1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ ứng dụng deep learning để dự đoán quan điểm trong tài liệu

63 34 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 63
Dung lượng 2,7 MB

Nội dung

Ngày đăng: 18/07/2021, 06:00

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[16] Vinodhini, G. and Chandrasekaran, R.M., 2012. Sentiment analysis and opinion mining: a survey. International Journal, 2(6), pp.282-292 Sách, tạp chí
Tiêu đề: International Journal, 2
[17] Wiegand, M., Balahur, A., Roth, B., Klakow, D. and Montoyo, A., 2010, July. A survey on the role of negation in sentiment analysis. In Proceedings of the workshop on negation and speculation in natural language processing (pp. 60- 68) Sách, tạp chí
Tiêu đề: Proceedings of theworkshop on negation and speculation in natural language processing
[1] Akhtar, M.S., Kumar, A., Ghosal, D., Ekbal, A. and Bhattacharyya, P., 2017, September. A multilayer perceptronbased ensemble technique for fine-grained financial sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 540-546) Khác
[2] Al-Amin, M., Islam, M.S. and Uzzal, S.D., 2017, February. Sentiment analysis of Bengali comments with Word2Vec and sentiment information of words. In 2017 International Conference on Electrical, Computer and CommunicationEngineering (ECCE) (pp. 186-190). IEEE Khác
[3] Baccianella, S., Esuli, A. and Sebastiani, F., 2010, May. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining.In Lrec (Vol. 10, No. 2010, pp. 2200-2204) Khác
[4] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P., 2011. Natural language processing (almost) from scratch. Journal of machine learning research, 12(Aug), pp.2493-2537 Khác
[5] Hamdan, H., Bellot, P. and Bechet, F., 2015, June. Lsislif: Crf and logistic regression for opinion target extraction and sentiment polarity analysis. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015) (pp. 753-758) Khác
[6] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780 Khác
[7] Hong, J. and Fang, M., 2015. Sentiment analysis with deeply learned distributed representations of variable length texts. Stanford University Report Khác
[9] Akhtar, M.S., Kumar, A., Ghosal, D., Ekbal, A. and Bhattacharyya, P., 2017, September. A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 540-546) Khác
[11] Le, Q. and Mikolov, T., 2014, January. Distributed representations of sentences and documents. In International conference on machine learning (pp. 1188-1196) Khác
[12] Manek, A.S., Shenoy, P.D., Mohan, M.C. and Venugopal, K.R., 2017. Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World wide web, 20(2), pp.135- 154 Khác
[13] Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y. and Potts, C., 2011, June.Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1 (pp. 142-150). Association for Computational Linguistics Khác
[14] Ramos, J., 2003, December. Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142) Khác
[15] Ravi, K., Ravi, V. and Gautam, C., 2015, May. Online and semi-online sentiment classification. In International Conference on Computing, Communication &Automation (pp. 938-943). IEEE Khác
[18]Wallach, H.M., 2006, June. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international conference on Machine learning (pp. 977-984). ACM Khác
[19] Wang, X., Jiang, W. and Luo, Z., 2016, December. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In Proceedings of COLING 2016, the 26th international conference on computational linguistics:Technical papers (pp. 2428-2437) Khác
[20] Zhang, L., Wang, S. and Liu, B., 2018. Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and KnowledgeDiscovery, 8(4), p.e1253 Khác
[21] Sayers, S.P., Harackiewicz, D.V., Harman, E.A., Frykman, P.N. and Rosenstein, M.T., 1999. Cross-validation of three jump power equations. Medicine and science in sports and exercise, 31(4), pp.572-577 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w