Một số mở rộng của hệ suy diễn mờ phức cho bài toán hỗ trợ ra quyết định.Một số mở rộng của hệ suy diễn mờ phức cho bài toán hỗ trợ ra quyết định.Một số mở rộng của hệ suy diễn mờ phức cho bài toán hỗ trợ ra quyết định.Một số mở rộng của hệ suy diễn mờ phức cho bài toán hỗ trợ ra quyết định.Một số mở rộng của hệ suy diễn mờ phức cho bài toán hỗ trợ ra quyết định.
B® GIÁO DUC VÀ ĐÀO TAO VIfiN HÀN LÂM KHOA HOC VÀ CÔNG NGHfi VIfiT NAM HOC VIfiN KHOA HOC VÀ CƠNG NGHfi LƯƠNG TH± HONG LAN M®T SO Mê R®NG CÛA Hfi SUY DIEN Mè PHÚC CHO BÀI TỐN HO TRe RA QUYET бNH LU¾N ÁN TIEN SĨ NGÀNH MÁY TÍNH Hà N®i - 2021 B® GIÁO DUC VÀ ĐÀO TAO VIfiN HÀN LÂM KHOA HOC VÀ CÔNG NGHfi VIfiT NAM HOC VIfiN KHOA HOC VÀ CÔNG NGHfi LƯƠNG TH± HONG LAN M®T SO Mê R®NG CÛA Hfi SUY DIEN Mè PHÚC CHO BÀI TOÁN HO TRe RA QUYET бNH Chuyên ngành: Khoa HQC máy tính Mã so: 9.48.01.01 LU¾N ÁN TIEN SĨ NGÀNH MÁY TÍNH NGƯOI HƯONG DAN KHOA HOC: PGS.TS Lê Hoàng Sơn PGS.TS Nguyen Long Giang Hà N®i - 2021 LèI CAM ĐOAN Tác gia xin cam đoan cơng trình nghiên cúu cua ban thân tác gia, đưoc hồn thành dưói sn hưóng dan cua PGS.TS Lê Hồng Sơn PGS.TS Nguyen Long Giang Các ket qua nghiên cúu ket lu¾n lu¾n án trung thnc, khơng chép tù bat kỳ m®t nguon dưói bat kỳ hình thúc Vi¾c tham khao nguon tài li¾u đưoc thnc hi¾n trích dan ghi nguon ti liắu tham khao ỳng quy %nh H Nđi, ngy 19 tháng 06 năm 2021 Tác gia lu¾n án Lương Th% Hong Lan LèI CÂM ƠN Lu¾n án đưoc hồn thành vói sn no lnc khơng ngùng cua tác gia sn giúp đõ het tù thay giáo hưóng dan, ban bè ngưịi thân Đau tiên, tác gia xin bày to lòng biet ơn chân thành sâu sac tói thay giáo hưóng dan PGS.TS Lê Hồng Sơn PGS.TS Nguyen Long Giang Sn t¾n tình chi bao, hưóng dan đ®ng viên cua thay dành cho tác gia suot thịi gian thnc hi¾n lu¾n án khơng the ke het đưoc Tác gia xin gui lịi cam ơn tói thay, giỏo v cỏn bđ cua bđ phắn quan lý nghiờn cúu sinh - HQC vi¾n Khoa HQC Cơng ngh¾ (Vi¾n Hàn lâm Khoa HQC Cơng ngh¾ Vi¾t Nam), bđ phắn quan lý nghiờn cỳu sinh cua Viắn Cụng ngh¾ thơng tin nhi¾t tình giúp đõ tao mơi trưịng nghiên cúu tot đe tác gia hồn thành cơng trình cua Tác gia xin chân thành cam ơn anh ch% em Lab Tai Vi¾n Cơng ngh¾ thơng tin - Đai HQC Quoc gia Hà N®i giúp đõ tác gia suot q trình HQC t¾p nghiên cúu tai Lab Tác gia xin chân thành cam ơn tói Ban Giám hi¾u trưịng Đai HQC Sư pham, Đai HQC Thái Nguyên, đong nghi¾p khoa Tốn, nơi tác gia cơng tác nhung năm đau nghiên cúu sinh; Ban Giám hi¾u trưịng Đai HQC Thuy Loi H Nđi, cỏc ong nghiắp khoa Cụng ngh¾ thơng tin, nơi tác gia hi¾n cơng tác đeu ln đ®ng viên, giúp đõ tác gia cơng tác đe tác gia có thịi gian t¾p trung nghiên cúu hồn thành lu¾n án thịi han Đ¾c bi¾t tác gia xin bày to lịng biet ơn sâu sac tói Bo, Me, em gia đình, nhung ngưịi ln dành cho nhung tình cam nong am se chia nhung lúc khó khăn cu®c song, ln đ®ng viên giúp đõ tơi q trình nghiên cúu Cam ơn gái ln ngoan ngỗn ung hđ e me trung nghiờn cỳu, hon thnh luắn án Lu¾n án q tinh than mà tơi trân TRQNG gui t¾ng đen thành viên Gia đình Tơi xin trân TRQNG cam ơn! Hà N®i, ngày 19 tháng 06 năm 2021 Ngưịi thnc hi¾n Lương Th% Hong Lan MUC LUC Danh mnc bang vi Danh mnc hình ve, đo th% vi i Mê ĐAU Chương TONG QUAN NGHIÊN CÚU VÀ CƠ Sê LÝ THUYET 1.1 Giói thi¾u 1.2 Van đe H¾ suy dien mị H¾ ho tro quyet đ%nh 1.3 Tong quan nghiên cúu liên quan 10 1.3.1 H¾ suy dien mà 11 1.3.2 Các h¾ phát trien dna t¾p mà phúc 14 1.3.3 Các van đe ton tai can giái quyet cua h¾ CFIS hi¾n 19 1.4 Cơ so lý thuyet 20 1.4.1 T¾p mà 21 1.4.2 T¾p mà phúc 21 1.4.3 Các phép toán t¾p mà phúc 24 1.4.4 Logic mà phúc 27 1.4.5 Đ® đo mà đ® đo mà phúc 28 1.5 Du li¾u thnc nghi¾m 30 1.5.1 B® du li¾u chuan 30 1.5.2 Bđ du liắu thnc- Bắnh gan Liver 31 1.5.3 Các đ® đo đánh giá thnc nghi¾m 32 1.6 Ket Chương 33 Chương XÂY DUNG Hfi SUY DIEN Mè PHÚC DANG MAMDANI (M-CFIS) 34 2.1 Giói thi¾u 34 2.2 Đe xuat toán tu t-chuan t- đoi chuan mò phúc 36 2.3 2.4 2.2.1 Toán tu t-chuan t-đoi chuan 37 2.2.2 Toán tu t-chuan t-đoi chuan mà phúc 38 2.2.3 Ví dn minh HQA ho tra quyet đ%nh 41 H¾ suy dien mị phúc Mamdani (M-CFIS) .44 2.3.1 Đe xuat h¾ suy dien mà phúc Mamdani 44 2.3.2 Các lna cHQN su dnng h¾ suy dien mà phúc Mamdani 45 2.3.3 Cau trúc cua h¾ suy dien mò phúc Mamdani 47 2.3.4 Ví dn so minh HQA mơ hình suy dien M-CFIS 49 2.3.5 Thu nghi¾m đánh giá ket 51 Ket Chương .53 Chương TINH GIÂM Hfi LU¾T TRONG Hfi SUY DIEN Mè PHÚC MAMDANI (M-CFIS-R) 55 3.1 Giói thi¾u 55 3.2 Đe xuat đ® đo tương tn mò phúc 60 3.3 3.4 3.2.1 Đ® đo tương tn mà phúc Cosine .61 3.2.2 Đ® đo tương tn mà phúc Dice 62 3.2.3 Đ® đo tương tn mà phúc Jaccard .63 Đe xuat mơ hình h¾ suy dien M-CFIS-R 64 3.3.1 Ý tưáng xây dnng mơ hình 64 3.3.2 Phan Training 65 3.3.3 Phan Testing 70 Thu nghi¾m đánh giá ket qua 71 3.4.1 Ket thnc nghiắm trờn bđ du liắu UCI 71 3.4.2 Ket quỏ thnc nghiắm trờn bđ du li¾u thnc .73 3.5 Ket Chương 75 Chương Mê R®NG Hfi SUY DIEN Mè PHÚC MAMDANI VéI ĐO TH± TRI THÚC (M-CFIS-FKG) 77 4.1 Giói thi¾u .77 4.2 M®t so mo r®ng cua mơ hình M-CFIS-R 79 4.3 4.4 4.5 4.2.1 H¾ suy dien mà phúc Sugeno Tsukamoto .79 4.2.2 Đ® đo mà phúc dna lý thuyet t¾p hap 80 4.2.3 Tích phân mà phúc 86 Đe xuat mơ hình h¾ suy dien mị phúc M-CFIS-FKG 93 4.3.1 Ý tưáng xây dnng mơ hình 93 4.3.2 Xây dnng đo th% tri thúc mà 95 4.3.3 Thu¾t tốn suy dien nhanh đo th% tri thúc mà .96 4.3.4 Ví dn minh HQA h¾ suy dien mà phúc M-CFIS-FKG 98 Thnc nghi¾m đánh giá ket qua 103 4.4.1 Thnc nghi¾m 103 4.4.2 Ket thnc nghi¾m 104 Ket Chương 112 KET LU¾N VÀ HƯéNG PHÁT TRIEN 114 Nhung ket qua cua lu¾n án .114 Hưóng phát trien cua lu¾n án 116 TÀI LIfiU THAM KHÂO 119 Kí hi¾u viet tat STT 10 11 12 13 14 15 16 17 Tù tat FS CFS CFL FIS Tieng anh Fuzzy Set Complex Fuzzy Set Complex Fuzzy Logic Fuzzy Inference System Dien dai T¾p mị T¾p mị phúc Logic mị phúc H¾ suy dien CFIS Complex Fuzzy Inference System H¾ suy dien mị phúc IFIS Intituition Fuzzy Inference System H¾ suy dien mị trnc cam ANFIS Adaptive Neuro Inference System Fuzzy CNS H¾ suy dien mị noron thích nghi Complex Neuro-Fuzzy H¾ suy dien mị noron thích Inference System nghi phúc Adaptive Neuro Complex Mang noron giá tr% mị phúc Fuzzy Inference System thích nghi Complex Neutrosophic Set T¾p Neutrosophic phúc MCDM Multicriteria making CANFIS ANCFIS KG FKG decision H¾ ho tro quyet đ%nh đa tiêu chí Fast Inference Search Thu¾t tốn tìm kiem suy dien Algorithm nhanh Knowledge Graph Đo th% tri thúc Fuzzy Knowledge Graph Đo th% tri thúc mò M-FIS Mamdani Fuzzy Inference H¾ suy dien mị Mamdani System FISA M-CFIS M-CFIS-R Mamdani Complex Fuzzy Inference System Mamdani Complex Fuzzy Inference System Reduce Rule H¾ suy dien mị Mamdani phúc H¾ suy dien mị phúc Mamdani - giam lu¾t 18 M-CFISFKG 19 20 GRC UCI 21 RANCFIS 22 FANCFIS Mamdani Complex Fuzzy H¾ suy dien mị phúc Inference System FuzzyMamdani - Đo th% tri thúc Knowledge Graph mị Granular Computing Tính tốn hat UC Irvine Machine Kho du li¾u chuan UCI Randomized AdaptiveMang nơ ron giá tr% mò phúc Network Based Fuzzy thích nghi ngau nhiên Inference System Fast Adaptive-Network Mang nơ ron giá tr% mị phúc Based Fuzzy Inference thích nghi nhanh System Danh mnc bang 1.1 Các b® du li¾u thnc nghi¾m chuan Benchmark 31 1.2 Cỏc thuđc tớnh du liắu au vo t¾p du li¾u b¾nh gan Liver 32 2.1 Ma tr¾n quyet đ%nh dna mau du li¾u 42 2.2 Ma tr¾n quyet đ%nh mò 43 2.3 Ma tr¾n chuan hóa 43 2.4 Ma tr¾n quyet đ%nh mị 43 2.5 Ma tr¾n quyet đ%nh ket qua 44 2.6 Bđ du liắu au vo 50 2.7 Bđ c so luắt 50 4.1 H¾ so lu¾t mị phúc 95 4.2 K%ch ban 103 4.3 K%ch ban 103 DANH MUC CÁC CƠNG TRÌNH CÛA LU¾N ÁN A1 Tran Thi Ngan, Luong Thi Hong Lan, Mumtaz Ali, Dan Tamir, Le Hoang Son, Tran Manh Tuan, Naphtali Rishe, Abe Kandel (2018), “Logic Connectives of Complex Fuzzy Sets”, Romanian Journal of Information Science and Technology, Vol 21, No 4, pp 344-358 (ISSN:1453-8245, SCIE, 2019 IF = 0.760), DOI = http://www.romjist.ro/ab 606.html A2 Ganeshsree Selvachandran, Shio Gai Quek, Luong Thi Hong Lan, Le Hoang Son, Nguyen Long Giang, Weiping Ding, Mohamed Abdel-Basset, Victor Hugo C de Albuquerque (2021), “A New Design of Mamdani Complex Fuzzy Inference System for Multi-attribute Decision Making Problems”, IEEE Transactions on Fuzzy Systems, Vol 29, No.4, pp 716-730 (ISSN:1063-6706, SCI, 2019 IF = 9.518), DOI = http://dx.doi.org/10.1109/TFUZZ.2019.2961350 A3 Tran Manh Tuan, Luong Thi Hong Lan, Shuo-Yan Chou, Tran Thi Ngan, Le Hoang Son, Nguyen Long Giang, Mumtaz Ali (2020), “M-CFIS-R: Mamdani Complex Fuzzy Inference System with Rule Reduction Using Complex Fuzzy Measures in Granular Computing”, Mathematics, Vol 8, No 5, pp 707 – 731 (ISSN: 22277390, SCIE, 2019 IF = 1.747), DOI = https://doi.org/10.3390/math8050707 A4 Luong Thi Hong Lan, Tran Manh Tuan, Tran Thi Ngan, Le Hoang Son, Nguyen Long Giang, Vo Truong Nhu Ngoc, Pham Van Hai (2020), “A New Complex Fuzzy Inference System with Fuzzy Knowledge Graph and Extensions in Decision Making”, IEEE Access, Vol 8, pp 164899 - 164921 (ISSN: 2169-3536, SCIE, 2019 IF = 3.745), DOI = http://dx.doi.org/10.1109/ACCESS.2020.3021097 Chương Tài li¾u tham khao [1] L A Zadeh, “Fuzzy sets,” Information and control, vol 8, no 3, pp 338– 353, 1965 [2] G Mapari and A Naidu, “Study of fuzzy set theory and its applications,” IOSR Journal of Mathematics, vol 12, no 4, pp 148–154, 2016 [3] T Sooraj, R Mohanty, and B Tripathy, “Hesitant fuzzy soft set theory and its application in decision making,” in Artificial Intelligence and Evolutionary Computations in Engineering Systems, pp 315–322, Springer, 2017 [4] J C R Alcantud and V Torra, “Decomposition theorems and extension principles for hesitant fuzzy sets,” Information Fusion, vol 41, pp 48–56, 2018 [5] M.-Q Wu, T.-Y Chen, and J.-P Fan, “Divergence measure of t-spherical fuzzy sets and its applications in pattern recognition,” IEEE Access, vol 8, pp 10208–10221, 2019 [6] B Paik and S K Mondal, “A distance-similarity method to solve fuzzy sets and fuzzy soft sets based decision-making problems,” Soft Computing, vol 24, no 7, pp 5217–5229, 2020 [7] L Tiwari, R Raja, V Sharma, and R Miri, “Fuzzy inference system for efficient lung cancer detection,” in Computer Vision and Machine Intelligence in Medical Image Analysis, pp 33–41, Springer, 2020 [8] B Kapadia and A Jain, “Detection of diabetes mellitus using fuzzy inference system,” Studies in Indian Place Names, vol 40, no 53, pp 104– 110, 2020 [9] A M Sagir and S Sathasivam, “A novel adaptive neuro fuzzy inference system based classification model for heart disease prediction.,” Pertanika Journal of Science & Technology, vol 25, no 1, 2017 120 [10] A Bakhshipour, H Zareiforoush, and I Bagheri, “Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features,” Journal of Food Measurement and Characterization, pp 1–15, 2020 [11] E Pourjavad and A Shahin, “The application of mamdani fuzzy inference system in evaluating green supply chain management performance,” International Journal of Fuzzy Systems, vol 20, no 3, pp 901–912, 2018 [12] N Priyadarshi, F Azam, A K Sharma, and M Vardia, “An adaptive neuro- fuzzy inference system-based intelligent grid-connected photovoltaic power generation,” in Advances in Computational Intelligence, pp 3–14, Springer, 2020 [13] A C Adoko and S Yagiz, “Fuzzy inference system-based for tbm field penetration index estimation in rock mass,” Geotechnical and Geological Engineering, vol 37, no 3, pp 1533–1553, 2019 [14] J.-S Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEEE transactions on systems, man, and cybernetics, vol 23, no 3, pp 665–685, 1993 [15] D Karaboga and E Kaya, “Adaptive network based fuzzy inference system (anfis) training approaches: a comprehensive survey,” Artificial Intelligence Review, vol 52, no 4, pp 2263–2293, 2019 [16] S Subbulakshmi, G Marimuthu, and N Neelavathy, “Application of s-anfis method in coronary artery disease,” Malaya Journal of Matematik (MJM), no 1, 2019, pp 535–538, 2019 [17] R Razavi, A Sabaghmoghadam, A Bemani, A Baghban, K.-w Chau, and E Salwana, “Application of anfis and lssvm strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids,” Engineering Applications of Computational Fluid Mechanics, vol 13, no 1, pp 560–578, 2019 [18] G K Tairidis, N Stojanovic, D Stamenkovic, and G E Stavroulakis, “Neuro- fuzzy techniques and natural risk management applications of anfis models in floods and comparison with other models,” in Natural Risk Management and Engineering, pp 169–189, Springer, 2020 [19] P Sihag, N Tiwari, and S Ranjan, “Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (anfis),” ISH Journal of Hydraulic Engineering, vol 25, no 2, pp 132–142, 2019 [20] A Azad, M Manoochehri, H Kashi, S Farzin, H Karami, V Nourani, and J Shiri, “Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling,” Journal of Hydrology, vol 571, pp 214–224, 2019 [21] Y K Semero, J Zhang, and D Zheng, “Emd–pso–anfis-based hybrid approach for short-term load forecasting in microgrids,” IET Generation, Transmission & Distribution, vol 14, no 3, pp 470–475, 2019 [22] P Hájek and V Olej, “Adaptive intuitionistic fuzzy inference systems of takagi- sugeno type for regression problems,” in IFIP International Conference on Artificial Intelligence Applications and Innovations, pp 206– 216, Springer, 2012 [23] P Hajek and V Olej, “Defuzzification methods in intuitionistic fuzzy inference systems of takagi-sugeno type: The case of corporate bankruptcy prediction,” in 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp 232–236, IEEE, 2014 [24] A Hernandez-Aguila, M Garcia-Valdez, and O Castillo, “A proposal for an intuitionistic fuzzy inference system,” in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp 1294–1300, IEEE, 2016 [25] E Egrioglu, E Bas, O C Yolcu, and U Yolcu, “Intuitionistic time series fuzzy inference system,” Engineering Applications of Artificial Intelligence, vol 82, pp 175–183, 2019 [26] C Luo, C Tan, X Wang, and Y Zheng, “An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction,” Applied Soft Computing, vol 78, pp 150–163, 2019 [27] E Bas, U Yolcu, and E Egrioglu, “Intuitionistic fuzzy time series functions approach for time series forecasting,” Granular Computing, pp 1–11, 2020 [28] P H Thong et al., “Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences,” Applied Intelligence, vol 46, no 1, pp 1–15, 2017 [29] P Van Viet, P Van Hai, et al., “Picture inference system: a new fuzzy inference system on picture fuzzy set,” Applied Intelligence, vol 46, no 3, pp 652–669, 2017 [30] L H Son, “Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures,” Fuzzy Optimization and Decision Making, vol 16, pp 359–378, 2017 [31] L H Son, “Generalized picture distance measure and applications to picture fuzzy clustering,” Applied Soft Computing, vol 46, no C, pp 284– 295, 2016 [32] P H Thong et al., “A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality,” Knowledge- Based Systems, vol 109, pp 48–60, 2016 [33] P H Thong et al., “Picture fuzzy clustering for complex data,” Engineering Applications of Artificial Intelligence, vol 56, pp 121–130, 2016 [34] L H Son, “A novel kernel fuzzy clustering algorithm for geo-demographic analysis,” Information Sciences—Informatics and Computer Science, Intelligent Systems, Applications: An International Journal, vol 317, no C, pp 202–223, 2015 [35] P Van Viet, H T M Chau, P Van Hai, et al., “Some extensions of membership graphs for picture inference systems,” in 2015 seventh international conference on knowledge and systems engineering (KSE), pp 192–197, IEEE, 2015 [36] D Ramot, R Milo, M Friedman, and A Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol 10, no 2, pp 171–186, 2002 [37] H Garg and D Rani, “Some results on information measures for complex intuitionistic fuzzy sets,” International Journal of Intelligent Systems, vol 34, no 10, pp 2319–2363, 2019 [38] J.-P Fan, R Cheng, and M.-Q Wu, “Extended edas methods for multi- criteria group decision-making based on iv-cfswaa and iv-cfswga operators with interval-valued complex fuzzy soft information,” IEEE Access, vol 7, pp 105546–105561, 2019 [39] S Faizi, Multi-Criteria Decision Making Techniques Based on Some Extensions of Fuzzy Set PhD thesis, University of Management and Technology, Lahore, 2019 [40] H Garg and D Rani, “Robust averaging–geometric aggregation operators for complex intuitionistic fuzzy sets and their applications to mcdm process,” Arabian Journal for Science and Engineering, vol 45, no 3, pp 2017–2033, 2020 [41] K Ullah, T Mahmood, Z Ali, and N Jan, “On some distance measures of complex pythagorean fuzzy sets and their applications in pattern recognition,” Complex & Intelligent Systems, vol 6, no 1, pp 15–27, 2020 [42] Y Al-Qudah and N Hassan, “Complex multi-fuzzy soft expert set and its application,” Int J Math Comput Sci, vol 14, pp 149–176, 2019 [43] P K Singh, “Bipolar δ-equal complex fuzzy concept lattice with its application,” Neural Computing and Applications, pp 1–18, 2019 [44] D Ramot, M Friedman, G Langholz, and A Kandel, “Complex fuzzy logic,” IEEE Transactions on Fuzzy Systems, vol 11, no 4, pp 450–461, 2003 [45] J Man, Z Chen, and S Dick, “Towards inductive learning of complex fuzzy inference systems,” in NAFIPS 2007-2007 Annual Meeting of the North American Fuzzy Information Processing Society, pp 415–420, IEEE, 2007 [46] Z Chen, S Aghakhani, J Man, and S Dick, “Ancfis: A neurofuzzy architecture employing complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol 19, no 2, pp 305–322, 2010 [47] Y Liu and F Liu, “An adaptive neuro-complex-fuzzy-inferential modeling mechanism for generating higher-order tsk models,” Neurocomputing, vol 365, pp 94–101, 2019 [48] O Yazdanbakhsh and S Dick, “Fancfis: Fast adaptive neuro-complex fuzzy inference system,” International Journal of Approximate Reasoning, vol 105, pp 417–430, 2019 [49] E H Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” in Proceedings of the institution of electrical engineers, vol 121, pp 1585–1588, IET, 1974 [50] T Takagi and M Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE transactions on systems, man, and cybernetics, no 1, pp 116–132, 1985 [51] Y Li and Y.-T Jang, “Complex adaptive fuzzy inference systems,” in Soft Computing in Intelligent Systems and Information Processing Proceedings of the 1996 Asian Fuzzy Systems Symposium, pp 551–556, IEEE, 1996 [52] A Deshmukh, A Bavaskar, P Bajaj, and A Keskar, “Implementation of complex fuzzy logic modules with vlsi approach,” International Journal on Computer Science and Network Security, vol 8, pp 172–178, 2008 [53] O Yazdanbakhsh and S Dick, “Forecasting of multivariate time series via complex fuzzy logic,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol 47, no 8, pp 2160–2171, 2017 [54] M Yeganejou and S Dick, “Inductive learning of classifiers via complex fuzzy sets and logic,” in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp 1–6, IEEE, 2017 [55] O Yazdanbakhsh and S Dick, “A systematic review of complex fuzzy sets and logic,” Fuzzy Sets and Systems, vol 338, pp 1–22, 2018 [56] C Li and T.-W Chiang, “Complex neurofuzzy arima forecasting—a new approach using complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol 21, no 3, pp 567–584, 2012 [57] H Bustince, E Barrenechea, M Pagola, J Fernandez, Z Xu, B Bedregal, J Montero, H Hagras, F Herrera, and B De Baets, “A historical account of types of fuzzy sets and their relationships,” IEEE Transactions on Fuzzy Systems, vol 24, no 1, pp 179–194, 2015 [58] J Buckley and Y Qu, “Fuzzy complex analysis i: differentiation,” Fuzzy Sets and Systems, vol 41, no 3, pp 269–284, 1991 [59] J J Buckley, “Fuzzy complex analysis ii: integration,” Fuzzy Sets and Systems, vol 49, no 2, pp 171–179, 1992 [60] Z Guang-Quan, “Fuzzy limit theory of fuzzy complex numbers,” Fuzzy Sets and Systems, vol 46, no 2, pp 227–235, 1992 [61] Z Guangquan, “Fuzzy distance and limit of fuzzy numbers [j],” Fuzzy Systems and Mathematics, vol 1, 1992 [62] A Azam, B Fisher, and M Khan, “Common fixed point theorems in complex valued metric spaces,” Numerical Functional Analysis and Optimization, vol 32, no 3, pp 243–253, 2011 [63] G Zhang, T S Dillon, K.-Y Cai, J Ma, and J Lu, “Operation properties and δ-equalities of complex fuzzy sets,” International journal of approximate reasoning, vol 50, no 8, pp 1227–1249, 2009 [64] A U M Alkouri and A R Salleh, “Linguistic variable, hedges and several distances on complex fuzzy sets,” Journal of Intelligent & Fuzzy Systems, vol 26, no 5, pp 2527–2535, 2014 [65] M Guido, A Mangia, G Faa, et al., “Chronic viral hepatitis: the histology report,” Digestive and Liver Disease, vol 43, pp S331–S343, 2011 [66] F Camastra, A Ciaramella, V Giovannelli, M Lener, V Rastelli, A Staiano, G Staiano, and A Starace, “A fuzzy decision system for genetically modified plant environmental risk assessment using mamdani inference,” Expert Systems with Applications, vol 42, no 3, pp 1710–1716, 2015 [67] B Gayathri and C Sumathi, “Mamdani fuzzy inference system for breast cancer risk detection,” in 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp 1–6, IEEE, 2015 [68] S Thakur, S Raw, R Sharma, and P Mishra, “Detection of type of thalassemia disease in patients: A fuzzy logic approach,” International Journal of Applied Pharmaceutical Sciences and Research, vol 1, no 02, pp 88–95, 2016 [69] P Mamoria and D Raj, “Comparison of mamdani fuzzy inference system for multiple membership functions,” International Journal of Image, Graphics and Signal Processing, vol 8, no 9, p 26, 2016 [70] M D RUZˇ IC´ , J Skenderovic´, and K T LESIC´ , “Application of the mamdani fuzzy inference system to measuring hrm performance in hotel companies–a pilot study,” 2016 [71] P K Borkar, M Jha, M Qureshi, and G Agrawal, “Performance assessment of heat exchanger using mamdani based adaptive neuro-fuzzy inference system (m-anfis) and dynamic fuzzy reliability modeling 2014,” International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization), vol 3, no 9, 2014 [72] Y Chai, L Jia, and Z Zhang, “Mamdani model based adaptive neural fuzzy inference system and its application,” International Journal of Computational Intelligence, vol 5, no 1, pp 22–29, 2009 [73] E P Klement and R Mesiar, Logical, algebraic, analytic and probabilistic aspects of triangular norms Elsevier, 2005 [74] H T Nguyen, C L Walker, and E A Walker, A first course in fuzzy logic CRC press, 2018 [75] R R Yager and D P Filev, “Unified structure and parameter identification of fuzzy models,” IEEE Transactions on Systems, Man, and Cybernetics, vol 23, no 4, pp 1198–1205, 1993 [76] H Ishibuchi, K Nozaki, N Yamamoto, and H Tanaka, “Selecting fuzzy if- then rules for classification problems using genetic algorithms,” IEEE Transactions on fuzzy systems, vol 3, no 3, pp 260–270, 1995 [77] J Yen and L Wang, “Simplifying fuzzy rule-based models using orthogonal transformation methods,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol 29, no 1, pp 13–24, 1999 [78] L Wang and R Langari, “Building sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques,” IEEE Transactions on Fuzzy Systems, vol 3, no 4, pp 454–458, 1995 [79] G E Tsekouras, “Fuzzy rule base simplification using multidimensional scaling and constrained optimization,” Fuzzy sets and systems, vol 297, pp 46– 72, 2016 [80] W Pedrycz, “From fuzzy rule-based systems to granular fuzzy rule-based systems: a study in granular computing,” in Combining Experimentation and Theory, pp 151–162, Springer, 2012 [81] H Bellaaj, R Ketata, and M Chtourou, “A new method for fuzzy rule base reduction,” Journal of Intelligent & Fuzzy Systems, vol 25, no 3, pp 605– 613, 2013 [82] J L S L P Heim, S Hellmann and T Stegemann, “Multitask tsk fuzzy system modeling by jointly reducing rules and consequent parameters,” Transactions on Systems, vol 25, no 3, pp 605–613, 2019 [83] G Wang and X Li, “Generalized lebesgue integrals of fuzzy complex valued functions,” Fuzzy Sets and Systems, vol 127, no 3, pp 363–370, 2002 [84] L.-C Jang and H.-M Kim, “On choquet integrals with respect to a fuzzy complex valued fuzzy measure of fuzzy complex valued functions,” International Journal of Fuzzy Logic and Intelligent Systems, vol 10, no 3, pp 224–229, 2010 [85] L.-C Jang and H.-M Kim, “Some properties of choquet integrals with respect to a fuzzy complex valued fuzzy measure.,” Int J Fuzzy Logic and Intelligent Systems, vol 11, no 2, pp 113–117, 2011 [86] S.-q Ma, D.-j Peng, and D.-y Li, “Fuzzy complex value measure and fuzzy complex value measurable function,” in Fuzzy Information and Engineering, pp 187–192, Springer, 2009 [87] S.-q Ma, F.-c Chen, and Z.-q Zhao, “Choquet type fuzzy complex-valued integral and its application in classification,” in Fuzzy Engineering and Operations Research, pp 229–237, Springer, 2012 [88] S.-q Ma, M.-q Chen, and Z.-q Zhao, “The complex fuzzy measure,” in Fuzzy Information & Engineering and Operations Research & Management, pp 137– 145, Springer, 2014 [89] S Ma and S Li, “Complex fuzzy set-valued complex fuzzy measures and their properties,” The Scientific World Journal, vol 2014, 2014 [90] S.-q Ma and S.-g Li, “Complex fuzzy set-valued complex fuzzy integral and its convergence theorem,” in Fuzzy Systems & Operations Research and Management, pp 143–155, Springer, 2016 [91] S Ma, D Peng, and Z Zhao, “Generalized complex fuzzy set-valued integrals and their properties,” in 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), pp 906–910, IEEE, 2016 [92] R T Ngan, M Ali, D E Tamir, N D Rishe, A Kandel, et al., “Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making,” Applied Soft Computing, vol 87, p 105961, 2020 [93] S Dai, L Bi, and B Hu, “Distance measures between the interval-valued complex fuzzy sets,” Mathematics, vol 7, no 6, p 549, 2019 [94] K Mondal, S Pramanik, and B C Giri, “Some similarity measures for madm under a complex neutrosophic set environment,” in Optimization Theory Based on Neutrosophic and Plithogenic Sets, pp 87–116, Elsevier, 2020 [95] A Z LOTFI, “The key roles of information granulation and fuzzy logic in human reasoning, concept formulation and computing with words,” in FUZZIEEE’96—Fifth IEEE International Conference on Fuzzy Systems, pp 8–11 [96] T Lin, “Granular computing, announcement of the bisc special interest group on granular computing [z] 1997.” [97] Y Yao and N Zhong, “Granular computing using information tables,” in Data mining, rough sets and granular computing, pp 102–124, Springer, 2002 [98] J T Yao, A V Vasilakos, and W Pedrycz, “Granular computing: perspectives and challenges,” IEEE Transactions on Cybernetics, vol 43, no 6, pp 1977– 1989, 2013 [99] J T Yao, A V Vasilakos, and W Pedrycz, “Granular computing: perspectives and challenges,” IEEE Transactions on Cybernetics, vol 43, no 6, pp 1977– 1989, 2013 [100] P Artiemjew, “Natural versus granular computing: Classifiers from granular structures,” in International Conference on Rough Sets and Current Trends in Computing, pp 150–159, Springer, 2008 [101] S Butenkov, A Zhukov, A Nagorov, and N Krivsha, “Granular computing models and methods based on the spatial granulation,” Procedia Computer Science, vol 103, no C, pp 295–302, 2017 [102] F M Bianchi, S Scardapane, A Rizzi, A Uncini, and A Sadeghian, “Granular computing techniques for classification and semantic characterization of structured data,” Cognitive Computation, vol 8, no 3, pp 442–461, 2016 [103] N Krivsha, V Krivsha, Z Beslaneev, and S Butenkov, “Greedy algorithms for granular computing problems in spatial granulation technique,” Procedia Computer Science, vol 103, pp 303–307, 2017 [104] W Zhang, G Wang, W Liu, and J Fang, “An introduction to fuzzy mathematics,” Xi’an Jiaotong University Press, Xi’an, 1991 [105] H Q Truong, L T Ngo, and W Pedrycz, “Granular fuzzy possibilistic c- means clustering approach to dna microarray problem,” Knowledge-Based Systems, vol 133, pp 53–65, 2017 [106] P Heim, S Hellmann, J Lehmann, S Lohmann, and T Stegemann, “Relfinder: Revealing relationships in rdf knowledge bases,” in International Conference on Semantic and Digital Media Technologies, pp 182–187, Springer, 2009 [107] T Yu, J Li, Q Yu, Y Tian, X Shun, L Xu, L Zhu, and H Gao, “Knowledge graph for tcm health preservation: design, construction, and applications,” Artificial Intelligence in Medicine, vol 77, pp 48–52, 2017 [108] L Shao, Y Duan, X Sun, Q Zou, R Jing, and J Lin, “Bidirectional value driven design between economical planning and technical implementation based on data graph, information graph and knowledge graph,” in 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), pp 339–344, IEEE, 2017 [109] Z Wang, J Zhang, J Feng, and Z Chen, “Knowledge graph embedding by translating on hyperplanes.,” in Aaai, vol 14, pp 1112–1119, Citeseer, 2014 [110] J Qiu, Q Du, K Yin, S.-L Zhang, and C Qian, “A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications,” Applied Sciences, vol 10, no 6, p 2166, 2020 130 [111] L He and P Jiang, “Manufacturing knowledge graph: a connectivism to answer production problems query with knowledge reuse,” IEEE Access, vol 7, pp 101231–101244, 2019 [112] R Lijuan, L Jun, and G Wei, “Multi-source knowledge embedding research of knowledge graph,” in 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), pp 163–166, IEEE, 2019 [113] J Long, Z Chen, W He, T Wu, and J Ren, “An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in chinese stock exchange market,” Applied Soft Computing, p 106205, 2020 [114] X Chen, S Jia, and Y Xiang, “A review: Knowledge reasoning over knowledge graph,” Expert Systems with Applications, vol 141, p 112948, 2020 [115] S Yoo and O Jeong, “Automating the expansion of a knowledge graph,” Expert Systems with Applications, vol 141, p 112965, 2020 [116] H Liu, Y Li, R Hong, Z Li, M Li, W Pan, A Glowacz, and H He, “Knowledge graph analysis and visualization of research trends on driver behavior,” Journal of Intelligent & Fuzzy Systems, vol 38, no 1, pp 495– 511, 2020 [117] H Wang, C Shah, P Sathaye, A Nahata, and S Katariya, “Service application knowledge graph and dependency system,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW), pp 134–136, IEEE, 2019 [118] E Petrova, P Pauwels, K Svidt, and R L Jensen, “Towards data-driven sustainable design: decision support based on knowledge discovery in disparate building data,” Architectural Engineering and Design Management, vol 15, no 5, pp 334–356, 2019 [119] L Shi, S Li, X Yang, J Qi, G Pan, and B Zhou, “Semantic health knowledge graph: Semantic integration of heterogeneous medical knowledge and services,” BioMed research international, vol 2017, 2017 131 [120] X Tao, T Pham, J Zhang, J Yong, W P Goh, W Zhang, and Y Cai, “Mining health knowledge graph for health risk prediction,” World Wide Web, pp 1–22, 2020 ... ket tri thúc có đe suy dan tri thúc mói Cơ che suy dien phn thu®c rat nhieu vào phương thúc bieu dien tri thúc khơng có m®t phương pháp suy dien nhat cho MQI loai tri thúc H¾ suy dien mị (FIS)... (x, y) ) oc Ramot su dnng H¾ suy dien mị phúc, ket qua t¾p mị phỳc B cú hm thuđc mũ phỳc àB (y) = rB∗ (y) · ejωB∗ (y), đó: rB∗ (y) = sup [rA? ?? (x) ⊗ rA? ??B (x, y)] x∈U = sup [rA? ?? (x) ⊗ (rA (x)· rB... U Σ = ,(x, rA (x)ejωA (x) )|x ∈ U , (1.4) Vái rA( x) = − rA( x) ωA(x) = 2π − ωA(x) Theo [36], phép toán phan bù mị phúc có the có dang sau: A = (1 − rA (x)) ej(−ωA(x)) (1.5) A = (1 − rA (x)) ej(ωA(x))