Mục đích của luận văn này là trình bày lại các kết quả của Darvish và một phương pháp chiếu (kết hợp phương pháp chiếu lai ghép và chiếu thu hẹp) xấp xỉ điểm bất động chung của một họ hữu hạn toán tử Bregman không giãn tương đối yếu và nghiệm của hệ bài toán cân bằng hỗn hợp tổng quát trong không gian Banach phản xạ. Mời các bạn tham khảo!
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ————— o0o ————— BÙI THỊ THANH KHUYÊN MỘT ĐỊNH LÝ HỘI TỤ MẠNH CHO HỆ BÀI TOÁN CÂN BẰNG HỖN HỢP TỔNG QT VÀ BÀI TỐN ĐIỂM BẤT ĐỘNG TRONG KHƠNG GIAN BANACH LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên – 2020 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THANH KHUYÊN MỘT ĐỊNH LÝ HỘI TỤ MẠNH CHO HỆ BÀI TOÁN CÂN BẰNG HỖN HỢP TỔNG QT VÀ BÀI TỐN ĐIỂM BẤT ĐỘNG TRONG KHƠNG GIAN BANACH LUẬN VĂN THẠC SĨ TỐN HỌC Chun ngành: Tốn ứng dụng Mã số: 46 01 12 NGƯỜI HƯỚNG DẪN KHOA HỌC TS Trương Minh Tuyên TS Phạm Hồng Trường Thái Nguyên – 2020 ii Lời cảm ơn Luận văn hồn thành Khoa Tốn - Tin, trường Đại học Khoa học - Đại học Thái Nguyên hướng dẫn TS Trương Minh Tuyên TS Phạm Hồng Trường Tôi xin bày tỏ lòng biết ơn chân thành sâu sắc đến TS Trương Minh Tuyên TS Phạm Hồng Trường, thầy tận tình hướng dẫn, giúp đỡ tơi suốt q trình học tập nghiên cứu để tơi hồn thành luận văn Tơi xin chân thành cảm ơn Ban giám hiệu trường Đại học Khoa học - Đại học Thái Nguyên, Ban chủ nhiệm khoa Toán - Tin thầy giáo, cô giáo trường Đại học Khoa học - Đại học Thái Nguyên tham gia giảng dạy lớp Cao học Toán K12A3 tạo điều kiện tốt tận tình giúp đỡ tơi suốt q trình học tập nghiên cứu Trường Tơi xin chân thành cảm ơn Hội đồng quản trị, Ban giám hiệu trường THPT Lương Thế Vinh, thành phố Cẩm Phả, tỉnh Quảng Ninh tạo điều kiện giúp đỡ suốt thời gian học Nhân dịp này, xin gửi lời cảm ơn chân thành tới gia đình, người thân, bạn bè, đồng nghiệp động viên, khích lệ, tạo điều kiện giúp đỡ tơi q trình học tập nghiên cứu Sau tơi xin kính chúc tồn thể q thầy trường Đại học Khoa học Đại học Thái Nguyên dồi sức khỏe, niềm tin để tiếp tục thực sứ mệnh cao đẹp truyền đạt tri thức cho hệ mai sau Mặc dù có nhiều cố gắng luận văn khó tránh khỏi thiếu sót hạn chế Tôi mong muốn nhận ý kiến đóng góp thầy bạn đọc để luận văn hoàn thiện Xin chân thành cảm ơn! iii Mục lục Lời cảm ơn ii Một số ký hiệu viết tắt iv Mở đầu Chương Kiến thức chuẩn bị 1.1 Không gian Banach phản xạ 1.2 Khoảng cách Bregman số lớp ánh xạ Bregman không giãn 1.2.1 Hàm lồi khoảng cách Bregman 1.2.2 Phép chiếu Bregman 20 1.2.3 Một số lớp ánh xạ Bregman không giãn 24 Chương Xấp xỉ nghiệm chung cho hệ toán cân hỗn hợp tổng quát toán điểm bất động 29 2.1 Tốn tử giải hỗn hợp tính chất 29 2.2 Phát biểu toán phương pháp lặp 33 2.3 Sự hội tụ mạnh phương pháp 33 Kết luận 44 Tài liệu tham khảo 45 iv Một số ký hiệu viết tắt X không gian Banach X∗ không gian đối ngẫu X R tập hợp số thực R+ tập số thực không âm ∩ phép giao int M phần tập hợp M inf M cận tập hợp số M sup M cận tập hợp số M max M số lớn tập hợp số M M số nhỏ tập hợp số M argminx∈X F (x) tập điểm cực tiểu hàm F X ∅ tập rỗng dom(A) miền hữu hiệu toán tử (hàm số) A R(A) miền ảnh toán tử A A−1 toán tử ngược toán tử A I toán tử đồng lim sup xn giới hạn dãy số {xn } n→∞ lim inf xn giới hạn dãy số {xn } xn → x0 dãy {xn } hội tụ mạnh x0 xn * x0 dãy {xn } hội tụ yếu x0 F (T ) tập điểm bất động ánh xạ T Fˆ (T ) tập điểm bất động tiệm cận ánh xạ T n→∞ v ∂f vi phân hàm lồi f 5f gradient hàm f M bao đóng tập hợp M projfC phép chiếu Bregman lên C Df (x, y) khoảng cách Bregman từ x đến y Mở đầu Đầu kỉ XX xuất nhiều định lý điểm bất động tiếng, phải kể đến nguyên lý điểm bất động Brouwer (1912), nguyên lý ánh xạ co Banach (1922) Các kết mở rộng lớp ánh xạ không gian khác Lý thuyết điểm bất động có nhiều ứng dụng lĩnh vực toán học khác như: Giải tích số, phương trình vi phân, phương trình đạo hàm riêng, tối ưu hóa, tốn liên quan đến kinh tế toán cân bằng, toán chấp nhận lồi toán bất đẳng thức biến phân Bài tốn điểm bất động có hai lĩnh vực quan tâm nghiên cứu chủ yếu, là: Ta quan tâm đến tồn nghiệm phương trình T (x) = x, T ánh xạ từ tập C không gian X vào X nghiệm x0 gọi điểm bất động T Trong nhiều trường hợp quan trọng việc giải phương trình đưa việc tìm điểm bất động ánh xạ thích hợp Chẳng hạn, X khơng gian tuyến tính, S ánh xạ X y phần tử cố định thuộc X, nghiệm phương trình S(x) = y điểm bất động ánh xạ T xác định T (x) = S(x) + x − y, với x ∈ X Bên cạnh việc tìm phương pháp tìm hay xấp xỉ điểm bất động ánh xạ thu hút quan tâm nghiên cứu nhiều người làm tốn ngồi nước Trong thời gian gần đây, lớp toán cân mà tổng quát toán cân hỗn hợp tổng quát không gian Hilbert hay Banach thu hút quan tâm nghiên cứu nhiều nhà tốn học ngồi nước Một khó khăn nghiên cứu tốn xấp xỉ điểm bất động tốn cân khơng gian Banach ta phải sử dụng đến ánh xạ đối ngẫu không gian Ta biết trường hợp tổng quát ánh xạ đối ngẫu khó xác định ngồi khơng có tính chất tuyến tính Do việc tìm dạng tường minh tốn tử giải tương ứng với tốn tử đơn điệu khơng gian Banach “rất khó” Để khắc phục khó khăn này, người ta sử dụng khoảng cách Bregman để thay cho khoảng cách thông thường thay ánh xạ đối ngẫu gradient phiếm hàm lồi, khả vi Gâteaux Mục đích luận văn trình bày lại kết Darvish cộng báo [14] phương pháp chiếu (kết hợp phương pháp chiếu lai ghép chiếu thu hẹp) xấp xỉ điểm bất động chung họ hữu hạn tốn tử Bregman khơng giãn tương đối yếu nghiệm hệ toán cân hỗn hợp tổng quát không gian Banach phản xạ Nội dung luận văn chia làm hai chương chính: Chương Kiến thức chuẩn bị Trong chương này, luận văn đề cập đến số vấn đề không gian Banach phản xạ, khoảng cách Bregman, phép chiếu Bregman số lớp tốn tử Bregman khơng giãn Chương Xấp xỉ nghiệm chung cho hệ toán cân hỗn hợp tổng quát toán điểm bất động Trong chương luận văn tập trung trình bày lại cách chi tiết kết Darvish V cộng tài liệu [14] phương pháp chiếu cho tốn tìm nghiệm chung hệ toán cân hỗn hợp tổng quát toán điểm bất động cho lớp ánh xạ Bregman không giãn tương đối yếu không gian Banach phản xạ Chương Kiến thức chuẩn bị Chương bao bồm hai mục Mục 1.1 trình bày số tính chất không gian phản xạ Mục 1.2 giới thiệu khoảng cách Bregman, phép chiếu Bregman số lớp ánh xạ Bregman không giãn Nội dung chương tham khảo tài liệu [1, 15, 21, 24, 27] 1.1 Không gian Banach phản xạ Trước hết, mục nhắc lại khái niệm không gian Banach phản xạ Định nghĩa 1.1.1 Một không gian Banach X gọi không gian phản xạ, với phần tử x∗∗ không gian liên hợp thứ hai X ∗∗ X, tồn phần tử x thuộc X cho hx, x∗ i = hx∗ , x∗∗ i với x∗ ∈ X ∗ Chú ý 1.1.2 Trong luận văn, sử dụng ký hiệu hx∗ , xi để giá trị phiếm hàm x∗ ∈ X ∗ x ∈ X Mệnh đề 1.1.3 [1] Cho X không gian Banach Khi đó, khẳng định sau tương đương: i) X không gian phản xạ ii) Mọi dãy bị chặn X, có dãy hội tụ yếu Mệnh đề cho ta mối liên hệ tập đóng tập đóng yếu khơng gian tuyến tính định chuẩn Mệnh đề 1.1.4 Nếu C tập lồi, đóng khác rỗng khơng gian khơng gian tuyến tính định chuẩn X, C tập đóng yếu Chứng minh Ta chứng minh phản chứng Giả sử tồn dãy {xn } ⊂ C cho xn * x, x ∈ / C Theo định lý tách tập lồi, tồn x∗ ∈ X ∗ tách ngặt x C, tức tồn ε > cho hy, x∗ i ≤ hx, x∗ i − ε, với y ∈ C Đặc biệt, ta có hxn , x∗ i ≤ hx, x∗ i − ε, với n ≥ Ngồi ra, xn * x, nên hxn , x∗ i → hx, x∗ i Do đó, bất đẳng thức trên, cho n → ∞, ta nhận hx, x∗ i ≤ hx, x∗ i − ε, điều vơ lý Do đó, điều giả sử sai, hay C tập đóng yếu Mệnh đề chứng minh Chú ý 1.1.5 Nếu C tập đóng yếu, hiển nhiên C tập đóng 1.2 1.2.1 Khoảng cách Bregman số lớp ánh xạ Bregman không giãn Hàm lồi khoảng cách Bregman Cho X không gian Banach cho f : X −→ (−∞, ∞] hàm số Ta ký hiệu miền hữu hiệu domf tập {x ∈ X : f (x) < ∞} Với x ∈ int domf y ∈ X, ta ký hiệu f (x, y) đạo hàm phải f x theo hướng y, tức f (x, y) = lim t↓0 f (x + ty) − f (x) t Định nghĩa 1.2.1 Hàm f gọi khả vi Gâteaux x giới hạn limt→0 (f (x + ty) − f (x))/t tồn với y Trong trường hợp f (x, y) trùng với (5f )(x), giá trị gradient 5f f x ... KHOA HỌC BÙI THỊ THANH KHUYÊN MỘT ĐỊNH LÝ HỘI TỤ MẠNH CHO HỆ BÀI TOÁN CÂN BẰNG HỖN HỢP TỔNG QUÁT VÀ BÀI TỐN ĐIỂM BẤT ĐỘNG TRONG KHƠNG GIAN BANACH LUẬN VĂN THẠC SĨ TỐN HỌC Chun ngành: Tốn ứng... nước Trong thời gian gần đây, lớp toán cân mà tổng quát toán cân hỗn hợp tổng quát không gian Hilbert hay Banach thu hút quan tâm nghiên cứu nhiều nhà toán học ngồi nước Một khó khăn nghiên cứu toán. .. nghiệm hệ toán cân hỗn hợp tổng quát không gian Banach phản xạ Nội dung luận văn chia làm hai chương chính: Chương Kiến thức chuẩn bị Trong chương này, luận văn đề cập đến số vấn đề không gian Banach