1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận án tiến sĩ một số kỹ thuật tìm kiếm thực thể dựa trên quan hệ ngữ nghĩa ẩn và gợi ý truy vấn hướng ngữ cảnh

117 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 117
Dung lượng 2,54 MB

Nội dung

Ngày đăng: 23/07/2021, 16:56

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Christoph Kofler, Martha Larson, Alan Hanjalic, User Intent in Multimedia Search: A Survey of the State of the Art and Future Challenges. ACM Journals.Computing Surveys, Vol. 49, No. 2, August 2016 Sách, tạp chí
Tiêu đề: User Intent in Multimedia Search: A Survey of the State of the Art and Future Challenges
[2]. R. Song, Z. Luo, J.-Y. Nie, Y. Yu and H.-W. Hon, Identification of ambiguous queries in web search. Information Processing & Management, 45(2), pages 216–229, 2009 Sách, tạp chí
Tiêu đề: Identification of ambiguous queries in web search
[3]. W. Song, Y. Liu, L. Liu et al., Semantic composition of distributed representations for query subtopic mining. Frontiers Inf Technol Electronic Eng 19, 2018 Sách, tạp chí
Tiêu đề: Semantic composition of distributed representations for query subtopic mining
[5]. S. Gaou, A. Bekkari, The Optimization of Search Engines to Improve the Ranking to Detect User’s Intent. In Advanced Information Technology, Services and Systems.(AIT2S) 2017 Sách, tạp chí
Tiêu đề: The Optimization of Search Engines to Improve the Ranking to Detect User’s Intent
[6]. Dirk Lewandowski, Jessica Drechsler, Sonja von Mach, Deriving query intents from web search engine queries. Journal of the American Society for Information Science and Technology, September 2012 Sách, tạp chí
Tiêu đề: Deriving query intents from web search engine queries
[8]. Li, Jing & Sun, Aixin & Han, Ray & Li, Chenliang, A Survey on Deep Learning for Named Entity Recognition. In IEEE Transactions on Knowledge and Data Engineering, 2020 Sách, tạp chí
Tiêu đề: A Survey on Deep Learning for Named Entity Recognition
[9]. H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen and H. Li, Towards context- aware search by learning a very large variable length hidden markov model from search logs. In Proceedings of the 18th international conference on World wide web, pages 191–200, April 2009 Sách, tạp chí
Tiêu đề: Towards context-aware search by learning a very large variable length hidden markov model from search logs
[10]. H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, E and H. Li, Context-aware query suggestion by mining click-through and session data. In Proceedings of KDD, pages 875-883, 2008 Sách, tạp chí
Tiêu đề: Context-aware query suggestion by mining click-through and session data
[11]. Peter D. Turney, The latent relation mapping engine: Algorithm and experiments. Journal of Artificial Intelligence Research (JAIR), 33, pages 615-655, 2008 Sách, tạp chí
Tiêu đề: The latent relation mapping engine: Algorithm and experiments
[12]. Dedre Gentner, Structure-mapping: A Theoretical Framework for Analogy. Elsevier. Cognitive Science, Volume 7, Issue 2, pages 155-170, April–June 1983 Sách, tạp chí
Tiêu đề: Structure-mapping: A Theoretical Framework for Analogy
[13]. Peter D. Turney, M.L. Littman, Corpus-based Learning of Analogies and Semantic Relations. Machine Learning, 60(1–3), pages 251–278, 2005 Sách, tạp chí
Tiêu đề: Corpus-based Learning of Analogies and Semantic Relations
[14]. Peter D. Turney, Distributional semantics beyond words: Supervised learning of analogy and paraphrase. Transactions of the Association for Computational Linguistics (TACL), 1, pages 353-366, 2013 Sách, tạp chí
Tiêu đề: Distributional semantics beyond words: Supervised learning of analogy and paraphrase
[15]. Peter D. Turney and P. Pantel, From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research (JAIR), 37, pages 141-188, 2010 Sách, tạp chí
Tiêu đề: From frequency to meaning: Vector space models of semantics
[16]. Peter D. Turney, Similarity of semantic relations. Computational Linguistics, 32(3), 2006 Sách, tạp chí
Tiêu đề: Similarity of semantic relations
[17]. Bollegala, Danushka & Matsuo, Yutaka & Ishizuka, Mitsuru, Measuring the Similarity between Implicit Semantic Relations from the Web. Proceedings of WWW, pages 651-660, 2009 Sách, tạp chí
Tiêu đề: Measuring the Similarity between Implicit Semantic Relations from the Web
[18]. Duc, N., Bollegala et al., Cross-Language Latent Relational Search: Mapping Knowledge across Languages. In Association for the Advancement of AI, 2011 Sách, tạp chí
Tiêu đề: Cross-Language Latent Relational Search: Mapping Knowledge across Languages
[19]. Kato et al., Query by analogical example: relational search using web search engine indices. In Proceedings of the 18th ACM conference on Information and knowledge management. ACM, 2009 Sách, tạp chí
Tiêu đề: Query by analogical example: relational search using web search engine indices
[20]. Y.J. Cao et al., Relational Similarity Measure: An Approach Combining Wikipedia and WordNet. Journal of Applied Mechanics and Materials, 2011 Sách, tạp chí
Tiêu đề: Relational Similarity Measure: An Approach Combining Wikipedia and WordNet
[21]. E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca and A. Soroa, A study on similarity and relatedness using distributional and wordnet-based approaches. In NAACL ’09 Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 19–27, 2009 Sách, tạp chí
Tiêu đề: A study on similarity and relatedness using distributional and wordnet-based approaches
[22]. Mikolov et al., Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems 26 (NIPS) Sách, tạp chí
Tiêu đề: Distributed Representations of Words and Phrases and their Compositionality

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w