Vận dụng được tính chất của đại lượng tỉ lệ thuận và tính chất của dãy tỉ số bằng nhau để giải bài toán.. Hai tam giác Biết vận dụng các trường bằng nhau.[r]
(1)Mục đích: - Kiểm tra các kiến thức học kì 1( Đại số và hình học) - Kiểm tra cách trình bày lời giải học sinh KHUNG MA TRẬN ĐỀ KIỂM TRA ( Đề kiểm tra tự luận) Cấp độ Chủ đề Tập hợp Q các số hữu tỉ Tập hợp các số thực R Số câu Số điểm Tỉ lệ % Tỉ lệ thức Số câu Số điểm Tỉ lệ % Đại lượng tỉ lệ thuận Nhận biết Thông hiểu Nhận biết số hữu tỉ, số vô tỉ Vận dụng quy tắc làm tròn số Nhận biết các số hạng ngoại tỉ, trung tỉ tỉ lệ thức 0,5 Vận dụng các phép toán Q để thực các bài tập 1,5 Vận dụng Cấp độ thấp Vận dụng tính chất đại lượng tỉ lệ thuận và tính chất dãy tỉ số để giải bài toán Số câu Số điểm Tỉ lệ % 1,5 Tổng ba góc Biết định lí tổng ba góc Tính số đo các góc tam giác tam giác tam giác Số câu 1 Số điểm Tỉ lệ % 0,5 0,5 Hai tam giác Biết vận dụng các trường hợp tam giác để chứng minh hai tam giác Số câu Số điểm Tỉ lệ % 1,5 Đồ thị hàm số y Biết vẽ hệ trục tọa độ Oxy, biết Tính giá trị hàm số = ax ( a 0) xác định điểm biết tọa các giá trị cho trước độ nó biến Số câu 1 Số điểm Tỉ lệ % 0,75 0,75 Tổng số câu Tổng số điểm % 2,75 = 27,5% 4,25 = 42,5% 1,5 = 15% Cấp độ cao So sánh hai lũy thừa 0,5 Cộng 3,0 = 30% 0,5 = 5% 1,5 = 15% 1,0 = 10% Chứng minh hai đường thẳng song song 1,0 2,5 = 25% 1,5 = 15% 1,5 = 15% 14 10,0 =100% (2) TRƯỜNG THCS PHÙ ĐỔNG ĐỀ KIỂM TRA HOC KÌ I NĂM HỌC 2012 – 2013 Môn: Toán ( Thời gian 90 phút) Họ và tên Gv đề: Trương Công Thành Đơn vị: Trường THCS Phù Đổng Bài 1: (2 điểm) a/ Trong các số sau, số nào là số hữu tỉ, số nào là số vô tỉ: 0,75 ; b/ Tính: -3,19 + 0,126 và làm tròn kết đến chữ số thập phân thứ hai 18 , hãy tìm các số hạng ngoại tỉ, các số hạng trung tỉ c/ Trong tỉ lệ thức d/ So sánh: 227 và 318 Bài 2: (3 điểm) a/ Vẽ hệ trục tọa độ Oxy và biểu diễn điểm A( 2;3) lên mặt phẳng tọa độ đó b/ Cho hàm số y = f(x)= 2x – Tính f(1), f(-2) c/ Tính số học sinh lớp 7A và 7B biết số học sinh lớp 7A ít lớp 7B là học sinh và tỉ số học sinh hai lớp là 12 : 13 Bài 3: ( 1,5 điểm) 3 4 4 Thực phép tính: a/ b/ x 2 Tìm x, biết: Bài 4: (1 điểm) 1/ Phát biểu định lí tổng ba góc tam giác 2/ Áp dụng: Cho ABC có Â = 350, C = 700, tính B Bài 5: (2,5 điểm ) Cho tam giác ABC, M là trung điểm BC Trên tia đối tia MA lấy điểm E cho ME = MA a) Chứng minh: ΔABM=ΔECM b) Chứng minh: AB //CE HẾT (3) HƯỚNG DẪN CHẤM MÔN TOÁN Bài Nội dung a/ Số hữu tỉ: 0,75 Số vô tỉ: b/ -3,19 + 0,126 = - 3,064 làm tròn: -3,064 -3,06 c/ Các số hạng ngoại tỉ: ; 18 Các số hạng trung tỉ: ; d/ Ta có: 227 = (23)9 = 89 ; 318 = (32)9 =99 89 < 99 => 227 < 318 Bài a/ Điểm 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 y 1,0 Bài x Bài b/ f(1) = 2.1 – = f(-2) = 2.(-2) – = -5 c) Gọi số học sinh lớp 7A là x, lớp 7B là y x y Theo đề ta có: 12 13 và y - x = Áp dụng tính chất dãy tỉ số nhau, ta có: x y y x 3 12 13 13 12 x = 12 = 36; y = 13 = 39 Vậy lớp 7A có 36 học sinh, 7B có 39 học sinh 10 12 = 15 a) 22 = 15 0,25 0,25 0,25 0,5 0,5 0,25 0,25 0,25 0,25 (4) 1 b) 0,25 = x x+ 1 x + 0,25 1 x= 5 x= 0,25 a/ Tổng ba góc tam giác 1800 b/ ABC có: Â + B + C = 1800 ( Tổng ba góc tam giác) => B = 1800 – ( Â + C ) = 1800 – ( 350 + 700) = 750 Bài 0,5 0,25 0,25 A Bài B C M ΔABC; MB=MC GT ME=MA (ME tia đối MA) KL a)Chứng minh: ΔABM=ΔECM b) Chứng minh: AB // CE 0,5 E a) Chứng minh: ΔABM=ΔECM Xét ABM VÀ ECM MB = MC (gt) AMB=EMC (hai góc đối đỉnh) MA = ME (gt) Suy ra: ΔABM=ΔECM (c-g-c) b) Chứng minh: AB // CE Ta có ΔABM=ΔECM (cm câu a) nên: BAE=CEA (so le trong) suy ra: AB // CE(đpcm) - Lưu ý: Học sinh có cách giải khác đúng, chấm điểm tối đa câu Người duyệt đề:……………………………… Đơn vị: ……………………………………… 0,25 0,5 0,25 0,25 0,5 0,25 (5)