Tăng cƣờng vận dụng các bài toán có nội dung thực tiễn vào dạy môn toán đại số nâng cao 10 - thpt .pdf
Trang 1ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM
Lê Thị Thanh Phương
TĂNG CƯỜNG VẬN DỤNG CÁC BÀI TOÁN CÓ NỘI DUNG THỰC TIỄN VÀO DẠY MÔN
TOÁN ĐẠI SỐ NÂNG CAO 10 - THPT
Chuyên ngành: Lý luận và phương pháp dạy học môn toán Mã Số:60.14.10
Người hướng dẫn khoa học: TS NGUYỄN NGỌC UY
Thái Nguyên, năm 2008
Trang 2Lời cảm ơn
Với lòng biết ơn sâu sắc em xin chân thành gửi tới T.S Nguyễn Ngọc Uy - người thầy đã tận tâm, nhiệt tình chỉ bảo, động viên giúp đỡ em trong suốt quá trình nghiên cứu và hoàn thành đề tài
Em xin chân thành cảm ơn các thầy giáo, cô giáo trong tổ bộ môn PPDH toán và các thầy cô giáo trong Khoa Toán Trường Đại học sư phạm - Đại học Thái Nguyên đã tạo điều kiện thuận lợi giúp em hoàn thành công trình nghiên cứu Xin chân thành cảm ơn ban giám hiệu và các bạn đồng nghiệp ở Trường THPT Lương Ngọc Quyến đã động viên, giúp đỡ tôi hoàn thành nhiệm vụ nghiên cứu của mình
Thái Nguyên, tháng 9 năm 2008 Tác giả
Lê Thị Thanh Phương
Trang 3
MỤC LỤC
CHƯƠNG I
1.1.1 Tính thực tiễn và tính ứng dụng của toán học Trang 5 1.1.2 Vai trò của toán học trong nhiều lĩnh vực của khoa học khác Trang 6 1.1.3 Lý luận và thực tiễn trong dạy học toán tại trường THPT Trang 11 1.2 Tính thực tiễn trong nội dung toán học phổ thông Trang 16 1.2.1 Mối liên hệ giữa thực tiễn và toán học Trang 16 1.2.2 Tình hình ứng dụng của toán học trong nhà trường phổ thông Trang 17 1.2.3 Tăng cường và làm rõ mạch toán ứng dụng và thực hành trong dạy
học môn toán
Trang 20 1.3 Các định hướng đổi mới phương pháp dạy học môn toán Trang 22 1.3.1 Tóm tắt các định hướng đổi mới PPDH hiện nay Trang 22 1.3.2 Phân tích một số định hướng có liên quan đến đề tài Trang 22 1.3.3 Định hướng đổi mới PPDH nhằm vận dụng kiến thức vào thực
tiễn thông qua khai thác các bài toán có ứng dụng trong thực tế làm cho toán học gần với đời sống xã hội
2.2.3 Chương 3: Phương trình và hệ phương trình – Chương 4: Bất đẳng thức và bất phương trình
Trang 50
CHƯƠNG III
Trang 4MỞ ĐẦU
I Lý do chọn đề tài
Giáo dục Việt Nam đang tập trung đổi mới, hướng tới một nền giáo dục tiến bộ, hiện đại ngang tầm với các nước trong khu vực và toàn thế giới Uneco đã đề ra 4 trụ cột của giáo dục trong thế kỉ 21 là học để biết, học để làm, học để cùng chung sống, học để khẳng định mình (Learning to knovv, Learning to do, Learning to live together and learning to be) Chính vì thế vai trò của các bài toán có nội dung thực tế trong dạy học toán là không thể không đề cập đến
Vai trò của toán học ngày càng quan trọng và tăng lên không ngừng thể hiện ở sự tiến bộ trong nhiều lĩnh vực khác nhau của khoa học, công nghệ, sản xuất và đời sống xã hội, đặc biệt là với máy tính điện tử, toán học thúc đẩy mạnh mẽ các quá trình tự động hoá trong sản xuất, mở rộng nhanh phạm vi ứng dụng và trở thành công cụ thiết yếu của mọi khoa học Toán học có vai trò quan trọng như vậy không phải là do ngẫu nhiên mà chính là sự liên hệ thường xuyên với thực tiễn, lấy thực tiễn làm động lực phát triển và là mục tiêu phục vụ cuối cùng Toán học có nguồn gốc từ thực tiễn lao động sản xuất của con người và ngược lại toán học là công cụ đắc lực giúp con người chinh phục và khám phá thế giới tự nhiên
Để đáp ứng được sự phát triển của kinh tế, của khoa học khác, của kỹ thuật và sản xuất đòi hỏi phải có con người lao động có hiểu biết có kỹ năng và ý thức vận dụng những thành tựu của toán học trong những điều kiện cụ thể để mang lại hiệu quả lao động thiết thực Chính vì lẽ đó sự nghiệp giáo dục – đào tạo trong thời kì đổi mới hiện nay phải góp phần quyết định vào việc bồi dưỡng cho HS tiềm năng trí tuệ, tự duy sáng tạo, năng lực tìm tòi chiếm lĩnh trí thức, năng lực giải quyết vấn đề, đáp ứng được với thực tế cuộc sống Để đáp với sự phát triển của kinh tế tri thức và sự phát triển của khoa học thì ngay từ bây giờ khi ngồi trên ghế nhà trường phải dạy cho học sinh tri thức để tạo ra những con người lao động, tự chủ, năng động sáng tạo và có năng lực để đáp ứng được những yêu cầu phát triển của đất nước và cũng là nguồn lực thúc đẩy cho mục
Trang 5tiêu kinh tế - xã hội, xây dựng và bảo vệ Tổ quốc Chính vì thế dạy học toán ở trường THPT phải luôn gắn bó mật thiết với thực tiễn đời sống
Nội dung chương trình toán lớp 10 là nội dung quan trọng vì nó có vị trí chuyển tiếp và hoàn thiện từ THCS lên THPT và có nhiều cơ hội để đưa nội dung thực tiễn vào dạy học
Tuy nhiên trong thực tiễn dạy học ở trường THPT nhìn chung mới chỉ tập chung rèn luyện cho học sinh vận dụng trí thức học toán ở kỹ năng vận dụng tư duy tri thức trong nội bộ môn toán là chủ yếu còn kĩ năng vận dụng tri thức trong toán học vào nhiều môn khác vào đời sống thực tiễn chưa được chú ý đúng mức và thường xuyên
Những bài toán có nội dung liên hệ trực tiếp với đời sống lao động sản xuất còn được trình bày một cách hạn chế trong chương trình toán phổ thông
Như vậy, trong giảng dạy toán nếu muốn tăng cường rèn luyện khả năng và ý thức ứng dụng, toán học cho học sinh nhất thiết phải chú ý mở rộng phạm vi ứng dụng, trong đó ứng dụng vào thực tiễn cần được đặc biệt chú ý thường xuyên, qua đó góp phần tăng cường thực hành gắn với thực tiễn làm cho toán học không trừu tượng khô khan và nhàm chán Học sinh biết vận dụng kiến thức đã học để giải quyết trực tiếp một số vấn đề trong cuộc sống và ngược lại Qua đó càng làm thêm sự nổi bật nguyên lý: “Học đi đôi với hành, giáo dục kết hợp với lao động sản xuất, lý luận gắn với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình và giáo dục xã hội” Chính vì vậy tôi chọn đề tài: Tăng cường vận dụng các bài toán có nội dung thực tiễn vào dạy học nội dung môn toán Đại số nâng cao 10 -THPT
1 Mục đích nghiên cứu
- Mục đích nghiên cứu của luận văn là làm sáng tỏ cơ sở lý luận và thực tiễn tăng cường vận dụng các bài toán có nội dung thực tiễn vào dạy học môn toán 10 -THPT -Phân tích và xây dựng phương án dạy học có nhiều nội dung toán học thể hiện về mối liên hệ giữa toán học và thực tiễn, các bài toán thực tiễn đã được đưa vào giảng dạy ở THPT Qua đó thấy được ý nghĩa: “Học đi đôi với hành”
- Biết vận dụng thực tế cuộc sống vào trong dạy học toán
Trang 6- Góp phần nâng cao tính thực tế, chất lượng dạy học môn toán ở trường THPT
2 Nhiệm vụ nghiên cứu
Với mục đích nghiên cứu đã nêu ở trên, những nghiệm vụ nghiên cứu của luận văn là:
a/ Nghiên cứu về tính thực tiễn và tính ứng dụng của toán học
b/ Toán học liên hê với thực tiễn đựơc thể hiện như thế nào trong nội dung chương trình toán 10 THPT
c/Tìm hiểu thực tiễn dạy học môn toán 10 và vấn đề tăng cường vận dụng các bài toán có nội dung thực tiễn vào giảng dạy
d/ Đề xuất biện pháp thiết kế, tổ chức dạy học, tiến hành trong giờ học đối với môn toán ở trường THPT,tính khả thi và hiệu quả của đề tài
3 Phương pháp nghiên cứu
Sử dụng các phuơng pháp nghiên cứu chuyên ngành lí luận và phương pháp giảng dạy môn toán đã học được tập trung vào các phương pháp sau:
a/Nghiên cứu lý luận
b/ Điều tra quan sát thực tiễn c/ Thực nghiệm sư phạm
II.Cấu trúc luận văn
1) Phần mở đầu
2) Chương 1: Cở sở lí luận và thực tiễn
3) Chương 2 Tăng cường vận dụng các kiến thức của đại số nâng cao 10 vào giải một số bài toán thực tiễn
4) Chương 3 Thực nghiệm sư phạm 5) Kết luận
6) Tài liệu tham khảo
Trang 7Chương 1
CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN
1.1 Tính thực tiễn và phổ dụng của toán học
1 1.1 Tính thực tiễn và tính ứng dụng của toán học
Trong khoa học cũng như trong cuộc sống, chúng ta thường phải xây dựng số phấn tử của tập hợp Nếu số phần tử không nhiều thì ta có thể đếm trực tiếp số phần tử của nó bằng cách liệt kê, tuy nhiên nếu số phần tử của một tập hợp là rất lớn thì cách đếm trực tiếp là không khả thi hoặc phải tính toán xem khả năng này có sảy ra hay không? Ngoài ra cần phải biết tách những vật đã được đếm ra khỏi những vật khác, phân biệt chúng với nhau loại ra tất cả các tính chất khác của vật và phải biết thành lập sự tương ứng một giữa nhiều phần tử của các nhóm đồ vật khác nhau Nhưng những khả năng này không phải do bẩm sinh và không phải tự nó thấm vào nhận thức của con người, nó là sản phẩm của sự phát triển trong hàng thế kỉ của tư duy con người, xuất phát từ hoạt động thực tiễn của họ
Ăng-ghen đã chỉ ra rằng những khái niệm toán học ban đầu – Khái niệm về số tự nhiên, về đại số và hình học được con người trừu tượng hoá từ trong thế giới hiện thực do những nhu cầu thực tiễn của con người, chứ không phải là do phát sinh từ trí não của con người, do tư duy thuần tuý Những ngón tay, ngón chân, những hón đá nhỏ, nhờ đó người ta học đếm, những đối tượng có hình dạng khác nhau mà người ta so sánh, những mảnh đất trên đó người ta đo diện tích… đó chính là một bộ phận của nhiều sự vật cụ thể đã giúp con người hoàn thiện được khái niệm về số tự nhiên, về đại lượng, về hình học Con người đã nghiên cứu tất cả những sự vật đó, số lượng, hình dạng, thể tích, diện tích của
Trang 8chúng trong khi giải quyết những bài toán mà họ gặp nhiều nhất và nhiều lần trong hoạt động thực tiễn của họ
Khái niệm số tự nhiên đã được nhiều dân tộc phát triển trong thời gian hàng ngàn năm cùng với những nhu cầu trong cuộc sống hàng ngày Những nhu cầu đó đã đề ra nhiều đòi hỏi ngày càng cao đối với kỹ thuật khoa học nhất là kỹ thuật tính toán Khái niệm số là kết quả trừu tượng hoá một số tính chất của các nhóm đối tượng và vì vậy mà ngược lại nó có thể sử dụng được để làm công cụ tính toán Khái niệm về hình học và khái niệm về đại lượng đã được hình thành và phát triển trong hoạt động lao động của con người
Thực tế cho thấy, sau khi phát sinh, lý thuyết của toán học có ảnh hưởng trực tiếp hay gián tiếp đến sự phát triển của các lực lượng sản xuất, đến các khoa học khác và tiết học nếu như có những điều kiện xã hội hưởng ứng Ăng-ghen đã viết:
“Cũng như mọi ngành khác của tư duy, những qui luật trừu xuất từ thế giới hiện thực đến một mức độ phát triển nào đó sẽ tách khỏi thế giới hiện thực, đối lập với nó như là một cái gì độc lập, như là những qui luật từ ngoài đưa đến mà thế giới bắt buộc phải phù hợp Điều đó đã xảy ra với xã hội và nhà nước, cũng như với toán học thuần tuý; toán học thuần tuý được áp dụng vào thế giới mặc dầu rằng nó bắt nguồn từ chính thế giới ấy và chỉ là biểu thị một bộ phận của những hình thức liên hệ của thế giới”
Tóm lại tính thực tiễn của toán học thể hiện qua ứng dụng của toán học và thực tiễn đời sống Điều này không những chỉ để nâng cao kiến thức của học sinh mà còn nhằm thực hiện nguyên lý giáo dục học đi đôi với hành, lý thuyết gắn liền với thực tiễn nhà trường gắn liền với xã hội
1.1.2 Vai trò của toán học trong nhiều lĩnh vực của khoa học khác
Toán học nghiên cứu những mối quan hệ số lượng và hình dạng không gian của thế giới khách quan Quan hệ bằng nhau, lớn hơn, nhỏ hơn của hai đại lượng là mối quan hệ cơ bản thường gặp trong thực tiễn khoa học và đời sống Điều đó nói lên vai trò toán học được ứng dụng trong rất nhiều lĩnh vực của khoa học tự nhiên, khoa học xã hội, công nghệ, kinh tế, y học, sinh học, văn học…
Trang 9Những thành tựu to lớn trong thời đại của chúng ta ngày nay như năng lượng điện tử, động cơ phản lực, vô tuyến điện tử… đều gắn liền với sự phát triển của những ngành toán học như đại số tổ hợp, xác xuất thông kê, hàm số phức, giải tích hàm hình học ơ-clít, hình học aphin…
Cơ học và vật lý học không thể phát triển đựoc nếu không có toán học Những điều đáng chú ý nhất trong giai đoạn cách mạng kỹ thuật mới là bên cạnh những ứng dụng của toán học vào kỹ thuật và sản xuất thông qua vật lý và cơ học thì những ứng dụng thông qua điều kiện học tăng lên không ngừng và ngày càng quan trọng
Ví dụ: Khi thực hiện bắn tên lửa lên không gian vũ trụ, để tên lửa có thể đạt
được vận tốc rất lớn, cần có hai điều kiện phải tính toán Một là khối lượng và vận tốc của tên lửa khi phụt ra cần phải lớn, hai là cần chọn tỉ lệ thích hợp giữa khối lượng của vỏ tên lửa và khối lượng nhiên liệu chứa trong nó Từ đó người ta đã tìm ra giải pháp chế tạo tên lửa nhiều tầng Khi nhiên liệu của tầng một đã cháy hết thì tầng một tự tách ra và bốc cháy trong khí quyển Tầng hai bắt đầu hoạt động và tên lửa tiếp tục tăng tốc từ vận tốc đã đạt được trước đó Do khối lượng toàn bộ tên lửa đã giảm đáng kể, nên vận tốc sẽ tăng nhanh Quá trình lặp lại; khi nhiên liệu tầng hai cháy hết tầng này lại tự tách ra và tầng ba bắt đầu hoạt động …
Nhận thấy tên lửa đảm nhiệm được nhiều vai trò to lớn cho sự phát triển của các ngành khoa học như vận chuyển các phương tiện khác nhau vào vũ trụ , phóng trạm thăm dò lên các hành tinh khác trong hệ mặt trời, đưa con người vào trong vũ trụ nghiên cứu khoa học phục vụ cho đời sống,…
Trong hoá học và sinh học trước đây chỉ thỉnh thoảng có dùng đến toán , nhưng chỉ dùng đến toán học cổ điển như giải tích, phương trình vi phân, thống kê Hiện nay đã có những bộ phận hoá học và sinh học đã sử dụng những nội dung hiện đại của toán học như tôpô học, thông tin học, máy tính điện tử… bằng những phương pháp toán học người ta có thể dự đoán ngày càng chính xác hơn các tính chất của nhiều hợp chất hoá học, hoặc có thể tính được công thức của
Trang 10hợp chất có một số đặc tính định trước Những bí mật của sự sống, những vấn đề khó khăn nhất về tính di truyền, cơ cấu hoạt động của thần kinh và những vấn đề sinh lý sinh vật, việc tính toán sinh con theo ý muốn… đã và đang được nghiên cứu bằng những phương tiện toán học tinh vi, hiện đại
Một lĩnh vực không thể không nhắc đến trong cuộc sống đã chịu sự xâm nhập của phương pháp toán học và điều khiển học là Y học - Ngành khoa học có lịch sử rất lâu đời và cũng tích luỹ được nhiều kinh nghiệm phong phú Trải qua hàng nghìn năm, y học đã biết đến hàng triệu căn bệnh khác nhau và có những phương pháp chữa trị bệnh khác nhau và cũng có rất nhiều trong sách ghi lại tỉ mỉ căn bệnh và thay đổi trạng thái cơ thể của người bệnh Nhưng những tài liệu đó vẫn chưa được khai thác hết, bằng chứng là không thiếu những trường hợp thầy thuốc đoán nhầm bệnh vì phuơng pháp chuẩn đoán chưa hoàn hảo hoặc bó tay trước các bệnh nan y trước đây như suy thận, bệnh tim Thời nay nhờ có các trang thiết bị máy móc hiện đại và phương pháp tính toán, việc sử dụng các phương pháp thống kê toán học và máy tính điện tử có thể giúp con người khai thác triệt để các kinh nghiệm và chuẩn đoán bệnh một cách chính xác và hiệu quả hơn Y học đã thành công rất nhiều trong các lĩnh vực như ghép thận, ghép tim, ghép gan…
Một số lĩnh vực khác thể hiện vai trò của toán học đã đưa lại nhiều kết quả đáng kể là kinh tế học Đó là những ứng dụng hàng ngày thông qua vấn đề tổ chức và quản lí sản xuất Ai cũng biết rằng không phải chỉ cần có kỹ thuật cao, máy móc hiện đại là sản xuất tốt mà trọng tâm của vấn đề là phải biết tổ chức và quản lí sản xuất một cách khoa học để phát huy được đầy đủ hiệu quả của kỹ thuật và máy móc ấy Đứng trước một vấn đề tổ chức sản xuất người ta có thể đưa ra rất nhiều phương án giải quyết khác nhau và đương nhiên bao giờ cũng chọn phượng án tốt nhất Bài toán về “sự lựa chọn” ấy đã đựoc một số nhà khoa học chú ý nghiên cứu tỉ mỉ, chi tiết Kết quả là đã ra đời một môn khoa học về các vấn đề đó gọi là vận trù học
Trang 11Thực tế cho thấy vận trù học và các phương pháp toán học nói chung có tác dụng rất lớn đối với sản xuất đồng thời có thể áp dụng trong hầu hết các lĩnh vực kinh tế: công nghiệp, nông nghiệp, giao thông vận tải…
Trong công nghiệp đưa vào lý thuyết chương trình tuyến tính để đặt kế hoạch sản xuất hợp lý nhằm tập trung thiết bị, tiết kiệm thời gian, giảm nguyên liệu…
Ví Dụ1: Hai cần cẩu lớn bốc rỡ một lô hàng ở cảng Sài Gòn Sau 3 giờ có
thêm năm cần cẩu bé (công suất bé hơn ) cùng làm việc Cả bảy cần cẩu làm việc 3 giờ nữa thì xong Hỏi mỗi cần cẩu làm việc một mình thì bao lâu xong việc Biết rằng nếu cả bảy cần cẩu cùng làm việc từ đầu thì trong 4giờ xong việc
Giải;
Gọi thời gian nếu chỉ có một cần cẩu lớn làm xong việc là x (giờ) ,x>o; Gọi thời gian một cần cẩu bé làm một mình đến khi xong việc là y (giờ) Theo đầu bài hai cần cẩu lớn làm trong 6 giờ, còn năm cần cẩu bé làm trong 3 gìơ thì xong việc Do đó ta có phương trình 12 15 1
Giải hệ gồm hai phương trình (1) và (2) ta được (x;y) =(24;30)
Trả lời Một cần cẩu lớn làm một mình trong 24 giờ thì xong công việc Một cần cầu bé làm một mình trong 30 giờ thì xong việc
Trong nông nghiệp có thể áp dụng chương trình tuyến tính để cải tiến các kế hoạch trồng trọt, chăn nuôi nhằm tận dụng năng xuất các loại đất, năng xuất nâng cao mức thu hoạch…
Ví dụ 2: Trên một cánh đồng cáy 60 ha lúa giống mới và 40 ha lúa giống
cũ Thu hoạch tất cả được 460 tấn thóc Hỏi năng xuất mỗi loại lúa trên 1 ha là
Trang 12bao nhiêu biết rằng 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là một tấn
Giải:
Gọi năng xuất trên 1 ha của lúa giống mới là x (tấn), x>0 Gọi năng xuất trên 1 ha của lúa giống cũ là y (tấn),y>o Ta có hệ phương
Giải hệ phương trình trên ta có x=5; y=4 Trả lời Năng suất 1 ha lúa giống mới là 5 tấn Năng suất 1 ha lúa giống cũ là 4 tấn
Trong giao thông vận tải dùng chương trình tuyến tính để chọn phương án vận chuyển tiết kiệm nhất, giảm bớt các quãng đường chạy không, chọn phương án hợp lí để giảm bớt thời gian quay vòng…
Ví Dụ 3: Một ôtô dự định đi từ tỉnh A đến tỉnh B trong một thời gian nhất
định Nếu chạy với vận tốc 45 km/h thì đến B chậm mất 2
1giờ Nếu chạy với vận tốc 60 km/h thì sẽ đến B sớm hơn 45 phút Tính quãng đường AB và thời gian dự định lúc đầu
Gợi ý: Gọi độ dài quãng đường AB là x km (x>0)và thời gian dự định là t giờ (t>0)
Như vậy thời gian đi lúc ban đầu là 45
,lúc sau là 60
Do đó thời gian lúc đầu là t +
, còn lúc sau là t - 4
3 Từ đó ta lập hệ phương trình để giải
Tóm lại toán học có vai trò to lớn với sự phát triển của các ngành khoa học, kỹ thuật khác, là điều kiện thiết yếu để phát triển lực lượng sản xuất Còn một đặc điểm rất quan trọng của tình hình khoa học hiện nay là: song song với việc phân hoá theo chuyên môn, đang hình thành một xu hướng tổng hợp, thống nhất các khoa học lại Nổi bật một nét mới là các khoa học ngày càng “toán học hoá” có nghĩa là ngày càng được sử dụng rộng rãi hơn các phương pháp toán học
Trang 13Toán học là sợi dây liên hệ ràng buộc các khoa học với nhau thúc đẩy cùng phát triển Ngày nay các phương pháp toán học không phải là chỉ được sử dụng trong vật lý và cơ học mà đã trở thành những phương pháp chung cho toàn bộ khoa học khác Không phải chỉ có các nhà vật lý, cơ học và các kỹ sư mới cần đến toán mà còn có cả các nhà sinh vật học, các thầy thuốc, các nhà ngôn ngữ học, kinh tế học, văn học… cũng cần đến toán Theo dự đoán của một số nhà bác học thì trong một tương lai không xa, cả sử học và pháp lý học cũng sẽ “toán học hoá”
1.1.3 Lý luận và thực tiễn trong dạy học toán tại trường THPT
Trong học tập và nghiên cứu toán học Đẻ đạt được hiệu quả tốt đều cần có sự hài hoà giữa lý luận và thực tiễn
Lý luận là những chỉ dẫn giúp hoạt động thực tiễn của con người đi đúng hướng Ngược lại hoạt động thực tiễn cũng giúp lý luận có ý nghĩa hơn Động lực phát triển của toán học dựa vào mâu thuẫn giữa lý luận và thực tiễn như ngôn ngữ toán học chứa đúng hai mặt ngữ nghĩa và cú pháp
Ngữ nghĩa xem xét những quan hệ giữa các kí hiệu và được biểu đạt qua kí hiệu Cú pháp nghiên cứu quan hệ giữa các kí hiệu
Khi vận dụng vào toán học cả hai mặt của ngôn ngữ toán học thì đều quan trọng như nhau Nếu chỉ chú trọng về mặt cú pháp thì kiến thức toán học của học sinh sẽ mang tính chất hình thức, không vận dụng vào được thực tế
Theo Khin-sin chủ nghĩa hình thức trong các kiến thức thường xảy ra ở học sinh bắt nguồn từ chỗ: Trong ý thức của học sinh có một sự phá vỡ nào đó mối quan hệ tương hỗ, đúng đắn giữa nội dung bên trong của sự kiện toán học và cách diễn đạt bên ngoài của sự kiện ấy (bằng lời, kí hiệu, hình ảnh trực quan, cụ thể…) Nên tập dượt toán học hoá các tình huống theo hai chiều từ thực tiễn đến mô hình toán học và ngược lại
Ví Dụ 4: Đo khoảng cách
Hãy xác định chiều rộng của một khúc sông và việc đo đạc chỉ tiến hành bên một bờ sông
Trang 14Hướng dẫn học sinh thực hiện:
Coi hai bờ sông song song với nhau Chọn một điểm B bên kia sông, lấy một điểm A bên này sông sao cho AB vuông góc với các bờ sông Dùng Êke đạc kẻ đường thẳng Ax phía bên này sông sao cho Ax vuông góc với AB Lấy một điểm C trên Ax và đo AC Giả sử đo AC = a, dùng giác kế đo góc ABC, giả sử
A ˆ = Dùng máy tính bỏ túi hoặc bảng lượng giác để tính tan Vậy chiều rộng của khúc sông là:
Trang 15Ví Dụ 5: Để hình thành khái niệm véc tơ, sách giáo khoa hình học lớp 10
đã giới thiệu đại lượng có trong vật lý là vận tốc, gia tốc, lực… các đại lượng đó không chỉ được xây dựng bởi độ lớn mà còn được xây dựng bởi hướng của chúng nữa Hướng của các đại lượng trên là rất quan trọng, nó được thể hiện qua ví dụ sau: (bài 10 – trang4)
Một chiếc tàu thuỷ chuyển động thẳng đều với vận tốc 20 hải lí một giờ Hiện nay nó đang ở vị trí M Hỏi sau 3 giờ nữa nó sẽ ở đâu?
Các em trả lời được câu hỏi đó hay không? Vì sao?
Rõ ràng là ta không thể biết được con tàu đang ở vị trí nào sau 3 giờ chuyển động Vì sao vậy? Vì ta không biết được hướng chuyển động của con tàu Ta chỉ có thể biết được sau 3 giờ con tàu sẽ cách điểm M là: 20.3 = 60 hải lí, muốn biết được chính xác vị trí của con tàu ta cần phải biết hướng chuyển động của nó nữa
Hướng chuyển động của một vật là hình ảnh cụ thể biểu diễn khái niệm véc tơ, sách giáo khoa đã dùng những hình ảnh sau để hình thành khái niệm véc tơ cho học sinh
Qua những hình ảnh cụ thể như trên đã tạo điều kiện cho học sinh hình thành và nắm bắt được khái niệm về véc tơ, hơn thế nữa các em thấy được tính thực tiễn của khái niệm toán học này Khi lĩnh hội một kiến thức mới cho học sinh tái hiện nội dung trong những tình huống quen thuộc gắn trong thực tế cuộc sống hay là các môn học trong trường ta phải biết qui lạ về quen Qua đó nâng dần trình độ, tính độc lập, sự thành thạo của học sinh Từ đó học sinh được lĩnh hội chắc chắn kiến thức hơn, rồi từ đó phấn khởi, có hứng thú học tập khi biết rõ nguồn gốc hoặc học nó để giải quyết ứng dụng vào điều gì trong thực tiễn và
Trang 16B‟
giúp các em có khả năng tự tin hơn, nhìn thấy ngay học tập tốt để giúp ích rất nhiều trong cuộc sống, trong xã hội, trong tư duy Qua đó sẽ đạt đuợc mức tư duy cao hơn, đòi hỏi học sinh diễn đạt phân tích hay vận dụng thông tin mới hay với thông tin đã tích luỹ trong trí óc, sáng tạo ý tưởng mới Để tăng cường bài toán thực tiễn thông qua ví dụ trong sách giáo khoa đã trình bày bài học thêm “thuyền buồm chạy ngược chiều gió” như sau:
Thông thường ta vẫn nghĩ rằng gió thổi về hướng nào thì sẽ đẩy thuyền buồm về hướng đó Trong thực tế con người đã nghiên cứu tìm cách lợi dụng sức gió làm cho thuyền buồm chạy ngược chiều gió Vậy người ta làm như thế nào để có thể thực hiện được điều tưởng chừng là vô lý đó? Nói một cách chính xác thì người ta có thể làm cho thuyền buồm chuyển động theo một góc nhọn gần bằng
góc vuông đối với chiều gió thổi Chuyển động này được thực hiện theo đường zích zắc nhằm tới hướng cần đến của mục tiêu Để làm được điều đó ta đặt thuyền theo hướng TT‟ và đặt buồm theo phương BB‟ như hình vẽ (SGK lớp 10 – trang 13)
Gió
Trang 17Khi đó gió thổi tác động lên mặt buồm một lực Tổng hợp lực là lực f có điểm đặt ở chính giữa buồm Lực f được phân tích thành hai lực: Lực p
vuông góc với cách buồm BB‟ và lực q
theo chiều dọc của cánh buồm Ta có
qpf
này được phân tích thành lực r
vuông góc với sống thuyền và lực
Nghị quyết 14 của Bộ Chính trị Ban chấp hành trung ương Đảng cộng sản Việt Nam đã chỉ ra phuơng hướng của việc cải cách nội dung giáo dục là: Chọn lọc có hệ thống những kiến thức cơ bản, hiện đại, sát với thực tế Việt Nam, làm cho vốn văn hoá, khoa học và kỹ thuật được giảng dạy ở nhà trường đã có tác dụng thực sự trong việc hình thành thế giới quan khoa học, phát triển tư duy khoa học, phát triển năng lực hành động của học sinh, bồi dưỡng năng lực thực hành, tính nhạy bén trong việc vận dụng kiến thức vào thực tế sản xuất và xây dựng đất nước
Tinh thần của nghị quyết 14 đã được phản ảnh đầy đủ, sâu sắc quá trình hoạt động giảng dạy học nói chung và trong môn toán nói riêng một cách bao quát, xuyên suốt trong mọi hoạt động của nhà trường “học đi đôi với hành, giáo
Trang 18dục kết hợp với lao động sản xuất, lý luận gắn liền với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình và giáo dục xã hội”
Ví Dụ 6: Khi học phần thống kê trong đại số lớp 10 Học sinh nắm được
thống kê là khoa học về các phương pháp thu thập, tổ chức, trình bày, phân tích và xử lý số liệu Qua ví dụ sau:
Một cửa hàng bản quần áo thống kê số áo sơ mi nam đã bán trong một quí theo các cỡ khác nhau và có được bằng tần số sau:
Điều mà của hàng quan tâm đến là cỡ áo nào được khách hàng mua nhiều nhất Bảng thống kê cho thấy cỡ áo bán được nhiều nhất là 39 (tức là giá trị 39 có tần số lớn nhất) Giá trị 39 chính là mốt của mẫu số liệu trên Như vậy ý nghĩa của khái niệm tần số và mốt đã rõ Nó giúp cho người kinh doanh điều chỉnh mặt hàng kinh doanh của mình để bản được nhiều hàng và thu lãi về nhiều nhất
1.2 Tính thực tiễn trong nội dung toán học Phổ thông
1.2.1 Mối liên hệ giữa thực tiễn và toán học
Như ta đã biết, toán học là kết quả của sự trừu tượng hoá những đối tượng vật chất khác nhau Toán học có quan hệ mật thiết với thực tiễn, những mối quan hệ có tính qui luật của hàng loạt sự vật, hiện tượng, những điều mà con người chưa biết, cần phải tìm tòi và giải quyết Toán học là một dạng phản ánh thực tế khách quan, cụ thể là:
+ Phản ánh nguồn gốc của toán học: Nhận thấy toán học là xuất phát từ thực tiễn lao động của con người, do nhu cầu của con người trong quá trình lao động sản xuất, khám phá tự nhiên Số tự nhiên ra đời do nhu cầu đếm, hình học xuất hiện do nhu cầu đo đạc…
+ Phản ánh thực tiễn của toán học, sự phân tích những điều kiện cụ thể của quá trình phát triển của đối tượng và ý nghĩa của toán học đã chỉ ra rằng thực
Trang 19tiễn không những chỉ là nguồn gốc và động lực của sự phát triển toán học mà còn là tiêu chuẩn chân lý của mỗi một lý thuyết toán học Mỗi lý thuyết toán học đều trực tiếp hay gián tiếp phản ánh những hiện tượng, những đại lượng, những qui luật, những mối quan hệ có trong thực tiễn Khái niệm tập hợp phản ánh một nhóm hữu hạn hay vô hạn các vật, các đối tượng trong thực tế, hàm số y = ax phản ánh mối quan hệ giữa số tiền phải trả với lượng hàng hoá cần mua, trong hình học khái niệm véc tơ phản ánh những đại lượng đặc trưng không chỉ về hướng, độ dài mà còn phản ánh về độ lớn, vận tốc, lực…
+ Phản ánh ứng dụng thực tế trong toán học thực tế là nguồn gốc của mọi lý thuyết toán học, nhưng sau khi ra đời các lý thuyết toán họclại quay lại phục vụ con người trong hoạt động thực tiễn, là công cụ đắc lực giúp con người giải quyết các vấn đề khó khăn trong lao động xã hội và trong kỹ thuật Ứng dụng thực tế trong toán học cho học sinh thấy được rằng trong phần giải tam giác của chương trình hình học lớp 10 đã vận dụng lượng giác để cho những khoảng cách không tới được như khoảng cách của bờ sông bên này đến bờ sông bên kia, khoảng cách của một toà nhà cao, ứng dụng thống kê để tính sản lượng cao thu lãi lớn… Muốn vậy cần tăng cường cho học sinh tiếp cận với những bài toán có nội dung thực tế Xuất phát từ những nhu cầu trong thực tiễn để giải thích các hiện tượng trong khi học lý thuyết cũng như làm bài tập
Tóm lại: Mối quan hệ toán học và thực tiễn gồm bao hàm tất cả các tính
phổ dụng, tính toàn bộ, tính nhiều tầng
1 2.2 Tình hình ứng dụng của toán học trong nhà trường phổ thông
Quan điểm và làm rõ mạch toán ứng dụng và ứng dụng toán học đã được nhấn mạnh trong dự thảo chương trình môn toán cải cách giáo dục Tuy vậy, việc quán triệt tinh thần của quan điểm đó trên thực tế vẫn còn những tồn tại , cần có những phương hướng cụ thể và biện pháp tích cực để khắc phục Việc dạy học toán ở nhà trường phổ thông hiện nay đang rơi vào tình trạng bị coi nhẹ thực hành và ứng dụng toán học vào đời sống Mối liên hệ toán học với thực tế là còn yếu, học sinh ít được về mặt toán học hoá các tình huống bắt đầu từ
Trang 20những vấn đề trong cuộc sống thực tiễn Thực trạng ấy, theo tôi có thể do những nguyên nhân sau:
- Tất cả các sách giáo khoa môn toán và hầu hết các tài liệu tham khảo, rất ít quan tâm đến các ứng dụng trong các lĩnh vực ngoài toán học mà hầu như chỉ tập trung chú ý tới các ứng dụng có tính chất nội bộ môn toán Đành rằng môn toán không chỉ là “ phục vụ viên ” của các môn học khác, nhưng sự quan tâm quá ít như vậy không thể hiện vai trò công cụ của toán học trong hệ thống sách giáo khoa cũng như trong thực tế của sống
- Trong quá trình đánh giá, thông qua các kỳ thi, chẳng hạn kỳ thi tốt nghiệp phổ thông hay tuyển sinh vào các trường chuyên nghiệp, vào các trường đại học hầu như các ứng dụng ngoài toán học đều không được đề cập đến Điều đó khiến cho học sinh, thậm chí cả giáo viên coi nhẹ vấn đề học và dạy ứng dụng toán học vào thực tế Ảnh hưởng của sách giáo khoa và tài liệu tham khảo, lối dạy phục vụ cho thi cử ( chỉ chú ý những nội dung để học sinh đi thi ) như hiện nay là một nguyên nhân góp phần tạo ra tình trạng này
- Trong quá trình dạy học môn toán phải làm cho học sinh nhận thức được đúng và đầy đủ rằng môn toán là một khoa học nghiên cứu về tương quan số lượng và hình dạng trong không gian của thế giới khách quan Chẳng hạn trong quá trình dạy học sinh hàm số bậc nhất y= ax +b cần làm cho học sinh thêm sáng tỏ đây là một tương quan thường sảy ra trong vật lý giữa tốc độ và thời gian t của chuyển động : vt = vo +at, giữa áp xuất và nhiệt độ của chất khí trong điều kiện thể tích không đổi p = po (1+ t); Đối với hàm số y= ax2 +bx +c ta cũng có những liên hệ tương tự Chẳng hạn sự tương quan giữa sức cản của không khí và vận tốc chuyển động của vật được biểu thị bởi p=av2
; sự tương quan giữa nhiệt năng trong một dây dẫn có điện trở R và cường độ dòng điện I biểu thị bằng công thức; VV=RI2
;phương trình chuyển động trong vật lý biểu thị bằng công thức: x= xo+vot +
at2 là sự tương quan x chuyển động của chất điẻm
Trang 21và thời gian t;động năng VVđ của một vật chuyển động có khối lượng m và vật tốc v: VVd =
mV2
Mỗi khi học đến vấn đề mới cần nêu rõ hơn ứng dụng của toán học trong thực tế hoặc nguồn gốc thực tế của nó để học sinh dần dần nhận thức được rằng toán học nghiên cứu những định luật trong sản xuất Ví dụ khi học sinh được học đến phần đường tròn, đường elíp là thuộc họ đường cô nic các em cần được biết nguồn gốc thực tế Đó là từ xa xưa, con người đã chú ý tìm hiểu những hiện tượng thiên nhiên hàng ngày sảy ra trên bầu trời, như mặt trời mọc và lặn, trăng tròn trăng khuyết, thời tiết thay đổi bốn mùa … vì thế môn thiên văn học ra đời rất sớm, từ thời cổ hy lạp Từ năm 140 sau công nguyên, quan điểm Ptô LêMê coi trái đất là trung tâm của vũ trụ đã thống trị trong nhiều thế kỉ, mãi cho tới khi thuyết nhật tâm của Cô - péc – níc ra đời (năm 1543) Theo Cô – péc – níc, người đặt nền móng cho thiên văn học thì Trái Đất chỉ là một trong nhiều hành tinh quay quanh mặt trời Dựa theo sự quan sát về vị trí của các hành tinh trong nhiều năm nhà thiên văn học Ke – ple người Đức đã đưa ra các định luật Kêple được học trong Vật Lý Quỹ đạo của các hành tinh trong hệ mặt trời đều là những hình elíp rất gần với đường tròn Từ đó ta có thể tìm được khoảng cách từ hành tinh nào đến Mặt Trời cụ thể là Trái Đất đến Mặt Trời hoặc có thể xác định được khối lượng của một thiên thể nếu biết khoảng cách và chu kì của một vệ tinh bất kỳ của thiên thể đó nhờ có tính toán và kết quả có được phải dùng đến công thức: 2 2
(1) Với MT là khối lượng của Mặt Trời T1 là chu kì quay của hành tinh 1
G là hằng số hấp dẫn
R là khoảng cách từ hành tinh tới Mặt Trời
VD: Tìm khối lượng của Mặt Trời từ các dữ kiện của Trái Đất: khoảng
cách tới Mặt Trời r = 1,5.1011
m
Chu kỳ quay T = 365.24.3600 = 3,15.107
s
Trang 22Thay số: MT = 112 11732
Kết quả: MT = 2.1030
kg
Tóm lại trong quá trình dạy học toán ở trường THPT giáo viên luôn cần phát triển kỹ năng và kỹ sảo cho học sinh trong thực tế hàng ngày, trong lao động công ích và trong tính toán những sự việc có thật trong cuộc sống Học sinh phải biết tính nhẩm, tính viết, tính bằng thước, bằng máy tính, sử dụng dụng cụ đo đạc, phép tính gần đúng, sai số cho phép… đi đôi với việc phát triển kỹ năng tính toán của học sinh giáo viên cần chú ý đến các phương pháp ngắn gọn hợp lý trong việc giải các bài toán
1.2.3 Tăng cường và làm rõ mạch toán ứng dụng và thực hành trong dạy học môn toán
Tăng cường và làm rõ mạch toán ứng dụng và thực hành của toán học là góp phần thực hiện lý luận liên hệ với thực tiễn, học đi đôi với hành, nhà trường gắn liền với cuộc sống
Tăng cường tính thực tiễn và tính sư phạm, giảm nhẹ yêu cầu quá chặt chẽ về lý thuyết Ở bậc phổ thông học sinh cần phải được cung cấp những kiến thức cần thiết cho cuộc sống và cung cấp công cụ để học tốt các môn học Khi học đến phần thống kê, học sinh nắm bắt được kiến thức và ứng dụng đối với cuộc sống Cần làm cho học sinh biết ứng dụng những tri thức và phương pháp toán học và những môn học trong nhà trường, chẳng hạn vận dụng véc tơ để biểu thị lực, vận dụng tính gần đúng, sử dụng bảng số để đo đạc, tính toán những môn học khác vận dụng hình học trong không gian vẽ kỹ thuật Tổ chức nhiều hoạt động thực hành toán học trong nhà trường và ngoài nhà trường như ở nhà máy,
Trang 23đồng ruộng… kể cả những hoạt động có tính tập dượt nghiên cứu bao gồm cả khâu đặt bài toán, xây dựng mô hình, thu thập dự liệu, xử lí mô hình để tìm lời giải, đối chiếu lời giải với thực tế để kiểm tra và điều chỉnh
Việc vận dụng và thực hành toán học cần dẫn tới, hình thành phẩm chất luôn luôn muốn ứng dụng tri thức và phương pháp toán học để giải thích phê phán và giải quyết những sự kiện xảy ra trong cuộc sống.Ví dụ ở các ngã tư đường người ta gắn đèn xanh đèn đỏ Điều đó thôi thúc họ xem xét giải thích hiện tượng khi đèn vàng, đỏ, xanh xuất hiện như thế nào?
Để tăng cường rèn luyện khả năng và ý thức ứng dụng toán học cho học sinh, bên cạnh mở rộng phạm vi ứng dụng, cần thiết phải tăng cường tính ứng dụng của những nội dung toán học được giảng dạy trong nhà trường
Để quán triệt tinh thần “tăng cường ứng dụng toán học” trong giảng dạy toán ở trường phổ thông, khắc phục tình trạng coi nhẹ thực hành và ứng dụng toán học hiện nay, cần phải nghiên cứu giải pháp tổng thể, bao gồm các khâu: Chỉ đạo (chương trình), cụ thể hoá bằng sách giáo khoa ( nội dung dạy học), thực hiện đánh giá và điều chỉnh một cách thích hợp và thường xuyên Đặc biệt, cần phải tiếp tục nghiên cứu những biện pháp cụ thể nhằm “dạy học kết dính với các ứng dụng”, phù hợp với thực tiễn nhà trường phổ thông Việt Nam Đồng thời, cũng cần phải chú ý tới việc đào tạo và bồi dưỡng giáo viên, trước hết là phải làm cho họ muốn nghiên cứu những ứg dụng của toán học và được chuẩn bị tốt để làm việc đó Đối với nội dung môn toán học ở trường trung học phổ thông, trước mắt bên cạnh việc gắn liền với các kiến thức toán học với những nguồn gốc thực tế của chúng, có thể cần phải đặc biệt chú ý tới hai hướng sau:
- Hướng thứ nhất: Tiếp tục đưa vào giảng dạy ở mức độ phù hợp những nội dung có nhiều ứng dụng thực tiễn, cần phải trang bị cho đội ngũ những người lao động trong tương lai một số yếu tố của xác suất thống kê, phương pháp tính… Trong điều kiện sách giáo khoa hiện hành, có thể bước đầu nên đưa vào bằng các giờ học ngoại khoá, thực hành hoặc bằng các giờ học tự chọn
Trang 24- Hướng thứ hai: Khai thác và làm đậm nét hơn nữa những ứng dụng còn ẩn tàng, còn mờ nhạt của những nội dung truyền thống vốn đã có trong chương trình sách giáo khoa bằng những biện pháp thích hợp, nhằm rèn luyện kỹ năng tính toán, xây dựng quy trình tính toán, kỹ năng xây dựng mô hình toán học, năng lực chọn lựa, giải quyết các bài toán từ thực tiễn đời sống
Cả hai hướng trên có tác dụng tích cực,bổ sung hỗ trợ lẫn nhau góp phần chủ động thực hiện mục tiêu tăng cường làm rõ mạch toán ứng dụng trong dạy học toán ở trường phổ thông
Tóm lại tăng cường và làm rõ mạch toán ứng dụng toán thực tế cho học sinh có ý thức và khả năng vận dụng toán học là mục tiêu xuyên suốt, một nhiệm vụ quan trọng, một khâu cơ bản trong quá trình dạy học toán ở trường phổ thông Nó phản ánh được tinh thần đổi mới nội dung và PPDH phù hợp với xu thế chung của giáo dục toán học trên thế giới
1.3 Các định hướng đổi mới phương pháp dạy học môn toán
1.3.1.Tóm tắt các định hướng đổi mới PPDH hiện nay (tr.113 – 122 tài
liệu Nguyễn Bá Kim) Được thể hiện qua 6 hàm ý sau đây đặc trưng cho PPDH hiện đại
1 Xác lập vị trí chủ thể của người học, đảm bảo tính tự giác, tích cực chủ động và sáng tạo của hoạt động học tập được thể hiện độc lập hoặc trong giao lưu
2 Tri thức được cài đặt trong những tình huống có dụng ý sư phạm 3 Dạy việc học, dạy tự học thông qua toàn bộ quá trình dạy học
4 Tự tạo và khai thác những phương tiện dạy học để tiếp nối và gia tăng sức mạnh của con người
5 Tạo niềm lạc quan học tập dựa trên lao động và thành quả của bản thân người học
6 Xác định vai trò mới của người thầy với tư cách người thiết kế, uỷ thác, điều khiển và thể chế hoá
1.3.2 Phân tích một số định hướng có liên quan đến đề tài
Trang 25Lấy “Học” làm trung tâm thay vì lấy “Dạy” làm trung tâm: Trong phương pháp tổ chức, người học - đối tượng của hoạt động “Dạy”, đồng thời là chủ thể của hoạt động “Học” được cuốn hút vào các hoạt động do GV tổ chức và chỉ đạo, thông qua đó tự lực khám phá những điều mình chưa rõ, chưa có chứ không phải thụ động tiếp thu những tri thức đã được GV sắp đặt Được đặt vào những tình huống của đời sống thực tế, người học trực tiếp quan sát, thảo luận, làm thí nghiệm, giải quyết vấn đề đặt theo cách suy nghĩ của mình, từ đó nắm được kiến thức kỹ năng mới, vừa nắm được phương pháp “làm ra” kiến thức kỹ năng đó, không dập theo một khuôn mẫu sẵn có, được bộc lộ và phát huy tiềm năng sáng tạo Dạy theo cách này, GV không chỉ giản đơn truyền đạt tri thức mà còn hướng dẫn hành động Mục đích của việc đổi mới PPDH ở trường PT là thay đổi lối dạy học truyền thụ một chiều sang dạy học theo “ phương pháp dạy học tích cực” nhằm giúp HS phát huy tính tích cực, tự giác, chủ động, sáng tạo, rèn luyện thói quen và khả năng tự học, tinh thần hợp tác, kỹ năng vận dụng kiến thức vào những tình huống khác nhau trong học tập và trong thực tiễn Mô hình hợp tác trong xã hội đưa vào đời sống học đường sẽ làm cho các thành viên quen dần với sự phân công hợp tác trong lao động xã hội Trong nền kinh tế thị trường đã xuất hiện nhu cầu hợp tác xuyên quốc gia, liên quốc gia, năng lực hợp tác phải trở thành một mục tiêu giáo dục mà nhà trường phải chuẩn bị cho HS
Tại sao cần phải đổi mới PPDH dạy học? PPDH là con đường để đạt mục đích dạy học Ở Việt Nam thực trạng dạy và học theo lối mòn thụ động nội dung không sát với thực tế.Đổi mới PPDH không có nghĩa là bỏ cái cũ mà phải dựa trên cái cũ và khai thác các ưu điểm phù hợp với yêu cầu mục đích mới có thể nói cốt lõi của đổi mới PPDH là hướng tới hoạt động học tập chủ động, chống lại thói quen học tập thụ động Chỉ có thể đổi mới PPDH chúng ta mới có thể tạo được sự đổi mới thực sự trong giáo dục, mới có thể tạo lớp người lao động, sáng tạo, có tiềm năng cạnh tranh trí tuệ trong bối cảnh nhiều nước trên thế giới đang hướng tới nền kinh tế trí thức
Trang 261.3.3 Định hướng đổi mới PPDH nhằm vận dụng kiến thức vào thực tiễn thông qua khai thác các bài toán có ứng dụng trong thực tế làm cho toán học gần với đời sống xã hội
Khai thác các bài toán trong chương trình học làm cho học sinh thấy rõ học tập tốt sẽ trở thành người lao động có chất xám cao Chính vì thế đây là những hoạt động cần thiết mà người giáo viên cần phải tìm ra trong nội dung bài dạy và tìm cách tổ chức cho học sinh tiến hành các hoạt động trong giờ học toán qua các ví dụ minh hoạ được gắn với thực tiễn
Xuất phát từ tình hình thực tiễn dạy học môn toán 10 có thể nhận thấy về vấn đề khai thác và vận dụng các bài toán thực tế còn gặp nhiều khó khăn:
- Về phía học sinh: Còn có những khó khăn về kiến thức của học sinh không đồng đều Khi gặp những bài toán dưới dạng tìm tòi, được diễn tả bằng ngôn ngữ thông thường và nội dung của bài toán đề cập đến vấn đề trong cuộc sống sinh hoạt, hoạt động và học tập HS còn lúng túng trong việc thiết lập mô hình toán học tương ứng với nội dung thực tiễn của bài toán
Học sinh phải biết chuyển từ ngôn ngữ thông thường sang ngôn ngữ toán học
Về phía giáo viên: Còn có những hạn chế, toán học là môn học khó và trừu tượng không phải ở tất cả các bài giảng lý thuyết nào cũng lấy được ví dụ sinh động gắn vào thực tế, giáo viên phải biết chọn lọc các bài toán không quá khó, không quá dễ để ta có thể áp dụng được vào lý thuyết đã được học, cần phải gợi ý để vào bài một cách tự nhiên, không gò ép, làm thế nào gây sự chú ý, gợi trí tò mò, gây hứng thú cho học sinh
Khi dạy toán, xét về nội dung tri thức toán Giáo viên cần phải phân tích:
- Nét đặc thù của tri thức toán học, phải chuyển từ tri thức giáo khoa sang trí thức dạy học
- Theo nghiên cứu tìm hiểu và nhất là ứng dụng Didactic của tác giả Nguyễn Bá Kim (6 trang 238 – 240)
Trang 27+Thầy giáo nói chung không dạy nguyên dạng tri thức khoa học hay trí thức chương trình mà phải chuyển hoá tri thức chương trình thành tri thức dạy học Nắm vững tri thức khoa học là một điều kiện nhưng chưa đủ để đảm bảo kết quả dạy học
+ Điều cốt yếu của phương pháp dạy học là thiết lập môi trường có dụng ý sư phạm để người học có thể học tập trong hoạt động, học tập thích nghi
+ Nghĩa của một tri thức được hoàn thành từ những tình huống để người học hoạt động và thích nghi với môi trường, nhờ đó tri thức được kiến tạo vừa như phương tiện lại vừa như kết quả của hoạt động và thích nghi
Như vậy chúng ta có thể khai thác các bài toán có liên quan đến thực tế để thực hiện chương trình này, nhằm chuyển hoá tri thức chương trình sang tri thức dạy học, tạo điều kiện cho học sinh lĩnh hội kiến thức một cách tự nhiên, thích hợp và có ý nghĩa đối với học sinh Khai thác có ứng dụng trong bài giảng biến học toán thành môn dạy hấp dẫn, thích thú đối với học sinh, làm cho giờ toán không phải là một gánh nặng, một hình phạt đối với học sinh, mà là một nguồn vui, một cái gì đẹp đẽ, có thể giúp ích cho họ trong cuộc sống, trong công tác sau này và làm cho các giờ học toán trở nên sôi nổi hứng thú hơn với học sinh
Khai thác các bài tập có trong thực tế nhằm góp phần đổi mới phương pháp dạy học môn toán để nâng cao hiệu quả dạy học môn toán, giúp học sinh đạt được các mục đích học môn toán một cách tốt đẹp, ưu tiên con đường nhận thức qui nạp từ cụ thể và thực tiễn phong phú
Khai thác các bài tập có nội dung thực tế nhằm đổi mới phương pháp dạy học môn toán theo hai hướng:
+Phân tích một số bài tập điển hình có nội dung thực tế góp phần hiểu sâu bản chất toán học
+Khai thác các bài toán thể hiện qua sự việc có thực trong cuộc sống để gắn vào toán học, thích hợp phục vụ dạy học toán ở trường THPT
Ví dụ khi học phần phương trình bậc nhất một ẩn số học sinh thấy được vai trò phương trình có ứng dụng trong đời sống thực tiễn được thể hiện rất phong phú, đa dạng giúp con người giải quyết các bài toán kinh tế, kỹ thuật… như ví dụ cụ thể sau: Một phân xưởng maylập kế hoạch may một lô hàng, theo đó mỗi
Trang 28này phân xưởng phải may xong 90 áo Nhưng nhờ cải tiến kỹ thuật, phân xưởng đã may được 120 áo mỗi ngày Do đó, phân xưởng không những đã hoàn thành kế hoạch trước thời hạn 9 ngày mà còn may thêm được 60 áo Hỏi theo kế hoạch phân xưởng phải may bao nhiêu áo?
Trước hết phải hướng dẫn học sinh phân tích bài toán có những đại lượng nào? Quan hệ của chúng ra sao? Toán học hoá các đại lượng và các mối quan hệ ấy?
Trong bài toán trên ta gặp các đại lượng: Số áo may trong một ngày (đã biết)
- Theo kế hoạch và thực tế đã thực hiện Mối quan hệ giữa chúng : Số các đại lượng số áo may trong một ngày x Số ngày may = Tổng số áo may
Toán học hoá các đại lượng và mối quan hệ giữa chúng Chọn ẩn là một trong các đại lượng chưa biết Ta chọn x là số ngày may theo kế hoạch , khi đó tổng số áo may là 90x, nhưng nhờ cải tiến kỹ thuật nên số ngày may là x-9 và tổng số áo may là: 120(x-9) Từ đó ta có, quan hệ giữa tổng số áo đã may được và số áo may theo kế hoạch được biểu thị bởi phương trình: 120(x-9) = 90x+60
Giải phương trình trên ta có x=38
Vậy kế hoạch may áo ban đầu của xưởng may là 38 ngày
Tóm lại: Khai thác các bài toán có ứng dụng trong thực tế sẽ làm đậm nét hơn
những ứng dụng còn ẩn tàng, còn mờ nhạt của những nội dung toán học truyền thống vốn đã có trong chương trình và SGK Một trong những biện pháp thích hợp trong điều kiện hiện nay là lựa chọn, xây dựng một hệ thống các bài tập có nội dung liên môn hoặc gắn với thực tế, gần gũi và quen thuộc trong sản xuất, đời sống, đưa vào bài giảng ở những thời điểm thích hợp trong quá trình dạy toán
Kết luận chung:
Lý luận và thực tiễn trong hoạt động dạy học toán cần kết hợp các phương pháp giáo dục nhằm phát huy tính tích cực, tự giác, chủ động tư duy sáng tạo của người học Cần bồi dưỡng năng lực tự học, lòng say mê tự học và ý chí vươn lên không mệt mỏi phù hợp với đặc điểm của từng môn học, bồi dưỡng phương pháp tự học rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn, để tác động đến
Trang 29tình cảm đem lại niềm vui, hứng thú học tập của học sinh qua đó thể hiện đổi mới được phương pháp dạy học không theo lối mòn ấn định một lượng kiến thức sẵn có ở sách giáo khoa, một cách thụ động mà nội dung lại không sát với thực tế
Trang 30Chương 2
TĂNG CƯỜNG VẬN DỤNG NHỮNG TRI THỨC ĐÃ HỌC TRONG CHƯƠNG TRÌNH ĐẠI SỐ NÂNG CAO LỚP 10
VÀO GIẢI MỘT SỐ BÀI TOÁN THỰC TIẾN
Môn toán có liên hệ chặt chẽ với khoa học toán học, toán học đang phát triển như vũ bão, ngày càng xâm nhập vào các lĩnh vực khoa học công nghệ và đời sống Toán học phản ánh ở trong nhà trường phổ thông là cơ bản là nền tảng được sắp xếp thành một hệ thống và đảm bảo tính khoa học, tính tư tưởng để tiếp tục học đại học, cao đẳng, trung học chuyên nghiệp, học nghề hoặc đi vào cuộc sống lao động
Việc đảm bảo chất lượng phổ cập xuất phát từ yêu cầu khách quan của xã hội và từ khả năng thực tế của học sinh học khẳng định rằng mọi học sinh có sức học bình thường đều có thể tiếp thu một nền văn hoá phổ thông, trong đó có học vấn toán học phổ thông
Nội dung toán học của môn toán trong nhà trường phổ thông chủ yếu bao gồm các lĩnh vực sau, được tập hợp thành hai bộ phận:
* Số học, đại số và giải tích * Hình học
Về số học, đại số và giải tích có thể kể các nội dung sau:
(2) Các phép biến đổi đồng nhất, (3) Phương trình và bất phương trình; (4) Hàm số và đồ thị;
(5) Những yếu tố của phép tính vi phân, tích phân; (6) Những yếu tố về tổ hợp xác xuất
Hình học bao gồm các nội dung:
(1) Những khái niệm hình học; (2) Những đại lượng hình học;
Trang 31(3) Những hệ thức lượng trong hình học; (4) Các phép biến hình: dời hình và đồng dạng; (5) Véc tơ và tọa độ
Các lĩnh vực trên không tách rời nhau mà trái lại, thường đan kết với nhau Nội dung chương trình đại số lớp 10 là rất cơ bản và cần thiết giúp học sinh tiếp cận được kiến thức của THPT do bộ giáo dục và đào tạo ban hành theo chương trình phân ban
Sau đây là nội dung vắn tắt giới thiệu chương trình toán trung học phổ thông ở lớp 10 phần đại số nâng cao
Chương I Mệnh đề- Tập hợp
Chương II Hàm số bậc nhất và bậc hai
Chương III Phương trình - Hệ phương trình Chương IV Bất đẳng thức - Bất phương trình Chương V Thống kê
Chương VI Góc lượng giác và công thức lượng giác
2.1 Phương pháp chung để giải các bài toán có nội dung thực tiễn
Trong thực tiễn dạy học, bài tập được sử dụng với những ý khác nhau về phương pháp dạy học: Đảm bảo được trình độ xuất phát, gợi động cơ, làm việc với nội dung mới, củng cố hoặc kiểm tra…Kết quả của lời giải phải đáp ứng do nhu cầu thực tế đặt ra
Ta đã biết rằng không có một thuật giải tổng quát để giải mọi bài toán, ngay cả đối với những lớp bài toán riêng biệt cũng có trường hợp có, trường hợp không có thuật giải Bài toán thực tiễn trong cuộc sống là rất đa dạng, phong phú xuất phát từ những nhu cầu khác nhau trong lao động sản xuất của con người Do vậy càng không thể có một thuật giải chung để giải quyết các bài toán thực tiễn Tuy nhiên, trang bị những hướng dẫn chung, gợi ý các suy nghĩ tìm tòi, phát hiện cách giải bài toán lại là có thể và cần thiết
Dựa trên những tư tưởng tổng quát cùng với những gợi ý chi tiết của Polya về cách thức giải bài toán đã được kiểm nghiệm trong thực tiễn dạy học, kết hợp
Trang 32với những đặc thù riêng của bài toán thực tiễn, có thể nêu lên phương pháp chung để giải bài toán có nội dung thực tiễn như sau:
Bước 1: Tìm hiểu nội dung của bài toán Toán học hoá bài toán, chuyển bài
toán với những ngôn ngữ, những dự kiện trong cuộc sống thực tế thành bài toán với ngôn ngữ toán học, các dữ kiện được biểu thị bằng các ẩn số, các con số,…Các ràng buộc giữa các yếu tố trong bài toán thực tiễn được chuyển thành các biểu thức, các phương trình, hệ phương trình, bất phương trình toán học…
Bước này có ý nghĩa rất quan trọng đối với việc giải quyết một bài toán có nội dung thực tiễn, đồng thời nó cũng phản ánh khả năng, trình độ của người học đối với việc hiểu và vận dụng các tri thức toán học
Bước 2: Tìm cách giải cho bài toán đã được thiết lập Tìm tòi, phát hiện
cách giải nhờ những suy nghĩ có tính chất tìm đoán: Biến đổi cái phải tìm hay phải chứng minh, liên hệ cái đã cho hoặc cái phải tìm với những tri thức đã biết, liên hệ bài toán cần giải với một bài toán cũ tương tự, một trường hợp riêng, một bài toán tổng quát hơn hay một bài toán nào đó có liên quan, sử dụng những phương pháp đặc thù với những dạng toán
Kiểm tra lời giải bằng cách xem lại kĩ từng bước thực hiện hoặc đặc biệt hoá kết quả tìm được hoặc đối chiếu kết quả với một số tri thức có liên quan…
Bước 3: Trình bày lời giải Từ cách giải đã được phát hiện, sắp xếp các
việc phải làm thành một chương trình gồm các bước thực hiện theo một trình tự thích hợp và thực hiện các bước đó
Bước 4: Đưa ra kết luận cuối cùng cho yêu cầu của bài toán thực tiễn,
thường là một kết quả đo đạc, một phương án, một kế hoạch sản xuất…Do thực tiễn đặt ra Đồng thời cần có sự nghiên cứu sâu lời giải, nghiên cứu khả năng ứng dụng của kết quả của lời giải Nghiên cứu những bài toán tương tự, mở rộng hay lật ngược vấn đề Đây là hoạt động nhằm phát huy khả năng tư duy, tìm tòi sáng tạo học sinh
Để trang bị cho HS tri thức phương pháp giải bài toán có nội dung thực tiễn như đã nêu trên và cần tăng cường rèn luyện cho học sinh khả năng và thói quen
Trang 33ứng dụng kiến thức, kỹ năng và phương pháp toán học vào những tình huống cụ thể khác nhau ( trong học tập, trong lao động sản xuất, trong đời sống…)
2.2 Xây dựng hệ thống các ví dụ và bài toán có nội dung thực tiễn trong dạy học một số chương đại số 10 nâng cao - THPT
2.2.1 Chương1: Mệnh đề - Tập hợp
A Tóm tắt kiến thức cơ bản chương I: mệnh đề - tập hợp
+ Một mệnh đề là một câu khẳng định đúng hoặc một câu khẳng định sai Một câu khẳng định đúng gọi là một mệnh đề đúng Một câu khẳng định sai gọi là một mệnh đề sai
+ Cho mệnh đề P Mệnh đề “không phải P” được gọi là mệnh đề phủ định của P và kí hiệu là P
+ Cho hai mệnh đề P và Q Mệnh đề có dạng “Nếu P thì Q” được gọi là mệnh đề kéo theo và kí hiệu là P Q
+ Cho hai mệnh đề P và Q Mệnh đề có dạng “ P nếu và chỉ nếu Q” được gọi là mệnh đề tương đương và kí hiệu là P Q
+ Mệnh đề chứa biến, cho mệnh đề chứa biến P(x) với x X Mệnh đề phủ định của mệnh đề “ xX,P(x)" là “ x X,P(x)”
Cho mệnh đề chứa biến P(x) với x X Mệnh đề phủ định của mệnh đề “ xX,P(x)” là “ xX,P(x)”
+ Định lí là những mệnh đề đúng được phát biểu dưới dạng
x ,trong đó P(x) và Q(x) là các mệnh đề chứa biến, X là một mệnh đề nào đó
+ Phép CM định lí thường sử dụng phép CM trực tiếp hay phép CM bằng phản chứng
+ Mệnh đề “ xX,Q(x) P(x)” đúng được gọi là định lí đảo Định lí thuận và đảo có thể viết gộp thành một định lí “ xX,P(x) Q(x)".
+ Tập hợp; tập con; hai tập hợp bằng nhau kí hiệu là A=B
+ Hợp của hai tập hợp A và B, kí hiệu là A B = x /xA hoặc xB ,
Trang 34+ Giao của hai tập hợp A và B, kí hiệu là A B = x/x A và xB + Hiệu của hai tập hợp A và B, kí hiệu là A\ B = x /xA và x xB
+ Ta gọi aa là sai số tuyệt đối của số gần đúng a, kí hiệu là a
+ Sai số tương đối của số gần đúng a là tỉ số giữa sai số tuyệt đối và a và kí hiệu là a Ta có
aa + Qui tròn số; chữ số chắc
B.Các ví dụ và các bài tập có nội dung thực tế đƣợc ứng dụng trong lí thuyết và bài tập
Trong chương I: Mệnh đề - tập hợp phần đại số lớp 10 cung cấp cho học sinh kiến thức mở đầu về lô gíc toán và tập hợp Các khái niệm và các phép toán về mệnh đề và tập hợp sẽ giúp chúng ta diễn đạt các nội dung toán học thêm rõ ràng và chính xác, đồng thời giúp chúng ta hiểu đầy đủ hơn về suy luận và chứng minh trong toán học Bởi vậy chương này có ý nghĩa quan trọng đối với việc học tập hợp môn toán Để hiểu biết thêm về kiến thức mệnh đề lô gíc và lí thuyết tập hợp được sáng lập ra môn lý thuyết tập hợp Ghê – oóc Can – to sinh ngày 3 – 3 – 1845 tại Xanh Pe téc – bua trong một gia đình có bố là một thương gia, mẹ là một nghệ sĩ, tài năng và lòng say mê toán học của ông hình thành rất sớm Sau khi tốt nghiệp phổ thông một cách xuất sắc, ông ôm hoài bão đi sâu vào toán học Bố của ông muốn ông trở thành một kĩ sư vì nghề này kiếm được nhiều tiền hơn Nhưng ông đã quyết tâm học sâu về toán và cuối cùng ông đã thuyết phục được cha bằng lòng cho ông theo học ngành toán, ông đã viết thư cho cha đại ý như sau: “Con rất sung sướng vì cha đã đồng ý cho con theo đuổi hoài bão của con , tâm hồn con, cơ thể con sống theo hoài bão ấy” Ông bảo vệ luận án tiến sĩ tại trường đại học Béc – lin vào năm 1867 Từ năm 1869 đến 1905, ông dạy ở trường đại học Ha – lơ (Halle) Ông là người sáng lập lên lý thuyết tập hợp Ngay sau khi ra đời, lí thuyết tập hợp đã là cơ sở cho một cuộc cách mạng trong viết sách và giảng dạy toán Những công trình toán học của
Trang 35ông đã để lại những dấu ấn sâu sắc cho các thế hệ các nhà toán học lớp sau Năm 1925, Hin – be (Đ Hilbest), nhà toán học lỗi lạc của thế kỉ XX đã viết: “Tôi đã tìm thấy trong các công trình của ông vẻ đẹp của hoa và trí tuệ Tôi nghĩ rằng đó là đỉnh cao của hoạt động trí tuệ của con người” Từ năm 40 tuổi, tuy có những thời kỳ đau ốm phải nằm viện nhưng ông vẫn không ngừng sáng tạo Một trong những công trình quan trọng của ông đã được hoàn thành trong khoảng thời gian giữa hai cơn đau Ông mất ngày 6 – 1 – 1918 tại bệnh viện ở Ha – lơ, thọ 73 tuổi
Ta sẽ minh chứng điều đó qua một bài số học thể hiện được tính ứng dụng rộng rãi của mệnh đề để củng cố
*Ứng dụng trong dạy lí thuyết
Chẳng hạn:
1 “Pari là thủ đo của nước Pháp” là mệnh đề đúng 2 “Việt Nam nằm ở Châu Âu” là mệnh đề sai 3 “20 là số chẵn” là mệnh đề đúng
Ví Dụ 1: Nếu C = “Chuyến tàu TN1 hôm nay bãi bỏ” thì mệnh đề phủ định
C có thể diễn đạt như sau: “Chuyến tàu TN1 hôm nay không bãi bỏ”
Nếu qua xác minh mệnh đề C đúng (hoặc sai) thì mệnh đề phủ định C sẽ sai (hoặc đúng)
Trang 36và b = “Thành phố Hồ Chí Minh không phải là thủ đô” Ở đây G(a) = 1
G(b) = 1 Nên G(a b) = 1
Ví Dụ 2.b: “Chồng cày, vợ cấy, con trâu đi bừa”
* Chú ý: Đôi khi trong mệnh đề có liên từ “và” nhưng không có nghĩa là mệnh đề hội
Ví Dụ 4.a: “Nếu dây tóc bóng đèn có dòng điện chạy qua thì bóng đèn
Trong văn học, mệnh đề kéo theo còn được diễn tả như sau: “ Bao giờ bánh đúc có xương,
Bấy giờ gì ghẻ mới thương con chồng”
Trang 37Hoặc “Chuồn chuồn bay thấp thì mưa, Bay cao thì nắng, bay vừa thì dâm” + Phép tương đương
Ví Dụ 5.a: “Tháng 12 có 31 ngày khi và chỉ khi trái đất quay quanh mặt
trời” là mệnh đề đúng
Ví Dụ 5.b: “12 giờ trưa hôm nay Vinh có mặt ở Hà Nội nếu và chỉ nếu vào
giờ đó anh ấy đang ở thành phố Hồ Chí Minh” là mệnh đề sai
* Áp dụng mệnh đề - tập hợp vào phần bài tập + Ứng dụng mệnh đề lôgich trong kỹ thuật
dưới đây ta nghiên cứu một số ứng dụng của lôgích mệnh đề trong kỹ thuật lắp ráp các mạng điện và các thiết bị đồ dùng trong cuộc sống
Ví dụ 1: Hãy mô tả nguyên lý lôgích của sơ đồ mạng điện điều khiển một
- Phép phủ định có thể được mô tả bởi mạng điện trong hình H1 ( trong đó IBM là mạng a và IBMlà mạch điện a; công tắc IB khi đóng thì tiếp xúc tại B; còn khi mở thì tiếp xúc tại B )
-
Trang 38- Khi một trong công tắc đóng còn công tắc thứ hai mở thì đèn tắt
Nếu ký hiệu c là mạng điện điều khiển ngọn đèn bằng hai công tắc thì ta có bảng sau:
1 1 0 0
1 0 1 0
1 0 0 1
Nhìn bảng chân lí trên ta thấy mệnh đề clà mệnh đề “ a b ” A I
M B
M
Trang 39Sơ đồ của mạng c đượ mô tả trong H4 (ở đây ABO là mạng a, OCI là mạng
H4
Qua ví dụ 1 gợi động cơ cho học sinh nhận thấy nguyên lý hoạt động điều khiển của một ngọn đèn từ hai nơi gắn trong cuộc sống hàng ngày là những dụng cụ gì? Ví dụ như đèn cầu thang ,…
Ví dụ 2:Quan sát một chiếc đèn hiệu, người ta tổ hợp ánh sáng sau đây:
- Đèn xanh và đèn đỏ không bao giờ cùng chiếu sáng và chỉ một trong hai đèn chiếu sáng
- Đèn vàng chiếu sáng và đèn đỏ cùng đèn xanh đều không sáng
Bạn hãy mô tả mối liên hệ trạng thái đóng, mở của các công tắc ba bóng đèn trên
Giải:
Ta kí hiệu X= “ Đèn xanh chiếu sáng ” Tương tự Đ= “ Đèn đỏ chiếu sáng ” Và V= “ Đèn vàng chiếu sáng”
Kết quả quan sát có thể được mô tả như sau: (1)X D
Từ (1) ta suy ra (3)Đ X
Từ (2) ta suy ra (4) Đ XV
(5)V X A
I
Trang 40(6)V D Từ (4) ta suy ra (7)X V (8) Đ V
T ừ các kết quả trên ta suy ra X DV
+Sử dụng biểu đồ ven đề giải bài toán tập hợp
Bài 1: Trong một buôn làng của người dân tộc, cư dân có thể nói được
tiếng dân tộc, có thể nói được tiếng kinh hoặc nói được cả hai thứ tiếng Kết quả của một đợt điều tra cơ bản cho biết
- Có 912 người nói tiếng dân tộc; - Có 653 người nói tiếng kinh;
- Có 435 người nói được cả hai thư tiếng Hỏi buôn làng có bao nhiêu cư dân?
Giải:
Ta vẽ hai hình tròn Hình A kí hiệu cho số cư dân nói tiếng dân tộc Hình B kí hiệu cho số cư dân nói tiếng kinh Ta gọi số phần tử của một tập hữu hạn A bất kỳ là n(A)