1. Trang chủ
  2. » Cao đẳng - Đại học

slide cơ học vật chất rắn chapter 3 new stress equilibrium

28 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 3,28 MB

Nội dung

th an co ng c om h"p://incos.tdt.edu.vn   cu u du o ng Chapter 3: Stress & Equilibrium HCM University of Science 2015 CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor an 3.3 Stress Transformation th 3.4 Principal Stresses & Directions du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates   CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor th 3.4 Principal Stresses & Directions an 3.3 Stress Transformation du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates   CuuDuongThanCong.com https://fb.com/tailieudientucntt ng - Body forces are proportional to the body’s c om h"p://incos.tdt.edu.vn   Body  Forces:  F(x)   co mass and are reacted with an agent outside of the th an body Example: gravitational-weight forces, ng magnetic forces, inertial forces du o - By using continuum mechanics principles, a body force density (force per unit volume) F(x) (a)  Can*lever  Beam  Under  Self-­‐Weight  Loading   cu u can be defined such that the total resultant body force of an entire solid can be written as a volume integral over the body FR = ∫∫∫ F ( x ) dV V   CuuDuongThanCong.com https://fb.com/tailieudientucntt co result from physical contact with another body ng - Surface forces always act on a surface and c om h"p://incos.tdt.edu.vn   an - The resultant surface force over the entire th surface S can be expressed as the integral of a ng Surface  Forces:  T(x)   du o surface force density function Tn(x) cu S u FS = ∫∫ T n ( x ) dS S - The surface force density is normally referred to as the traction vector (b)  Sec*oned  Axially  Loaded  Beam                     CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor th 3.4 Principal Stresses & Directions an 3.3 Stress Transformation du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates   CuuDuongThanCong.com https://fb.com/tailieudientucntt - The stress or traction vector is defined by P3   ng ΔF T (x, n) = lim Δ A→ Δ A c om h"p://incos.tdt.edu.vn   P2   n   co n ΔF   an th - Notice that the stress vector depends on ΔA   ng both the spatial location and the unit (Sec4oned  Body)    p   (Externally  Loaded  Body)   P1   - In order to define the stress tensor, we consider special Tn (x, n = e1 ) = σ xe1 + τ xye + τ xz e3 cases in which unit normal vectors of ΔA point along the Tn (x, n = e ) = τ yxe1 + σ ye + τ yz e3 positive coordinate axes For these cases, the traction Tn (x, n = e3 ) = τ zxe1 + τ zye + σ z e3 cu u du o normal vector to the surface under study vectors on each face are   CuuDuongThanCong.com https://fb.com/tailieudientucntt   c om h"p://incos.tdt.edu.vn   ng σ is called the stress tensor (2rd order) σy ⎡σ x τ xy τ xz ⎤ ⎢ ⎥ σ = ⎢τ yx σ y τ yz ⎥ ⎢τ zx τ zy σ z ⎥ ⎣ ⎦ These components y co τyx τyz τzy σx τzx τxz are called the stress an σz ng th components x z y   du o σx is normal stress, τxy is shearing stress where x shows τxy u plane of action and y shows direction of stress Tn   cu n   x   z     CuuDuongThanCong.com https://fb.com/tailieudientucntt   c om h"p://incos.tdt.edu.vn   σy ng Traction on an Oblique Plane - Consider the traction vector on an oblique plane with y co τyx τyz τzy σx τzx τxz arbitrary orientation The unit normal to the surface is th an σz x ng - Using the force balance between tractions on the z y   du o oblique and coordinate faces gives τxy Tn = nx Tn ( n = e1 ) + n y Tn ( n = e ) + nz Tn (n = e3 ) Tn   u n   cu Tn = (σ x nx + τ yx n y + τ zx nz ) e1 + (τ xy nx + σ y n y + τ zy nz ) e + (τ xz nx + τ yz n y + σ z nz ) e3 Ti n = σ ji n j x   z     CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co th an 3.3 Stress Transformation 3.4 Principal Stresses & Directions ng 3.2 Traction Vector and Stress Tensor du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates 10   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   c om det ⎡⎣σ ij − σδ ij ⎤⎦ = −σ + I1σ − I 2σ + I = σ1 , σ , σ ng I1 = σ + σ + σ ; I = σ  σ + σ 2σ + σ 3σ ; I = σ 1σ 2σ co σy τyz τzy du o τzx τxz σz σx ng y τxy σ1 th τyx σ2 an σ3 u x z cu   (General Coordinate System) (Principal Coordinate System) 14   CuuDuongThanCong.com https://fb.com/tailieudientucntt Traction Vector Components N = Tn ⋅ n =Ti n ni = σ ji n jni N   N = Tn ⋅ n ΔA   T  n   = σ 1n12 + σ n22 + σ 3n32 ng S = (| Tn |2 − N ) n   c om h"p://incos.tdt.edu.vn   co 1/2 = σ 12 n12 + σ 22 n22 + σ 32 n32 du o N = σ 1n12 + σ n22 + σ 3n32 ng th an S   | Tn |2 = Tn ⋅ Tn = Ti nTi n = σ ji n jσ ki nk S + N =σ n +σ n +σ n 2 1 = n12 + n22 + n32 2 2 2 3 u cu 2 S + ( N − σ )( N − σ ) n1 = (σ − σ ) (σ − σ ) S + ( N − σ )( N − σ1 ) n = (σ − σ ) (σ − σ ) 2 S + ( N − σ )( N − σ ) n = (σ − σ )(σ − σ ) 15   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn     c om S   S + ( N − σ )( N − σ ) = - Without loss in generality, we can co σ3 And applying the conditions the σ3   an positivity of square of unit normal N   σ2   σ1   S + ( N − σ )( N − σ ) ≥ S + ( N − σ1 )( N − σ ) = S + ( N − σ )( N − σ1 ) = cu u S + ( N − σ )( N − σ ) ≤ du o ng th vectors , we get Mohr’s Circles of Stress ng rank the principal stresses as σ1 > σ2 > S + ( N − σ )( N − σ ) ≥ Admissible N and S values lie in the shaded area 16   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   For the equality, the above equations c om   S   S + ( N − σ )( N − σ ) = ng represent three circles in an S-N σ3   N   σ2   σ1   th Three above inequalities imply that all an circles of stress co coordinate system which is called Mohr’s ng admissible values of N and S lie in the du o shaded regions bounded by three circles u Note that for the ranked principal S + ( N − σ1 )( N − σ ) = S + ( N − σ )( N − σ1 ) = cu stresses, the largest shear is easily determined as 17   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Example  3-­‐1  Stress  Transforma4on   1⎤ 2⎥ ⎥ 0⎥⎦ ng co ⎡3 σ ij = ⎢1 ⎢ ⎢⎣1 c om For the given state of stress below, determine the principal stresses and directions and find the traction vector on a plane with unit normal n = (0,1,1)/√2 an The principal stress problem is started by calculating the three invariants, giving the result I1 = 3, I2 = -6, I3 = -8 This yields the following characteristic equation th − σ + 3σ + 6σ − = du o ng The roots of this equation are found to be σ = 4, 1, -2 Back-substituting the first root into the fundamental system (1.6.1) gives − n1(1) + n2(1) + n3(1) = n1(1) − 4n2(1) + 2n3(1) = cu u n1(1) + 2n2(1) − 4n3(1) = Solving this system, the normalized principal direction is found to be n(1) = (2, 1, 1)/√6 In similar fashion the other two principal directions are n(2) = (-1, 1, 1)/√3, n(3) = (0, -1, 1)/√2 The traction vector on the specified plane is calculated using the relation Ti n CuuDuongThanCong.com ⎡3 = ⎢⎢1 ⎢⎣1 ⎤ ⎡ ⎤ ⎡2 / ⎢ 2⎥⎥ ⎢⎢1 / ⎥⎥ = ⎢2 / 0⎥⎦ ⎢⎣1 / ⎥⎦ ⎢⎣2 / 2⎤ ⎥ 2⎥ ⎥⎦ 18   https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor th 3.4 Principal Stresses & Directions an 3.3 Stress Transformation du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates 19   CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   co ng 1 σ! ij = σ kkδ ij ; σˆ ij = σ ij − σ kkδ ij ; σ ij = σ! ij + σˆ ij 3 an Consider the normal and shear stresses (tractions) that act on a special plane whose normal th makes equal angles with three principal axes This plane is referred to as the octohedral 1 (σ + σ + σ ) = σ kk = I1 3 1⎡ 2 2 S = τ oct = (σ − σ ) + (σ − σ ) + (σ − σ ) ⎤ ⎦ 3⎣ 1 = ( I1 − I ) du o N = σ oct = u (1,1,1) cu ni = ± ng plane The unit normal vector to the octohedral plane is 20   CuuDuongThanCong.com https://fb.com/tailieudientucntt ng c om h"p://incos.tdt.edu.vn   th an The effective or von Mises stress is given by co The octahedral shear stress τoct is directly related to the distortional strain energy σ e = σ vonMises 2 ⎡ = σ − σ + σ − σ + σ − σ + (τ xy2 + τ xz2 + τ yz2 )⎤ ( ) ( ) ( ) x y y z x z ⎥⎦ ⎢⎣ cu u du o ng σ e = σ vonMises 1 ⎡ 2 2 = σ − σ ) + (σ − σ ) + (σ − σ ) ⎤ ( ⎦ 2⎣ 21   CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor th 3.4 Principal Stresses & Directions an 3.3 Stress Transformation du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates 22   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   S Ti dS + ∫∫∫ Fi dV = V σ ji n j dS + ∫∫∫ Fi dV = V ng ∫∫ S c om ∑ F = ⇒ ∫∫ T  n   n Applying the divergence theorem (1.8.7), then ji , j + Fi ) dV = co V F   V   an ∫∫∫ (σ S   th Because the region V is arbitrary, and the integrand is continuous, then by the zero-value σ ji , j + Fi = cu u du o ng theorem (1.8.12), the integrand must vanish ∂σ x ∂τ yx ∂τ zx + + + Fx = ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fy = ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fz = ∂x ∂y ∂z 23   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   ijk S S ijk V x jσ lk nl dS + ∫∫∫ ε ijk x j Fk dV = V co Applying the divergence theorem (1.8.7), then V V du o Using equilibrium equations (3.6.4) σ jk − ε ijk x j Fk + ε ijk x j Fk ⎤⎦ dV = ∫∫∫ ε ijkσ jk dV = u ijk cu ∫∫∫ ⎡⎣ε V   x j ,lσ lk + ε ijk x jσ lk ,l + ε ijk x j Fk ⎤⎦ dV = ∫∫∫ ⎡⎣ε ijkδ jlσ lk + ε ijk x jσ lk ,l + ε ijk x j Fk ⎤⎦ dV = V F   th ijk ng ∫∫∫ ⎡⎣ε S   an ⎡(ε x σ ) + ε x F ⎤ dV = ijk j k ∫∫∫ ⎣ ijk j lk ,l ⎦ V T  n   ng ∫∫ ε x jTkn dS + ∫∫∫ ε ijk x j Fk dV = c om ∑ r × F = = ∫∫ ε V τ xy = τ yx ∑ r × F = ⇒ ε ijkσ jk = ⇒ σ ij = σ ji ⇒ τ yz = τ zy ⇒ σ ij , j + Fi = τ zx = τ xz CuuDuongThanCong.com https://fb.com/tailieudientucntt 24   .c om h"p://incos.tdt.edu.vn   3.1 Body and Surface Forces   co ng 3.2 Traction Vector and Stress Tensor th 3.4 Principal Stresses & Directions an 3.3 Stress Transformation du o ng 3.5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3.6 Equilibrium Equations cu u 3.7 Relations in Cylindrical and Spherical Coordinates 25   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   z   σz   σθ   x1   cu u th dr   τrθ   σr   x2   ⎡σ r σ = ⎢τ rθ ⎢ ⎢⎣τ rz Tr = σ r e r τ rθ τ rz ⎤ σ θ τ θ z ⎥⎥ τ θ z σ z ⎥⎦ + τ rθ eθ + τ rz e z Tθ = τ rθ e r + σ θ eθ + τ θ z e z Tz = τ rz e r + τ θ z eθ + σ z e z ng du o Equilibrium Equations θ   dθ   an r   τrz   co τθz   ng Cylindrical Coordinates c om x3   ∂σ r ∂τ rθ ∂τ rz + + + [σ r − σ θ ] + Fr = ∂r r ∂θ ∂z r ∂τ rθ ∂σ θ ∂τ θ z + + + τ rθ + Fθ = ∂r r ∂θ ∂z r ∂τ rz ∂τ θ z ∂σ z + + + τ rz + Fz = ∂r r ∂θ ∂z r 26   CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   x3   Spherical Coordinates c om τRθ   σR   τRΦ   R   x2   Tϕ = τ Rϕ e R + σ ϕ eϕ + τ ϕθ eθ ng Tθ = τ Rθ e R + τ ϕθ eϕ + σ θ eθ du o Equilibrium Equations th x1   an τΦθ     θ   σΦ   co Φ   ng σθ   ⎡ σ R τ Rϕ τ Rθ ⎤ ⎢ ⎥ σ = ⎢τ Rϕ σ ϕ τ ϕθ ⎥ ⎢⎣τ Rθ τ ϕθ σ θ ⎥⎦ TR = σ Re R + τ Rϕ eϕ + τ Rθ eθ cu u ∂σ R ∂τ Rϕ ∂τ Rθ + + + ( 2σ R − σ ϕ − σ θ + τ Rϕ cotϕ ) + FR = ∂R R ∂ϕ Rsinϕ ∂θ R ∂τ rϕ ∂σ ϕ ∂τ ϕθ + + + ⎡⎣(σ ϕ − σ θ ) cotϕ + 3τ Rϕ ⎤⎦ + Fϕ = ∂R R ∂ϕ Rsinϕ ∂θ R ∂τ rθ ∂τ ϕθ ∂σ θ + + + ( 2τ ϕθ cotϕ + 3τ Rθ ) + Fθ = ∂R R ∂ϕ Rsinϕ ∂θ R 27   CuuDuongThanCong.com https://fb.com/tailieudientucntt .c om ng co an th ng du o u cu CuuDuongThanCong.com https://fb.com/tailieudientucntt ... m2 m3 + σ z n2 n3 + τ xy (l2 m3 + m2l3 ) + τ yz (m2 n3 + n2 m3 ) + τ zx (n2l3 + l2n3 ) cu u τ ′zx = σ xl3l1 + σ y m3m1 + σ z n3n1 + τ xy (l3m1 + m3l1 ) + τ yz (m3n1 + n3m1 ) + τ zx (n3l1 + l3n1... co ng 3. 2 Traction Vector and Stress Tensor th 3. 4 Principal Stresses & Directions an 3. 3 Stress Transformation du o ng 3. 5 Spherical, Deviatoric, Octahedral and Von Mises Stresses 3. 6 Equilibrium. .. xl32 + σ y m32 + σ z n32 + 2(τ xy l3m3 + τ yz m3n3 + τ zx n3l3 ) du o τ ′xy = σ xl1l2 + σ y m1m2 + σ z n1n2 + τ xy (l1m2 + m1l2 ) + τ yz (m1n2 + n1m2 ) + τ zx (n1l2 + l1n2 ) τ ′yz = σ xl2l3 +

Ngày đăng: 26/06/2021, 12:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w