1. Trang chủ
  2. » Cao đẳng - Đại học

slide cơ học vật chất rắn chapter 8 2 new two dimensional problem solution

39 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 7,27 MB

Nội dung

.c om ng co an cu u du o ng th Chapter 8: Two-dimensional problem solution (Part 2) TDT  University  -­‐  2015 CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   8.4 Polar Coordinate Formulation cu u du o ng th an co 8.6 Example Polar Coordinate Solutions ng 8.5 General Solutions in Polar Coordinates c om Institute for computational science CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.4 Polar Coordinate Formulation ng 8.5 General Solutions in Polar Coordinates cu u du o ng th an co 8.6 Example Polar Coordinate Solutions CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.4 Polar Coordinate Formulation c om Airy Stress Function Approach φ = φ(r,θ) Biharmonic  Governing  Equa-on   ng Airy  Representa-on   ⎧ ∂ϕ ∂ 2ϕ ⎪σ r = r ∂r + r ∂θ ⎪ ∂ 2ϕ ⎪ ⎨σ θ = co ⎛ ∂ ∂ ∂ ⎞⎛ ∂ ∂ ∂ ⎞ ∇ ϕ =⎜ + + + + ϕ =0 ⎟⎜ 2 ⎟ r ∂r r ∂θ ⎠⎝ ∂r r ∂r r ∂θ ⎠ ⎝ ∂r th an ∂r ⎪ ⎪ ∂ ⎛ ∂ϕ ⎞ τ = − ⎜ ⎟ ⎪ rθ ∂r ⎝ r ∂θ ⎠ ⎩ du o ng   Trac-on  Boundary  Condi-ons   cu u Tr = f r (r , θ ) , Tθ = fθ (r , θ ) σr   τrθ   R y σθ   r r θ CuuDuongThanCong.com S https://fb.com/tailieudientucntt x h"p://incos.tdt.edu.vn   Institute for computational science 8.4 Polar Coordinate Formulation Strain-­‐Displacement   an du o ng th σ r = λ (er + eθ ) + 2µ er σ θ = λ (er + eθ ) + 2µ eθ σ z = λ (er + eθ ) = ν (σ r + σ θ ) τ rθ = 2µ erθ , τ θ z = τ rz = er = 1 (σ r −νσ θ ) , eθ = (σ θ −νσ r ) E E ez = − ν (σ r + σ θ ) = − cu CuuDuongThanCong.com ν E −ν +ν erθ = τ rθ , eθ z = erz = E u ⎧ ∂ur ⎪er = ∂r ⎪ ⎪ ∂uθ ⎞ 1⎛ ⎨eθ = ⎜ ur + ⎟ r ∂ θ ⎝ ⎠ ⎪ ⎪ ⎛ ∂ur ∂uθ uθ ⎞ + − ⎟ ⎪erθ = ⎜ r ∂ θ ∂ r r ⎠ ⎝ ⎩ Plane  stress   co Plane  strain   ng c om Plane Elasticity Problem Hooke’s  Law   https://fb.com/tailieudientucntt (er + eθ ) h"p://incos.tdt.edu.vn   Institute for computational science c om 8.4 Polar Coordinate Formulation ng 8.5 General Solutions in Polar Coordinates cu u du o ng th an co 8.6 Example Polar Coordinate Solutions CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.5 General Solutions in Polar Coordinates ϕ (r ,θ ) = f (r )ebθ c om 8.3.1 General Michell Solution ⎛ ∂ ∂ ∂ ⎞⎛ ∂ ∂ ∂ ⎞ ∇ ϕ =⎜ + + + + ϕ =0 ⎟⎜ 2 ⎟ r ∂r r ∂θ ⎠⎝ ∂r r ∂r r ∂θ ⎠ ⎝ ∂r co ng − 2b2 − 2b2 b2 (4 + b2 ) f ′′′′ + f ′′′ − f ′′ + f ′+ f =0 r r r r4 ng + (a4 + a5 log r + a6 r + a7 r log r )θ th ϕ = a0 + a1 log r + a2 r + a3r log r an Solving the equation gives the general Michell solution (restricted to the periodic case) ∞ cu u du o a + (a11r + a12 r log r + 13 + a14 r + a15 rθ + a16 rθ log r ) cos θ r b + (b11r + b12 r log r + 13 + b14 r + b15 rθ + b16 rθ log r ) sin θ r + ∑ (an1r n + an r 2+ n + an 3r − n + an r 2− n ) cos nθ We will use various terms from this general solution to solve several plane problems in polar coordinates n=2 ∞ + ∑ (bn1r n + bn r 2+ n + bn r − n + bn r 2− n ) sin nθ n=2 CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.5 General Solutions in Polar Coordinates Navier Equation Approach u=ur(r)er (Plane Stress or Plane Strain) c om 8.3.2 Axisymmetric Solutions Stress Function Approach a1 + a3 + 2a2 r a σ θ = 2a3 log r − 12 + 3a3 + 2a2 r τ rθ = ng ϕ = a0 + a1 log r + a2 r + a3r log r an th ng Displacements - Plane Stress Case co σ r = 2a3 log r + d 2ur dur + − ur = dr r dr r ur = C1r + C2 r Gives Stress Forms σr = A A + B , σ = − + B , τ rθ = θ r2 r2 cu u du o ⎡ (1 +ν ) ⎤ − a + 2(1 − ν ) a r log r − (1 + ν ) a r + a (1 − ν ) r 3 ⎥⎦ E ⎢⎣ r + A sin θ + B cos θ Underlined terms represent 4rθ uθ = a3 + A cos θ − B sin θ + Cr rigid-body motion E ur = •  a3 term leads to multivalued behavior, and is not found following the displacement formulation approach CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.4 Polar Coordinate Formulation cu u du o ng th an co 8.6 Example Polar Coordinate Solutions ng 8.5 General Solutions in Polar Coordinates CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions c om Example  8.6  Thick-­‐Walled  Cylinder  Under  Uniform  Boundary  Pressure  p2   A σr = + B r A σθ = − + B r r1   an co  p1   ng General  Axisymmetric   Stress  Solu-on   cu Using Strain Displacement Relations and Hooke’s Law for plane strain gives the radial displacement CuuDuongThanCong.com σ r (r1 ) = − p1 , σ r (r2 ) = − p2 r12 r22 ( p2 − p1 ) A= r22 − r12 r12 p1 − r22 p2 B= r22 − r12 r12 r22 ( p2 − p1 ) r12 p1 − r22 p2 σr = + r22 − r12 r2 r22 − r12 σθ = − u du o ng th r2   Boundary  Condi-ons     r12 r22 ( p2 − p1 ) r12 p1 − r22 p2 + r22 − r12 r2 r22 − r12 +ν A r[(1 − 2ν ) B − ] E r r12 p1 − r22 p2 +ν ⎡ r12 r22 ( p2 − p1 ) = + (1 − 2ν ) ⎢− E ⎣ r22 − r12 r r22 − r12 ur = https://fb.com/tailieudientucntt ⎤ r⎥ ⎦ h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions c om Comparison of Flamant Results with 3-D Theory-Boussinesq’s Problem Cartesian Solution P   Px ⎛ z − 2ν u= − ⎜ 4πµ R ⎝ R R + z ⎛z P ⎡ 3x z R x (2 R + z ) ⎞ ⎤ − (1 − ν ) − + ⎢ ⎜ ⎟⎥ 2π R ⎣ R ⎝ R R + z R( R + z ) ⎠ ⎦ ⎛z P ⎡ 3y2 z R y (2 R + z ) ⎞ ⎤ σy = − − (1 − ν ) − + ⎢ ⎜ ⎟⎥ 2π R ⎣ R ⎝ R R + z R( R + z ) ⎠⎦ 3Pz P ⎡ 3xyz (1 − 2ν )(2 R + z ) xy ⎤ σz = − , τ xy = − − ⎥ 2π R 2π R ⎢⎣ R R( R + z )2 ⎦ σx = − an z   P(1 −ν ) u z ( R, 0) = 2πµ R 3Pyz 3Pxz τ yz = − , τ xz = − 2π R 2π R du o Free Surface Displacements ng th y   P ⎛ z2 ⎞ ⎞ ⎜ 2(1 −ν ) + ⎟ ⎟ , w= 4πµ R ⎝ R ⎠ ⎠ co x   Py ⎛ z − 2ν ⎞ − ⎟,v= ⎜ 4πµ R ⎝ R R + z ⎠ ng   Cylindrical Solution cu u Corresponding 2-D Results P uθ ( r , ) = − ⎡(1 + ν ) + log r ⎤⎦ πE ⎣ 3-D Solution eliminates the unbounded far-field behavior CuuDuongThanCong.com P ⎡ 3r z (1 − 2ν ) R ⎤ rz (1 − ν ) r ⎡ ⎤ σr = − + ur = − 2π R ⎢⎣ R R + z ⎥⎦ ⎢ ⎥ 4πµ R ⎣ R R+z ⎦ (1 − 2ν ) P ⎡ z R ⎤ P ⎡ z2 ⎤ σθ = − ⎢ uz = 2(1 −ν ) + ⎥ 2π R ⎣ R R + z ⎥⎦ ⎢ 4πµ R ⎣ R ⎦ 3Pz 3P rz σz = − , τ rz = − uθ = 2π R 2π R P https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions Example 9: Half-Space Under Uniform Normal Loading a ≤ x ≤- a c om    p   2Y sin θ cos θ πr 2Y σ y = σ r sin θ = − sin θ πr 2Y τ xy = σ r sin θ cos θ = − sin θ cos θ πr σ x = σ r cos θ = − x   ng a   θ1   an co θ2   a    y   θ   ng dx   th   du o cu u dθ   θ   2p dσ y = − 2p dτ xy = − 2p p [2(θ − θ1 ) + (sin 2θ − sin 2θ1 )] π 2π p θ2 p σy = − sin θ dθ = − [2(θ − θ1 ) − (sin 2θ − sin 2θ1 )] ∫ π θ1 2π p θ2 p τ xy = − sin θ cos θ d θ = [cos 2θ − cos 2θ1 ] ∫θ1 π π CuuDuongThanCong.com https://fb.com/tailieudientucntt σx = − 2p dY = pdx = prdθ /sinθ r   dσ x = − θ2 ∫θ cos θ dθ = − π π π cos θ dθ sin θ dθ sin θ cos θ dθ h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions Example 9: Half-Space Under Uniform Normal Loading a ≤ x ≤- a 0.4 Concentrated  Loading                 τmax/(Y/a)   0.3 0.25 ng 0.35 co Dimensionless Maximum Shear Stress Distributed  Loading                       τmax/p   0.2 an σy/p     CuuDuongThanCong.com 0.15 0.1 0.05 0 Dimensionless Distance, y / a   10 A plot of this maximum shear stress versus depth below the surface is shown in Figure 8-27 u Along y-axis below the loading, τxy = 0, and the x- and y-axes are principal at these points and the maximum shear stress is given by τmax = ½|σx - σy| cu   du o Dimensionless Distance, x/a   ng th Dimensionless Stress   0.45   τxy  /p     c om 0.5 τmax  -­‐  Contours https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions c om Example 9: Half-Space Under Uniform Normal Loading a ≤ x ≤- a x ng Generalized Superposition Method a a t(s) th an co Half-Space Loading Problems p(s) ng y p( s )( x − s ) 2 a t ( s)( x − s)3 σx = − ∫ ds − ∫ ds 2 2 2 − a − a π [( x − s ) + y ] π [( x − s ) + y ] u p( s) y2 σy = − ds − 2 ∫ − a π [( x − s ) + y ] π a cu y3 a du o 2y t ( s)( x − s) ∫ −a [( x − s)2 + y ]2 ds a p( s )( x − s ) 2 y a t ( s )( x − s ) τ xy = − s− ds 2 2 2 ∫ ∫ − a − a π [( x − s ) + y ] π [( x − s ) + y ] y2 a CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.6 Example Polar Coordinate Solutions c om Example 9: Half-Space Under Uniform Normal Loading a ≤ x ≤- a   ng th an co ng Photoelastic Contact Stress Fields (Uniform     Loading)   cu u du o (Point     Loading)   (Flat  Punch  Loading)   CuuDuongThanCong.com (Cylinder  Contact  Loading)   https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science ng co y   r   θ   ϑ   α   x   Stress  Free  Faces   β  =  2π  -­‐  α   ng th an Example 10: Notch/Crack Problems - Consider the wedge problem for the case where angle α is small and β is 2π-α - We pursue the case where α ≈ 0, and the notch becomes a crack - The boundary surfaces of the notch are taken to be stress free, and thus the problem involves only far-field loadings - Start with Michell solution, we try the stress Function in generalized form: c om 8.6 Example Polar Coordinate Solutions   du o ϕ = r λ [ A sin λθ + B cos λθ + C sin(λ − 2)θ + D cos(λ − 2)θ ] where λ is allowed a non-integer σ θ = λ (λ − 1)r λ −2 [ A sin λθ + B cos λθ + C sin(λ − 2)θ + D cos(λ − 2)θ ] cu u τ rθ = −(λ − 1)r λ −2 [ Aλ cos λθ − Bλ sin λθ + C (λ − 2) cos(λ − 2)θ − D(λ − 2)sin(λ − 2)θ ] Boundary Conditions: σ θ (r ,0) = τ rθ (r,0) = σ θ (r, 2π ) = τ rθ (r, 2π ) = ⇒ sin 2π ( λ − 1) = ⇒ λ = At Crack Tip r è 0: n + , n = 0,1,2,! Stress = O(r λ −2 ) , Displacement = O(r λ −1 ) Finite Displacements and Singular Stresses at Crack Tip è 1< λ

Ngày đăng: 26/06/2021, 12:38

w