1. Trang chủ
  2. » Trung học cơ sở - phổ thông

27 asymmetric diels alder reactions

16 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Myers Asymmetric Diels!Alder Reactions Reviews: Chem 115 • The stereochemical model for chiral induction by the 8-phenylmenthol controller has been applied in the design of a practical auxiliary for asymmetric Diels!Alder reactions: Corey, E J Angew Chem Int Ed 2002, 41, 1650–1667 Evans, D A.; Johnson, J S In Comprehensive Asymmetric Catalysis; Jacobsen, E N.; Pfaltz, A.; O Yamamoto, H., Eds.; Springer: New York, 1999; Vol III, pp 1177!1235 S Reilly, M.; Oh, T Org Prep Proceed Int 1994, 26, 131!158 , BCl3 O O OR O O Kagan, H B.; Riant, O Chem Rev 1992, 92, 1007!1019 99% yield, 98.5 : 1.5 endo : exo, 97% de H PhCH3, –78 °C product diene yield (%) endo : exo de (%) 94 > 99 : 97 97 94 98 94 Applications in Total Synthesis: Nicolaou, K C.; Snyder, S A.; Montagnon, T.; Vassilikogiannakis, G Angew Chem Int Ed 2002, 41, 1668–1698 H O OR H OR Chiral Auxiliaries – Dienophiles: O (–)-8-Phenylmenthol: H OR H3C H3C Ph O CH3 O AlCl3, CH2Cl2 H3C H3C CH3 O CH3 –55 °C O CH3 Corey, E J.; Sarakinos, G Org Lett 1999, 1, 1741!1744 O AlCl3 Dimenthyl Fumarate: O O BnO OR Et2AlCl H3C O CH3 RO I O O CH3 toluene –78 °C • Lewis Acid(s?) CO2R CO2R 100%, 99% de BnO • The menthyl auxiliaries exhibit cooperative asymmetric induction in the case of the fumarate ester, resulting in excellent selectivity for cycloaddition from the back face HO OBn (Intermediate in prostaglandin synthesis) CH3 O O CH3 O H3C O OR Diene 89%, 97% de • Endo-selective cycloaddition is proposed to occur from the unblocked "-face of the s-trans acrylate-Lewis acid complex • A favorable #-stacking interaction is proposed to enhance the stereoselectivity of this process (Acrylates derived from menthol afford lower diastereoselectivity – ca 40%) • (–)-8-phenylmenthol, derived from (–)-pulegone, is commercially available Recovery of the auxiliary was accomplished in 94% yield following reductive removal Corey, E J.; Ensley, H E J Am Chem Soc 1975, 97, 6908!6909 Ensley, H E.; Parnell, C A.; Corey, E J J Am Chem Soc 1978, 43, 1610!1612 Lewis Acid Temperature (°C) Yield de (%) i-Bu2AlCl –40 56 95 i-Bu2AlCl –20 94 95 Et2AlCl –20 70 96 AlCl3 25 92 99 CH3 CH3 CH3 From: Furuta, K.; Iwanaga, K Yamamoto, H Tetrahedron Lett 1986, 27, 4507!4510 Kent Barbay Myers Asymmetric Diels"Alder Reactions N-Acyloxazolidinone Dienophiles: O • Diene scope: includes dienes less reactive than cyclopentadiene (e.g acyclic dienes) In this case, imide afforded uniformly higher diastereoselectivities than or O CH3 O N R' O R = CH(CH3)2 R = CH2Ph R' R O O Et2AlCl (1.4 equiv) CH3 O CH3 Bn XP R R' Et2AlCl (1.4 eq) Ph –100 °C, CH2Cl2 2–5 R COXC diene dr isolated yield (%) isolated dr H isoprene 95 : 85 > 99 : H piperylene >100 : 84 > 99 : endo dr isolated yield isolated dr CH3 isoprene 94 : 83 > 99 : >100 : 93 : 81 >99 : CH3 piperylene 95 : : : 77 > 99 : >100 : 95 : 78 97 : dienophile endo : exo 1, R' = H 2, R' = H 100 : : 95 82 99% Evans, D A.; Chapman, K T.; Bisaha, J Tetrahedron Lett 1984, 25, 4071"4074 Kent Barbay Myers Asymmetric Diels#Alder Reactions • The stereochemical outcome is rationalized by the following model, involving a chelated complex: Camphor-derived N-Enoyl Sultams: H3C CH3 H3C CH3 R R Temperature (°C) H N R Time (h) endo : exo endo dr yield –130 99.5 : 0.5 97.5 : 2.5 83a –78 18 96 : 99 : 91b CH3 O R O R Temperature (°C) Time (h) H –78 98.5 : 1.5 81 CH3 –94 97 : 64 MLn • The camphor-derived sultam auxiliary has also been applied to intramolecular reactions: H3C XC CH3 H Endo I n XC H Endo II XC O H H Exo I n dr (Endo I : Endo II : [Exo I + Exo II]) >97.4 : 2.5 : 97% de, 98% yield Ph product yield (%) ee(%) 79 88 87 88 86 98 66 96 OH OH 82 92 OH OH 64 98 O CH3 CH3 OH CHO O CH3 Trost, B M.; O'Krongly, D.; Belletire, J L J Am Chem Soc 1980, 102, 7595–7596 OH 10% HF OH OCH3 R O CHO CH3 OH O • A stereochemical model rationalizing these results has been presented by Thornton: CO2t-Bu OH CHO H • a transition state conformation in which the phenyl substituent O O MeO Ph CO2Me O Ph OH is perpendicular to the plane of the diene is proposed, favoring H approach from the top face Siegel, C.; Thornton, E R Tetrahedron Lett 1988, 29, 5225–5228 Tripathy, R.; Carroll, P J.; Thornton, E R J Am Chem Soc 1991, 113, 7630–7640 EtO2C MeO2C CO2Et CO2Me O O Kent Barbay Myers Asymmetric Diels"Alder Reactions • These cycloadditions are proposed to proceed by a stepwise mechanism: • Stereochemical Model: L CH3O TBSO s Ph endo TS L OTBS N (L = COX) Ph N Ph TBSO N s Ph R3 Ph exo TS L s OTBS Ph s N Ph Barluenga, J.; Aznar, F.; Ribas, C.; Valdés, C J Org Chem 1997, 62, 6746–6753 Enders, D.; Meyer, O.; Raabe, G Synthesis 1992, 1242–1244 NaHMDS OTMS CH3 exo N TMS + • Both endo and exo cycloadducts are transformed to the same enantiomer of the cyclohexenone product, allowing the use of dienophiles that not undergo cycloaddition with high endo/exo selectivity Ar N H • 2-amino dienes: R1 N CH3 NO2 R2 N R3 R1 HOAc Ar combined yield (%) R3 yield (%) ee (%) H H Ph 48 98 CH2OTBS H Ph 63 94 CH2OTBS CH2OTBS H Me i-Pr 48 56 95 92 70 94 CH2OTBS H -(CH2)4- CH3 NH Ar O B ee (%) (pdt A) 51 > 98 43 90 Ph 65 95 H3C NO2 R2 O R3 • Sulfinyl-substituted dienes: O S CO2Me OCH3 R2 + Ar O 3-furyl OCH3 R1 OH Barluenga, J.; Anzar, F.; Ribas, C.; Valdés, C.; Fernández, M.; Cabal, M.-P.; Trujillo, J Chem Eur J 1996, 2, 805–811 *R OCH3 NH 4-MeOPh Review: Enders, D.; Meyer, O Liebigs Ann 1996, 1023–1035 NO2 CH3 –80 ! 23 °C NaHCO3, H2O OCH3 Chiral 2-heterosubstituted dienes: R2 + R3 OH ZnCl2, THF A Kozmin, S A.; Rawal, V H J Am Chem Soc 1999, 121, 9562–9573 R1 R1 • Alkyl substitution at C3 of the diene appears to be required, probably to restrict the conformation of the prolinol group as shown s Ph L CH3 CH3 L N (L = COX) O TBSO Ph H H • Large group on dienophile occupies an open quadrant of diphenylpyrrolidine auxiliary in either endo or exo TS's s L N NO2 R2 H endo + Ph Chem 115 R* = LiClO4, CH2Cl2 25 °C CH3 CH3 *R O S CO2Me OCH3 70% yield, 92% de endo only OH Aversa, M C.; Barattuci, A.; Bonaccorsi, P.; Giannetto, P.; Jones, D N J Org Chem 1997, 62, 4376–4384 Kent Barbay Myers Asymmetric Diels#Alder Reactions Chiral Auxiliaries for Asymmetric Diels-Alder Reations – Applications in Synthesis: (–)-Bilobalide: (+)-Lepicidin A: OTIPS H3C H3C O OTIPS OTES H3C H O O O H3C O Me2AlCl N O CH3 OTES O H H3C CH3 O O CH2Cl2 ! 23°C Bn H 71%, 10 : diastereoselectivity H XP O (i-Bu)2AlCl CH2Cl2/hexane H3C H H3C O NaHMDS OH H OTBS H3C O O O Corey, E J.; Su, W.-G Tetrahedron Lett 1988, 29, 3423–3426 H OTBS Pulo'upone: NMe2 TBSO H OH HH O H H3C CH3 XC O N (+)-Lepicidin A H O Me2AlCl TBSO CH2Cl2 –20 °C SO2 Me OMe OMe OMe H3C O O OTIPS OTES H H3C O O O Me2AlCl H3C O N LiH, DMF O H H3C N H H H O N H OTBS 89% O H H O Evans, D A.; Black, W C J Am Chem Soc 1993, 115, 4497–4513 O OTES O 74%, : diastereoselectivity BF3•OEt2 63%, ca 100% de (Crude de = 93%) • A control experiment showed the auxiliary overcame inherent stereochemical bias in the substrate: OTIPS O H H O H3C (–)-Bilobalide H O H t-Bu O H3CO H Me O H3C OH OH O O O 12 : diastereoselectivity H MenO2C O THF, –78 °C HH O H KHMDS, THF, –48 °C O H MenO2C MenO2C OTIPS CO2Men O t-Bu (CH3O)2HC t-Bu CO2Men LDA, THF –78 °C t-Bu CO2Ph ["]23D +25.5° (c 8.0, CHCl3) OTBS O O H CH3 CH3 OTIPS H H3C O MenO2C H3C O O H OTBS H3C Chem 115 OTBS O (+ 90% recovered sultam) H (–)-Pulo'upone Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T R.; Bernardinelli, G Tetrahedron Lett 1988, 29, 5885–5888 Kent Barbay Myers Asymmetric Diels!Alder Reactions Chem 115 • Both antipodes of the 1,2-diaryl-1,2-diaminoethane ligands are available, via resolution employing tartaric acid: Corey, E J.; Lee, D.-H.; Sarshar, S Tetrahedron: Asymmetry 1995, 6, 3–6 Catalytic, Asymmetric Diels!Alder Reactions: • The first reported catalytic, asymmetric Diels!Alder reaction: • Proposed transition-state assembly: CH3 O N OAlCl2 + H3C CHO Tf H3C CH3 (15 mol%) toluene, –78 °C CH3 69%, 72% ee exo : endo = 98 : • Non-chelated binding mode • s-trans dienophile conformer O N Al N CH3 Tf • Phenyl blocks front face CHO O • The exo selectivity of "-substituted acroleins is general • This model is supported by 1H, 13C, and 1H NOE data for the : dienophile : catalyst complex, as well as X-ray diffraction analysis of the catalyst dimer Hasimoto, S.; Komeshima, N.; Koga, K J Chem Soc., Chem Commun 1979, 437–438 Corey, E J.; Sarshar, S J Am Chem Soc 1992, 114, 7938–7939 C2-symmetric Diazaaluminolidine Catalysts: Chiral (Acyloxy)borane (CAB): Ph Ph F3CO2SN R O + R' O N R NSO2CF3 + R Al CH3 R' O (10-20 mol%) O R' H H H CH3 CH2OBn H CH2Cl2, –78 °C endo : exo ee (%) O 91 92 96 : 94 88 R3 + O Corey, E J.; Imwinkelried, R.; Pikul, S.; Xiang, Y J Am Chem Soc 1989, 111, 5493–5495 • A modified catalyst expanded the scope of this system to include maleimide dienophiles: Ar F3CO2SN NSO2CF3 Al CH3 Ar = 3,5-dimethylphenyl (20 mol%) O + H3CO N O toluene, –78 °C CH3 R2 R1 CHO R4 94 95 Ar CHO OR O CHO R1 CH2Cl2, –78 °C R3 CH2Cl2, –78 °C R4 O O R2 or (10 mol %) CO2H OR R1 B H O O R = Me R = i-Pr CHO R2 yield (%) >50 : – N or (10 mol %) R2 R1 H O N H3CO H O R1 R2 R3 H H – – 88 : 12 84 90 H H CH3 CH3 – 84 53 H CH3 – – 11 : 89 96 85 H CH3 CH3 CH3 – 97 61 H CH3 CH3 H – 91 65 CH3 CH3 – : 97 90 91 H Br – – : 94 95 100 H Br CH3 CH3 – 95 80 CH3 Br – – >99 : 98 100 – R4 endo : exo ee (%) yield (%) • "-substituted ",#-unsaturated aldehyde dienophiles give optimal selectivities CH3 98%, 93% ee Corey, E J.; Sarshar, S.; Lee, D.-H J Am Chem Soc 1994, 116, 12089–12090 catalyst • Both enantiomers of the CAB catalyst are available, from (+) and (–)-tartaric acid Furuta, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H J Org Chem 1989, 54, 1483–1484 Ishihara, K.; Gao, Q.; Yamamoto, H J Org Chem 1993, 58, 6917–6919 Kent Barbay Myers Asymmetric Diels#Alder Reactions • Yamamoto's CAB catalyst has been applied to intramolecular reactions: MeO O CHO CH3 • Lewis acids complex aldehydes syn with respect to the formyl proton – for a review on the conformations of carbonyl-Lewis acid complexes, see: Shambayati, S.; Crowe, W E.; Schreiber, S L Angew Chem., Int Ed Engl 1990, 29, 256–272 CO2H O Chem 115 O B H O OMe O (10 mol%) • Formyl CH O hydrogen bonding is proposed as an additional organizational element leading to the excellent enantioselectivities observed For the application of the formyl CH O hydrogen bond postulate to the understanding of enantioselective reactions involving chiral boron Lewis acids and aldehydes, see: Corey, E J.; Rohde, J J Tetrahedron Lett 1997, 38, 37–40 CHO CH3 CH2Cl2, –40 °C 84%, 92% ee 99 : endo : exo • A modified oxazaborolidine catalyzes cycloadditions to furan: Furuta, K.; Kanematsu, A.; Yamamoto, H.; Takaoka, S Tetrahedron Lett 1989, 30, 7231–7232 NH Oxazaborolidine Catalysts: Br + Br CHO (5 mol%) CHO CHO CH2Cl2, –78 °C CHO Br + (5 mol%) CHO O (10 mol%) + Br CH2Cl2, –40 °C H3C H O CHO CH2Cl2, –78 °C NH Br 95%, 99% ee 96 : exo : endo CH3 O H3C Br >98%, 92% ee O Ts N B O n-Bu O N B n-Bu Ts H Corey, E J.; Loh, T.-P Tetrahedron Lett 1993, 34, 3979–3982 76%, 92% ee • Corey has demonstrated the synthetic versatility of the 2-bromoacrolein/cyclopentadiene cycloaddition adducts: • !-substitution on the aldehyde component is required for high enantioselectivity • The tryptophan-derived ligand was efficiently recovered Corey, E J.; Loh, T.-P J Am Chem Soc 1991, 113, 8966–8967 CO2H OH Br O • Physical and chemical studies of this system led to the following transition-state model: O H N Br H H Br H O O CHO O N B n-Bu H O S O • The complex of the s-cis conformer is proposed to be the reactive species • Attractive "-stacking interactions between the indole and the dienophile organize the TS, and result in reaction from the unblocked (back) face CH3 Corey, E J.; Loh, T.-P.; Roper, T D.; Azimioara, M D.; Noe, M C J Am Chem Soc 1992, 114, 8290–8292 CH3 O CO2Et O Br CH3 Corey, E J.; Loh, T.-P J Am Chem Soc 1991, 113, 8966–8967 Kent Barbay Myers Asymmetric Diels"Alder Reactions • Catalysts 1, 2, and exhibit broad substrate scope and predictable selectivities Enantioselectivities are typically >90%; endo:exo ratios are uniformally high (4:1!>99:1) Cationic Oxazaborolidine Catalysts: H Ph Ph O + catalysta or (20 mol%) CH3 CO2Et CH2Cl2 CH3 diene dienophile product O O N B X– H Ar OEt Chem 115 CH3 CH3 CH3 CH3 Ar = o-tolyl O H yield, ee (%) 16, 20 99, 64 24, 99, 77 48, –78 97, 91 2, –95 98, >99 24, –78 85, 94 16, –20 97, 93b H O H CH3 time (h), temp (°C) O CH3 catalyst X OTf NTf2 temp (°C) time (h) 20 yield (%) endo:exo ee (%, endo) 46 94 91:9 89:11 >98 97 72 16 CH3 CH3 O O O H CH3 O CH3 CH3 TIPSO TIPSO • The neutral oxazaborolidine catalyst does not exhibit catalytic activity in the Diels"Alder reaction of cyclopentadiene with methacrolein O • Early experiments were conducted with catalyst 1; it was subsequently shown that the triflimideactivated catalyst exhibits greater thermal stability and higher catalytic activity H N B Tf2N H Ar1 O CHO CH3 H O Ar1 = o-tolyl Ar2 = 3,5-dimethylphenyl O a 20 mol% catalyst bendo:exo = 91:9 • Corey has proposed the following pre-transition-state complexes: O OCH2CF3 + CH3 Ar2 O H O • When using less reative dienes, the related 3,5-dimethylphenyl catalyst is often superior to Ar2 CH3 H or (20 mol%) Ar1 CO2CH2CF3 solvent, 20 °C H X catalyst solvent time (h) yield (%) ee (%) toluene neat 40 24 78 96 88 95 Corey, E J.; Shibata, T.; Lee, T W J Am Chem Soc 2002, 124, 3808 Ryu, D H.; Lee, T W.; Corey, E J J Am Chem Soc 2002, 124, 9992 Ryu, D H.; Corey, E J J Am Chem Soc 2003, 125, 6388 • A useful set of predictive selection rules has been developed for the oxazaborolidinium-mediated Diels"Alder reaction of substituted quinones: Ryu, D H.; Zhou, G.; Corey, E J J Am Chem Soc 2004, 126, 4800 N B Ar1 Ph O H H O X R enals R' N B O R Ph O H R' quinones, enones, and #,$-unsaturated esters • The phenyl [or 3,5-dimethylphenyl in the case of (not shown)] substituent is proposed to engage in %-stacking with the dienophile • The diene approaches the catalyst–dienophile complex from the face opposite the phenyl group • The existence of an O—HC interaction is supported by studies of enal-, and enone-BF3 complexes • Note the sense of stereoinduction for enals is opposite that of quinones, enones, and #,$unsaturated esters Seth B Herzon Myers Asymmetric Diels#Alder Reactions Alkyldichloroboranes: Chem 115 Titanium-TADDOL: • Narasaka's Ti complex catalyzes a wide variety of Diels#Alder reactions with high selectivities: Ph BCl2 Ph Me R CO2Me + n (10 mol%) n CH2Cl2 –78 ! –20 °C Ph O O O O TiCl2 Ph Ph R CO2Me + R2 (10 mol %) O O N O R2 O 4Å MS, –23 ! 23 °C R n O ee (%) yield (%) H 97 97 CH3 93 91 CO2Me 90 92 H 86 83 O O R1 + R N R1 (10 mol %) O N O R2 N 4Å MS, ! 23 °C O O O • The catalyst was prepared by resolution with (–)-menthone O • The adjacent figure illustrates the approximate conformation of the catalyst• methyl crotonate complex (X-ray) Cl B Cl O H3C H3CS N O toluene/pet ether 4Å MS, –5 °C O R2 CH3S O N O • NMR studies suggest this conformation is retained in solution CH3 O + R2 (10 mol %) O O O • The s-trans crotonate conformer is observed • The carbonyl is positioned over and parallel to the naphthylene, within van der Waals contact (3.2 Å) ("-stacking interaction) • Complexation of Lewis acids anti to ester C–O bonds appears to be a general phenomenon • The absolute stereochemical configuration of the products is consistent with a transition-state model closely related to the observed ground state complex: Cl B Cl R O H3C O R CO2Me Diene R1 R2 – H – – endo : exo ee (%) yield (%) reference n.d 88 81 CH3 87 : 13 94 91 Ph 92 : 80 76 H H – 93 81 H CO2Me – 91 84 CH3 H – >96 93 CH3 CO2Me – 94 94 – H 85 :15 87 97 – CO2Me 78 : 22 86 99 Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J J Am Chem Soc 1989, 111, 5340–5345 Narasaka, K.; Tanaka, H.; Kanai, F Bull Chem Soc Jpn 1991, 64, 387–391 Narasaka, K.; Yamamoto, I Chem Lett 1995, 1129–1130 • The naphthalene substituent forces the dienophile to approach from the front face Hawkins, J M.; Loren, S J Am Chem Soc 1991, 113, 7794–7795 • A number of transition-state models have been proposed; the analysis is complicated by the number of coordination possibilities available in octahedral complexes Kent Barbay 10 Myers Asymmetric Diels!Alder Reactions Bis(oxazoline) Copper Complexes: • The stereochemical results are in all cases consistent with the following model: • Evans' copper (II) catalysts have been successfully applied to a wide array of cycloaddition substrates: O + Cu N CH2Cl2 O X + O N CMe3 O Si face R • Acyclic dienes unsubstituted at the 1-position afforded lower enantioselectivities: O O N Catalyst O Diene O N CH2Cl2 O + O N yield (%) – 59 81 – 65 78 98 57a CH3 CH3 O O 10 CH3 O O ee (%) X 10 (1–5 mol%) 11 O endo : exo 10 O N O R or 10 (5–10 mol%) O + SbF6– N Cu Me3C CMe3 X = OTf 10 X = SbF6 O R N +2 N • Square planar geometry about Cu • Imide binds in a bidentate fashion • s-cis dienophile configuration • diene approaches from the back face; the front face is blocked by the t-Bu group O O N Me3C O X– +2 H3C CH3 +2 H3C CH3 O Chem 115 CH3 10 (5 mol %) O O 12 10 O CH2Cl2, –78 °C N O OAc 27 : 73 a Isolated yield of enantiomerically and diastereomerically pure material • These dienes (substituted at C3) are proposed to approach via an exo transition state The exo transition state is apparently only selective in the case of 1-substituted dienes R endo : exo – H 98 : >98 86 – CO2Et 94 : 95 92 96 : 97 85 Catalyst Diene X 9 ee (%) yield (%) – CH3 10 – Ph 91 : 96 96 10 – Cl 86 : 14 95 96 10 11 OAc – 85 : 15 96 75 10 11 SPh – 98 : 98 10 11 NHCbz – 72 : 28 90 10 12 – – 80 : 20 97 • Calalyst 10 is also effective for intramolecular Diels!Alder reactions: R O O N n 10 (5-10 mol%) O R H CH2Cl2, 25 °C N H n R n 84 H >99 : 86 89 54 Ph >95 : 92 86 97 Ph 97 97 • Catalyst 10 (X = SbF6) uniformly provides higher reactivity and higher levels of asymmetric induction than (X = OTf), which was reported earlier Evans D A.; Murry, J A.; von Matt, P.; Norcross, R D.; Miller, S J Angew Chem., Int Ed Engl 1995, 34, 798–800 endo : exo 84 : 16 ee (%) O O O yield (%) Evans, D A.; Miller, S J.; Lectka, T J Am Chem Soc 1993, 115, 6460–6461 Evans, D A.; Miller, S J.; Lectka, T.; von Matt, P J Am Chem Soc 1999, 121, 7559–7573 Evans, D A.; Barnes, D M.; Johnson, J.; Lectka, T.; von Matt, P.; Miller, S J.; Murry, J A.; Norcross, R D.; Shaughnessy, E A.; Campos, K R J Am Chem Soc 1999, 121, 7582–7594 Kent Barbay 11 Myers Asymmetric Diels"Alder Reactions Asymmetric Catalysis of the Diels–Alder Reaction with a Chiral Amine through Reversible Iminium Ion Formation: O N R • Stereochemical model: CH3 O N CH3 N CH3 H • HCl 13 mol % Ph Chem 115 Ph CH3 N • Selective formation of the (illustrated) (E)-iminium isomer is CH3 CH3 proposed, avoiding unfavorable interactions between the substrate olefin and the geminal dimethyl substituents H O + R CHO endo • The benzyl substituent shields the !-face of the dienophile CHO R Ahrendt, K A.; Borths, C J.; MacMillan, D W C J Am Chem Soc 2000, 122, 4243–4244 exo 5% H2O–MeOH 23 °C Jacobsen's Catalyst: R exo : endo yield exo ee (%) endo ee (%) Me 75 1:1 86 90 n-Pr 92 1:1 86 90 i-Pr 81 1:1 84 93 Ph 99 1.3 : 93 93 Furyl 89 1:1 91 93 • Jacobsen's Cr (III) salen complex 14 catalyzes highly enantioselective Diels–Alder reactions of 1-amino-3-silyloxydienes and acroleins: H N H N Cr t-Bu R O SbF6 t-Bu t-Bu 14 CHO 13 (20 mol %) R O O 5% H2O–MeOH 23 °C X R2 TBSO endo 14 (5 mol %) t-Bu R2 TBSO + R1 product R diene yield endo : exo ee (%) Ph N CHO CO2Me 4Å MS, CH2Cl2 –40 °C Ph N R1 CHO CO2Me endo H 82 14 : 94 CHO CH3 CH3 H 84 – 89 CHO H Ph Ph CH3 CH3 CH3 R CHO CH3 90 – 75 – 90 75 5:1 90 83 R1 R2 yield ee (%) Me H 93 97 Et H 91 97 i-Pr H 92 >97 TBSO(CH2)2 H 93 95 TBSO H 86 >97 76 96 –(CH2)3– CH3 H CHO • No exo products were observed in these cycloadditions Huang, Y.; Iwama, T.; Rawal, V H J Am Chem Soc 2000, 122, 7843–7844 Kent Barbay 12 Myers Asymmetric Diels!Alder Reactions • X-ray analysis of the (1R, 2R)-salen–Co(III)-SbF6•2PhCHO complex suggested that replacing the t-butyl groups with bulkier trimethylsilyl substituents might create a steric interaction (between the trimethylsilyl groups) that would twist the aromatic rings out of plane • This modification has resulted in an exceptionally selective and active Diels–Alder catalyst: H N H N Co t-Bu t-Bu O O SbF6 TMS TMS R2 N Ph CH2Cl2 room temp N Ph CO2Me R1 R2 CH3 H CH3 98 98 H 0.05 72 93 98 CH2CH3 H 0.1 30 93 >97 TBSO(CH2)2 H 0.5 18 100 >97 5a H H 0.1 18 100 85 6b H H 40 90 >97 72 78 >95 b TBSO CH3 Reaction performed at –78 °C CH3 N CH3 82 91 80 83 88 i-Pr 77 81 92 Bn 84 82 89 CH2CH2OTBS 80 80 86 N CH3 R Ar CH3 CH3 O Ar R N CH3CN CH3 Ar LAH, Et2O OH OH HF, CH3CN Ar H R O R TBSO O toluene, –40 °C 2.0 equiv CH3 N CH3 R O AcCl O CH2Cl2 –78 °C OCH3 O O O O R CHO O 68%, 94% ee 68%, 94% ee O 69%, >98% ee 97%, 94% ee O O O O O O 70%, >98% ee HF 2.0 equiv O H O catalyst (20 mol%) CF3 CHO toluene, –80 °C days • The diene approaches from the face opposite the napthyl group O • Products: TBSO CH3 catalyst: 85 CH2CH3 O catalyst (20 mol%) CHO CH3 H + O R The same TADDOL derivative catalyzes hetero-Diels–Alder reactions: Catalysis via Hydrogen Bonding + 73 Catalytic, Asymmetric Hetero-Diels–Alder Reactions: • Entry represents the lowest substrate/catalyst ratio (s:c = 2000) reported for an asymmetric Diels–Alder reaction Huang, Y.; Iwama, T.; Rawal, V H J Am Chem Soc 2002, 124, 5950 TBSO 77 Thadani, A N.; Stankovic, A R.; Rawal, V H Proc Natl Acad Sci U.S.A 2004, 101, 5846 performed at °C — CO2Me ee (%) –(CH2)4– H R1 CHO yield CH3 O O O time (h) a Reaction mol % cat % yield CH3 endo entry % ee of R R2 + CHO % yield entry •The following stereochemical model has been proposed: catalyst R1 Chem 115 O O 67%, 92% ee Ph O O 64%, 86% ee O 52%, >94% ee Huang, Y.; Unni, A K.; Thadani, A N.; Rawal, V H Nature, 2003, 424, 146 R OH • A 2nd-generation catalyst was developed, expanding the substrate scope See: Unni, A K.; Takenaka, N.; Yamamoto, H.; Rawal, V H J Am Chem Soc 2005, 127, 1336 Seth B Herzon 13 Myers Asymmetric Diels!Alder Reactions OTES CH3 + RCHO H3C TBAF, AcOH, THF Inverse Electron Demand Hetero-Diels!Alder Reactions catalyzed by Bis(oxazoline) O 14 (3 mol%) 4Å MS, 23 °C CH3 O H3C Chem 115 Copper(II) Complexes: + H3C CH3 R O O – R Ph CH2OTBS CH2OBn ee (%) yield (%) 90 72 >99 97 94 94 98 85 (CH2)4CH=CH2 98 78 CH2CH2Ph 98 78 2-furyl 95 77 n-C5H11 N CH3 N O X X hetero diene • Excellent enantioselectivities were maintained with several other dienes in reactions catalyzed by 15: ee (%) H3C O O 3Å MS, THF, °C hetero dienophile O EtO 91 C O O H3CO O endo yield (%) ee (%) R = Me 24 : 87 97 R = Ph > 20 : 93 97 R = i-Pr 22 : 95 96 R = OMe 59 : 90 98 R = Ph 16 : 96 97 R = i-Pr 16 : 94 95 R = Et > 20 : 94 97 R = Ph > 20 : 91 99 OEt EtO2C O R O EtO2C 50 Ph H3CO Y R OTBS >99 O endo : exo product 78 OTBS X O R CH3 H3C + O Y yield (%) O OTES CH3 H3C C O O 98 H3C C O R EtO OTES R mol% 16 14 X = SbF6 15 X = Cl Product • air-stable, solid catalyst R • The diastereoselectivity was >95% in all cases, favoring the illustrated endo product • Use of acetone as solvent in the cycloaddition generally improves enantioselectivities, and is critical in the case of aromatic aldehydes • Both enantiomers of the aminoindanol ligand are commercially available Diene OTf Cu Me3C H2O OH2 CMe3 OTf 16 Cr O N O OEt H H O Ph 91 OTBS • This is the first effective method for the asymmetric HDA reaction between dienes with less than two oxygen substituents and unactivated carbonyl compounds Dossetter, A G.; Jamison, T F.; Jacobsen, E N Angew Chem., Int Ed Engl 1999, 38, 2398!2400 EtO C O O SR EtO2C O SR Kent Barbay 14 Myers Asymmetric Diels!Alder Reactions Catalytic, Asymmetric Diels!Alder Reactions – Applications in Synthesis: R1 R1 R2 Gibberellic Acid: R2 mol% 16 Chem 115 NH + O (MeO)2P O 3Å MS, THF, °C X (MeO)2P O X O O endo O N B Ts n-Bu H R1 R2 X yield (%) endo : exo ee (%) Me H OEt 84 36 : 93 Ph H OEt 95 22 : 97 i-Pr H OEt 92 22 : 95 OEt H OEt 92 44 : 97 Me Me OEt 98 25 : ≥90 H Me 16 : 75 SEt Br CO2Me Br 96 CHO OTMS • The hetero-Diels!Alder reactions catalyzed by 16 have a favorable temperature-enantioselectivity profile, affording dihydropyrans with high enantioselectivities even at °C • Stereochemical Model: H3C CH3 O Me3C Gracilin B: R1 CMe3 O P OCH3 R2 O H " CO NaCl, DMSO, " (20 mol %) TMS • attack of heterodienophile occurs from the less hindered #-face O Br Ar NSO2CF3 Al TMS CH3 Ar = 3,5-dimethylphenyl t-Bu R2 = H H2, Pd/C or Rh/C R1 (MeO)2P O CH3 O R2 = H O X dr > 20 : COOH OsO4, NMO t-BuOH, H2O O CH3 R2 TMS H OCH3 H HO2C OHC H OCH RuCl3•(H2O)3 NaIO4 Evans, D A.; Johnson, J S.; Olhava, E J J Am Chem Soc 2000, 122, 1635–1649 H H H O H O H OCH H3CO CH3 O O HO O OEt (MeO)2P O OH dr > 20 : MeSO3H O CH3 R2 = H O H OCH3 H3C OEt t-Bu O 89%, 95% ee O O R1 = CH3 O OEt (MeO)2P R2 = H or CH3 O dr > 20 : O N O R2 HO H toluene, –78 °C HCl, MeOH PPTS CHO H3C OH H Ar • The product dihydropyrans are synthetically versatile: MeO2C HO O N + OCH3 R1 H F3CO2SN • heterodiene binds in a chelated fashion Cu XO 81%, 99% ee, 99 : exo : endo Gibberellic Acid • square planar transition structure –OTf N Br CH2Cl2, –78 °C Corey, E J.; Guzman-Perez, A.; Loh, T.-P J Am Chem Soc 1994, 116, 3611!3612 +2 O N CHO Br (10 mol %) Br + Gracilin B H H H AcO O H O AcO Corey, E J.; Letavic, M A J Am Chem Soc 1995, 117, 9616!9617 Kent Barbay 15 Myers Asymmetric Diels!Alder Reactions Estrone Ph H Tf2N– CH3 CHO N B H O CH3 CH3 CHO (20 mol%) Chem 115 The application of the oxazaborolidinium catalysts to once racemic syntheses has been demonstrated: H Ph Ph O O H i-Pr i-Pr O N B Tf2N– H Ar OCH3 OCH3 H O O toluene, –50 °C, 48 h Ar = o-tolyl 99%, 99% ee CO2Et EtO2C CH3O H CH2Cl2, –78 °C, h H CH3O 92%, 94% ee recryst 100% ee O steps CH H N 62% CH3 O CH3 O three steps† H O H CH3 (–)-dendrobine H H NCH3 CH3 H racemic synthesis: Kende, A S.; Bentley, T J J Am Chem Soc 1974, 96, 4332 HO H CH3O Hu, Q.; Rege, P D.; Corey, E J J Am Chem Soc 2004, 126, 5984 † i-Pr Hu, Q.; Zhou, G.; Corey, E J J Am Chem Soc 2004, 126, 13708 H (+)-estrone H3CO2C H i-Pr O Tf2N– Ph Ar = o-(CF3)C6H4 (a) Ananchenko, S N.; Torgov, I V Tetrahedron Lett 1963, 4, 1553 (b) Quinkert, G.; Grosso, M D.; Dõring, A.; Döring, W.; Schenkel, R I.; Bauch, M.; Dambacher, G T.; Bats, J W.; Zimmermann, G.; Dürner, G Helv Chim Acta 1995, 78, 1345 O H O N B H Ar (10 mol%) CH2Cl2, –50 °C, 16 h H O 95%, 82/18 endo/exo 96% ee (endo) • Both enantiomers of the catalyst are accessible • The following pre-transition-state assembly was suggested: CO2Et CH3 H O H H H H N B O CH3 CH3 H3C CH3 CH3O2C H H CH3 silphinene H O OCH3 O racemic synthesis: Tsunoda, T.; Kodama, M.; Ito, S Tetrahedron Lett 1983, 24, 83 Hu, Q.; Zhou, G.; Corey, E J J Am Chem Soc 2004, 126, 13708 Seth B Herzon 16 ... H J Am Chem Soc 2005, 127, 1336 Seth B Herzon 13 Myers Asymmetric Diels! Alder Reactions OTES CH3 + RCHO H3C TBAF, AcOH, THF Inverse Electron Demand Hetero -Diels! Alder Reactions catalyzed by Bis(oxazoline)... 1999, 38, 2398!2400 EtO C O O SR EtO2C O SR Kent Barbay 14 Myers Asymmetric Diels! Alder Reactions Catalytic, Asymmetric Diels! Alder Reactions – Applications in Synthesis: R1 R1 R2 Gibberellic Acid:... esters Seth B Herzon Myers Asymmetric Diels# Alder Reactions Alkyldichloroboranes: Chem 115 Titanium-TADDOL: • Narasaka's Ti complex catalyzes a wide variety of Diels# Alder reactions with high selectivities:

Ngày đăng: 29/08/2021, 10:35

Xem thêm:

TỪ KHÓA LIÊN QUAN