt, Fan Liu 11 Myers Chem 115 Asymmetric Allylation Reactions Application to the Synthesis of Roxaticin, continued OH OH OAc Allylation of Epimerizable Aldehydes from the Alcohol Oxidation Level: • Allylation of !-chiral aldehydes and "-chiral alcohols: the transiently generated aldehyde is prone to epimerization under the reaction conditions: OH OH (R)-I Dioxane, 110 °C OH OTBDPS PPTS , (MeO)2CMe2 CH2Cl2 , 25 °C, 91% 70% Yield, >30:1 dr >99% ee OH OTBDPS O3, CH2Cl2:MeOH –78 °C; NaBH4, 86% OAc Cs2CO3 (20 mol%) 3-NO2-BzOH (10 mol%) THF, 100 °C CH3 H3C CH3 H3C CH3 H3C CH3 O OH O O O O O OH "Second Iteration" (S)-I, Allyl Acetate, 71% TBSCl, imidazole, 85% O3; NaBH4, 85% "Third Iteration" (S)-I, Allyl Acetate, 78% PPTS, (MeO)2CMe2, 93% O3; NaBH4, 78% steps OH O O O O O • Optimized Reaction Conditions: "First Iteration" OH OTBDPS OH OTBDPS HO OAc + CH3 PMBO OAc K3PO4, H2O THF, 70 ºC 85%, dr = 14 : CH3 CH3 (S)-II (10 mol%) CH3 H3C CH3 H3C CH3 H3C CH3 O O O O O O CH3 steps HO PMBO CH3 OH OH OH OH OH CH3 OH HO CH3 O O CH3 CH3 Roxaticin 20 Steps Longest Linear Sequence 29 Total Steps Han, S B.; Hassan, A.; Kim, I S.; Krische, M J J Am Chem Soc 2010, 132, 15559–15561 CH3 CH3 OH OTBDPS CH3 Catalyst (5 mol%) CH3 O CH3 epimerized diastereomer OH H3C CH3 H3C CH3 H3C CH3 O OH OTBDPS H3C CH3 Three interations, total steps O CH3 desired diastereomer dr < : [Ir(cod)Cl]2 (2.5 mol%) (S)-Cl-MeO-BIPHEP (5 mol%) Cs2CO3 (1 equiv), 3,4-(NO2)2-BzOH (10 mol%) H2O (10 equiv) THF (0.4 M), 100 °C, 24 h Catalyst Yield (A : B : C : D) III ent-III 79% (97 : : : 0) 80% (4 : 94 : : 2) CH3 A B OH OTBDPS OH OTBDPS CH3 CH3 D C Cl H3CO H3CO Cl Ph2 P Ir P Ph2 O O O2N • Increased loadings of base improve the yield of A while suppressing III epimerization of the transient !-chiral aldehyde • Water improves the yield of A, possibly by facilitating the exchange between product and reactant alkoxide and by increasing the amount of Cs2CO3 in solution NO2 • The enhanced Lewis acidity at iridium may strengthen the agostic interaction between the iridium center and the carbinol C-H bond, facilitating alcohol dehydrogenation It may also accelerate carbonyl addition with respect to aldehyde epimerization • Inductive electron withdrawal by the 3,4-dinitro benzoate ligand may facilitate deprotonation of the Ir(III) hydride intermediate, allowing for faster catalyst turnover Schmitt, D C.; Dechert-Schmitt, A.-M R.; Krische, M J Org Lett 2012, 14, 6302–6305 Anne-Marie Schmitt, Fan Liu 12 Myers Chem 115 Asymmetric Allylation Reactions Enantioselective Addition to Acylhydrazones: Leighton Silicon Allylation Chemistry: Leighton, J L Aldrichimica Acta 2010, 43, 3–14 Ph Background: • In 2000, Leighton reported an allylation reaction where a Lewis acidic silicon atom is embedded in a strained five-membered ring: H3C H3C N Ph Ac N H O Si N Cl CH3 H3C CH2Cl2, 10 °C, 16h H (5 g) PhCHO (6 equiv) sealed tube, 130 °C O Si Ph N PhCHO PhCH3, 23 °C N H Ph 80%, 98% ee Bz H N H3C N H CHCl3, 23 °C OH Ph Ph t-BuCHO PhCH3, –10 °C HCl 80%, 96% ee H H3C O Si N Cl CH3 78%, 94% ee Bz N N H3C Bz N CH3 HCl, 52% O Si N Cl CH3 Ph Recrystallization Ac N Berger, R.; Rabbat, P M A.; Leighton, J L J Am Chem Soc 2003, 125, 9596–9597 • By incorporating another electronegative element bound to silicon, the reaction takes place at room temperature With a chiral ligand, the reaction becomes enantioselective: Ph H H 88% ee Zacuto, M J.; Leighton, J L J Am Chem Soc 2000, 122, 8587–8588 H3C O H3C Si H3C O Cl H3C N Ac N Ph HCl, 87% CH3 OH H Ph OH H CH3 (5 g) t-Bu H3C O Si N Cl CH3 CHCl3, 40 °C HCl, Et2O Recrystallize Bz H N •HCl H3C N H SmI2, THF Ph H3C NH2 Ph 86% 74%, 98% ee Berger, R.; Duff, K.; Leighton, J L J Am Chem Soc 2004, 126, 5686–5687 Kinnaird, J W A.; Ng, P Y.; Kubota, K.; Wang, X.; Leighton, J L J Am Chem Soc 2002, 124, 7920–7921 Mechanism: Preparation of Allylsilane Ph • Two diastereomers are generated upon complexation with pseudoephedrine, which converge on a common complex prior to allyl transfer: Ph OH + H3C NH CH3 Et3N, CH2Cl2 Cl3Si 0–15 °C, 12h (150-g scale) Ph Me Ph Me O Si N Cl CH3 92%, dr = : Ph O O Ph Si N + N H N Cl Me Ph H CH2Cl2, 23 ºC, 15min PhCH3, 23 ºC, 12h 90% H N N Ph Si O O N H Ph H CH3 H CH3 Ph Cl– • A 5-coordinate trigonal bipyramidal silicon species is proposed • The strained silacyclopentane increases the Lewis acidity of silicon • Aldehydes and acylhydrazones react, but not ketones, aldimines, or ketimines Berger, R.; Rabbat, P M A.; Leighton, J L J Am Chem Soc 2003, 125, 9596–9597 Angela Puchlopek-Dermenci, Fan Liu 13 Myers Chem 115 Asymmetric Allylation Reactions A C2-symmetric Chiral Controller for Aldehyde Allylation and Crotylation: Allylation and Crotylation of !-Diketones: • The C2-symmetric N,N'-dialkylcyclohexanediamine silane shown below shows improved selectivites in the allylation and crotylation of aldehydes: • The first example of enantioselective nucleophilic addition to !-diketones was achieved using the C2-symmetric N,N'-dialkylcyclohexanediamine silane reagent: 4-BrC6H4 4-BrC6H4 N Si N Cl + Ph OH CH2Cl2, –10 °C O H 90%, 98% ee N Si N Cl Ph 4-BrC6H4 Br O O OCH3 + Br CHCl3, 23 °C O HO OCH3 89%, 92% ee regioselectivity > 20 : 4-BrC6H4 4-BrC6H4 4-BrC6H4 N Si N Cl CH3 + CH2Cl2, °C O BnO H 83%, 99% ee CH3 + N Si N Cl OH BnO O O Ph CH3 75%, 97% ee dr > 20 : regioselectivity > 20 : 4-BrC6H4 CH3 4-BrC6H4 O HO CH3 CHCl3, 23 °C Ph CH3 Allylation and Crotylation of !-Diketones: OH 4-BrC6H4 N Si N Cl O CH3 + Ph CH2Cl2, °C H O Si Ph 4-BrC6H4 R2 R1 O Si R2 R2 Fast NH O O O (2.09 g) O R1 CH3 + 79%, 97% ee 4-BrC6H4 O NH 90% recovered Si 4-BrC6H4 O R1 Si R1 O R2 R1 Fast O R2 Fast O O Si R1 R2 Kubota, K.; Leighton, J L Angew Chem., Int Ed 2003, 42, 946–948 Hackman, B M.; Lombardi, P J.; Leighton, J L Org Lett 2004, 6, 4375–4377 R2 • Using 2-hydroxybenzene as an activating group, imines can be allylated or crotylated with high selectivity: O HO Ph Me O Si N Cl Me CH3 + R1 HO CH2Cl2, 23 °C N H 74%, 99% ee dr = 96 : Rabbat, P M A.; Valdez, S C.; Leighton, J L Org Lett 2006, 8, 6119–6121 HN CH3 R1 O HO R2 Ar O Si N H Cl– N Ar H H O R1 R2 HO R1 O R2 Ar O Si N H N Ar H H • Four possible diastereomers undergo fast interconversion • Regioselectivity is determined by Curtin-Hammett kinetics Steric interactions are minimized and conjugation is maximized in the lower energy transition state Chalifoux, W A.; Reznik, S K.; Leighton, J L Nature 2012, 487, 86–89 Angela Puchlopek-Dermenci, Fan Liu 14 Myers Chem 115 Asymmetric Allylation Reactions Mechanism: Hoveyda Boron Allylation Chemistry: • The Hoveyda group demonstrated that Cu-complexed C1-symmetric ligands I and II, can effect enantioselective allylation of phosphinoylimines: Ph Ph Mes N Ph Me N BF4 O H + Br N Ar1 N N Ar H3C P Ph N Ph + H H3C O P Ph N Ph Ph H + N P O Ph Ph iPr Mes H3CO B(pin) II H3C CH3 O H3C B H3C O MeOH, THF, –50 °C 92%, 97% ee Ph Mes N O I (5.0 mol%) CuCl (5 mol% ) NaOt-Bu (12 mol%) HN P Ph Ph Ar1 N N Ar Cu O OCH3 Br I (2.5 mol%) CuCl (2.5 mol% ) NaOt-Bu (6 mol%) H3C CH3 O H3C B H3C O H3C CH3 O H3C B H3C O MeOH, THF, –50 °C 61%, 92% ee II (5 mol%) CuCl (5 mol% ) NaOt-Bu (12 mol%) CH3 MeOH, THF, –50 °C 96%, 90% ee CH3OH R O H3C P Ph HN Ph H3C O Ph P NH Ph R H N P O Ph R2 N Cu H3C R N R1 Ph P Ph Ar1 N O R Cu I P Ph Ph B(pin) N BF4 Mes N Ph N N Ar Cu O P Ph Ph Ph Ph • Allylation is driven by the formation of an energetically favorable B–O bond CH3 Ph • Methanol releases the product alkoxide from the NHC–Cu complex

Ngày đăng: 29/08/2021, 10:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN