1. Trang chủ
  2. » Giáo án - Bài giảng

NW381 đề THI THỬ TN12 lần 1 THPT TRIỆU sơn THANH HOÁ 2020 2021 GV(1)

28 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 2,2 MB

Nội dung

NHĨM WORD  BIÊN SOẠN TỐN TRƯỜNG & THPT ĐẶNG THÚC - NGHỆ AN Mà ĐỀ: Câu Câu THI THỬ TN12 LẦN MÔN TOÁN NĂM HỌC 2020 - 2021 Thời gian: 90 phút Một khối lăng trụ có diện tích đáy chiều cao Thể tích khối lăng trụ A B 12 C 36 D Tập xác định D hàm số y  log x D   0; � D   �; � C D  P  : x  y  z   Điểm sau không Trong không gian Oxyz , cho mặt phẳng A Câu ĐỀ THI THỬ: 2020-2021 D   �;0  thuộc mặt phẳng E  0; 0;1 A B  P ? D   0; � Câu N  2; 1;3 M  3; 2;  C D Một hình nón có bán kính đáy r  4cm độ dài đường sinh l  5cm Diện tích xung quanh khối nón 2 2 A 10 cm B 20 cm C 12 cm D 15 cm Câu Thể tích khối cầu có bán kính R A 4 R B F  1;0;  R C B  R 2  S  :  x  1   y    z  có bán kính Trong khơng gian Oxyz , mặt cầu A B 16 C D r r rr u   1; 2;3 v   0;1; 1 Oxyz u Trong không gian , cho hai vectơ Khi v Câu Câu Câu Câu R D A 5 B C D 2 Một nhóm học sinh gồm em nam em nữ Có cách chọn em học sinh từ nhóm trên? 2 A 11 B A11 C C11 D 30 Cho hàm số y  f  x có bảng biến thiên sau: Hàm số cho nghịch biến khoảng nào, khoảng đây?  0;1  1;1  1;0   �; 1 A B C D f  x   3x  Câu 10 Họ tất nguyên hàm hàm số 3 A 6x  C B 3x  x  C C x  x  C D x  C TÀI LIỆU ÔN THI THPT QUỐC GIA Trang ĐỀ THI THỬ: 2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT Câu 11 Cho số phức z   3i , phần ảo số phức z A B 3 C Câu 12 Cho cấp số nhân A  un  có u1  u2  Giá trị C u3 D 2 B y  f  x Câu 13 Cho hàm đa thức có đồ thị hình vẽ sau Điểm cực tiểu hàm số cho A x  B y  D C x  Câu 14 Số giao điểm đồ thị hàm số y  x  x  trục hoành A B C x 1 y x  Câu 15 Đường tiệm cận ngang đồ thị hàm số D y  1 D C y   D y   �x   t  d :� �y   t �z  1  2t � Câu 16 Trong không gian Oxyz , cho đường thẳng Một vecto phương đường A x    d  thẳng ur u  1;  1;  A  B x   B f  x  dx  4 � Câu 17 Biết A uu r u2   1; 2;  1 C uu r u3   1;1;   D uu r u4   1;1;  f  x  dx � B 2 C D 8 Câu 18 Đồ thị hàm số có dạng đường cong hình vẽ bên dưới? A y  x  3x  Trang B y x2 x 1 C y x2 x 1 D y   x  x  TÀI LIỆU ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ: 2020-2021 Câu 19 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z  1  2i có tọa độ là:  1;   2; 1  1; 2  1;  A B C D x Câu 20 Nghiệm phương trình  là: A x  4 B x  x C x  D z1  z2 Câu 21 Gọi z1 , z2 hai nghiệm phức phương trình z  z   , A 18 B C D y  f  x a; b  Câu 22 Cho hàm số xác định liện tục đoạn  Diện tích hình phẳng giới hạn đồ thị hàm số y  f  x , trục hoành hai đường thẳng x  a; x  b tính theo công thức b S A f  x  dx � a b B S� f  x  dx a a C �f  x  dx b b �f  x  dx D a  ABC  Câu 23 Cho khối chóp S ABC có SA  3a SA vng góc với mặt phẳng , tam giác ABC vng A có AB  3a, AC  4a Tính thể tích khối chóp S ABC 3 3 A 18a B 6a C 36a D 2a Câu 24 Cho hai số phức z   4i w   3i Số phức z  2w A 1  7i B  10i C  2i D 1  10i f  x  dx  x  2sin x  C f  x Câu 25 Cho � , A 12 x  cos x B x  cos x C 12  2cos x D x  4cos2 x y  f  x  �; � có bảng biến thiên hình vẽ sau Câu 26 Hàm số xác định liên tục Giá trị lớn A y  f  x  1;5 B C D x x Câu 27 Tập nghiệm bất phương trình  3.2  �0  4; �  2; �  4; �  2; � A B C D Câu 28 Cho hình chóp S ABCD có đáy hình vng cạnh 2a , cạnh bên SA vng góc với mặt đáy Khoảng cách hai đường thẳng SA BD TÀI LIỆU ÔN THI THPT QUỐC GIA Trang ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT B 2a A a C a A  1; 1;0  Câu 29 Trong không gian Oxyz , đường thẳng qua hai điểm trình tham số �x   t �x  t �x   t � � � �y  t �y  2  t �y   t �z  1  t �z   t �z   t A � B � C � D a B  2;0; 1 có phương �x   t � �y  1  t �z  t D � log  5a.125b   log 25 Câu 30 Xét số thực a, b thỏa mãn điều kiện Mệnh đề đúng? A 2a  6b  B 6ab  C 6a  2b  D a  3b  Câu 31 Thiết diện qua trục hình trụ hình vng có cạnh 2a Thể tích khối trụ tạo nên hình trụ 2 a 3 A 2 a B C 8 a 8 a D Câu 32 Trong không gian, cho tam giác ABC vng A có AB  4a AC  3a Khi quay tam giác ABC quanh quanh cạnh góc vng AB đường gấp khúc ACB tạo thành hình nón Diện tích tồn phần hình nón 2 2 A 15 a B 24 a C 36 a D 20 a  P  : x  y  z   điểm I  1;0;3 Mặt cầu có Câu 33 Trong khơng gian Oxyz , cho mặt phẳng  P  có phương trình tâm điểm I tiếp xúc với mặt phẳng  x  1 A C  x  1  y   z  3   y   z  3  2 B  x  1  y   z  3  2  x  1  y   z  3  16 2 D Câu 34 Cho khối chóp tứ giác S ABCD có cạnh đáy cạnh bên 6a Thể tích khối chóp Trang TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN A 36 3a B 108 2a ĐỀ THI THỬ: 2020-2021 C 18 2a D 36 2a 1 f (2 x  1)dx � �f ( x)dx  Câu 35 Biết 1 A , tích phân B C 12 D S   1; 2;3; ;19; 20 Câu 36 Cho tập gồm 20 số tự nhiên từ đến 20 Lấy ngẫu nhiên ba số thuộc S Xác suất để ba số lấy lập thành cấp số cộng A 38 B 38 C 38 D 114 y  f  x có đồ thị hình vẽ gọi A ; B hai hình phẳng gạch hình bên có diện tích 14 Câu 37 Cho hàm số I Giá trị �f  3x  1 dx 1 A bằng: 19 B C 27 D Câu 38 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a ; SA  a SA vng góc với mặt đáy  ABCD  Gọi M ; N hình chiếu vng góc đỉnh A lên cạnh SB SD Khi góc đường thẳng SB mặt phẳng  AMN  bằng: A 45� B 30� C 60� D 90� x  m  1 16   2m  3 x  6m   có Câu 39 Số giá trị nguyên tham số m để phương trình hai nghiệm trái dấu là: A B C D Câu 40 Cho hàm số cực trị? y  f  x có đồ thị hình bên Hàm số TÀI LIỆU ƠN THI THPT QUỐC GIA y  f  x  có điểm Trang ĐỀ THI THỬ: 2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT B D Câu 41 Có số nguyên dương y cho ứng với số y có khơng số nguyên x A 3 thỏa mãn x 1 A Câu 42 Hàm số C  2.3x  1  3x  y  �0 y  f  x B 27 C 81 D liên tục � có bảng biến thiên hình vẽ Phương trình f  x  3   có nghiệm? C A B D Câu 43 Một khn viên dạng nửa hình trịn, người thiết kế phần để trồng hoa có dạng cánh hoa hình parabol có đỉnh trùng với tâm có trục đối xứng vng góc với đường kính nửa hình trịn, hai đầu mút cánh hoa nằm nửa đường trịn (phần tơ màu) cách khoảng 4m Phần cịn lại khn viên (phần không tô màu) dành để trồng cỏ Nhật Bản Biết kích thước cho hình vẽ, chi phí để trồng hoa cỏ Nhật Bản tương ứng 150.000 đồng/ m 100.000 đồng/ m Hỏi số tiền cần để trồng hoa trồng cỏ Nhật Bản khn viên gần với số sau đây? A 3.739.000 (đồng) B 1.948.000 (đồng) C 3.926.000 (đồng) D 4.115.000 (đồng) A  1;1;3 B  1; 4;3 C  5;1;3  Câu 44 Trong không gian Oxyz , cho , , Ba mặt cầu tiếp xúc đôi tiếp xúc với mặt phẳng 769 A B 120 Câu 45 Cho hai số phức  ABC  ba đỉnh A , B , C Tổng bán kính ba mặt cầu 769 C 60 37 D z  z2  39 z z 2 z z z1 z2 , thỏa mãn Khi B 39 C 12 D y  f  x y  g  x Câu 46 Cho hai hàm liên tục � có đồ thị hình vẽ Khi tổng số A nghiệm phương trình Trang f  g  x   g  f  x   TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN A 25 B 22 ĐỀ THI THỬ: 2020-2021 C 21 log x2 9 y  x  y  �1 Câu 47 Cho số thực x, y thỏa mãn bất đẳng thức thức P  x  y gần với số số sau? A B C D 26 Giá trị lớn biểu D Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh 1, biết khoảng cách từ A đến  SBC  mặt phẳng 15 SCA   , khoảng cách từ B đến mặt phẳng 10 , khoảng 30 cách từ C đến mặt phẳng 20 hình chiếu vng góc S xuống đáy nằm V tam giác ABC Tính thể tích khối chóp S ABC 1 1 A 24 B 12 C 36 D 48  SAB  Câu 49 Cho hàm số y  f ( x) liên tục �và có đồ thị hình vẽ Khi hiệu giá trị lớn giá trị nhỏ hàm số A 54 h( x)  f  log x  1  x  x  15 x  B C 33 2 Câu 50 Trong không gian Oxyz , cho mặt cầu ( S ) : x  y  z  điểm đoạn  1; 4 bằng: D �x   t � M  x0 ; y0 ; z0  �d : �y   2t �z   3t � Ba điểm A, B, C phân biệt thuộc mặt cầu ( S ) cho MA, MB, MC tiếp tuyến mặt cầu Biết mặt phẳng ( ABC ) qua điểm D  1;1;  Khi z0 gần với số số sau: TÀI LIỆU ÔN THI THPT QUỐC GIA Trang ĐỀ THI THỬ: 2020-2021 A Trang NHÓM WORD  BIÊN SOẠN TOÁN THPT B 1 C D TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN 1.B 11.B 21.D 31.A 41.C Câu Câu 2.B 12.A 22.D 32.B 42.A 3.C 13.C 23.B 33.A 43.A ĐỀ THI THỬ: 2020-2021 ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT BẢNG ĐÁP ÁN 4.B 5.D 6.C 7.A 8.C 14.C 15.C 16.D 17.D 18.C 24.D 25.A 26.C 27.C 28.A 34.D 35.A 36.B 37.D 38.C 44.B 45.C 46.C 47.A 48.D 9.C 19.D 29.B 39.C 49.C 10.C 20.B 30.A 40.D 50.D LỜI GIẢI CHI TIẾT Một khối lăng trụ có diện tích đáy chiều cao Thể tích khối lăng trụ A B 12 C 36 D Lời giải Chọn B V  S h  3.4  12 Tập xác định D hàm số y  log x D   �;0  D   0; � A B C Lời giải D   0; � D D   �; � Chọn B D   0; � ĐK: x  Vậy TXĐ: Câu  P  : x  y  z   Điểm sau không Trong không gian Oxyz , cho mặt phẳng thuộc mặt phẳng E  0; 0;1 A Câu  P ? B F  1;0;  C Lời giải N  2; 1;3 D M  3; 2;  Chọn C N  2; 1;3  P  : x  y  z   ta được:   1   �0 Thay vào pt mp N � P  Vậy Một hình nón có bán kính đáy r  4cm độ dài đường sinh l  5cm Diện tích xung quanh khối nón 2 A 10 cm B 20 cm C 12 cm Lời giải D 15 cm Chọn B Câu Ta có diện tích xung quanh khối nón Thể tích khối cầu có bán kính R A 4 R B  R S xq   rl  20 cm R C Lời giải R D Chọn D R Thể tích khối cầu có bán kính R S   x  1   y    z   Oxyz Trong không gian , mặt cầu : có bán kính Câu TÀI LIỆU ÔN THI THPT QUỐC GIA Trang ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT B 16 A C Lời giải D Chọn C Câu r r rr u   1; 2;3  v   0;1; 1 Oxyz Trong không gian , cho hai vectơ Khi u.v A 5 B C D 2 Lời giải Chọn A rr u.v  1.0   2    1  5 Câu Một nhóm học sinh gồm em nam em nữ Có cách chọn em học sinh từ nhóm trên? 2 A 11 B A11 C C11 D 30 Lời giải Chọn C Câu Số cách chọn em học sinh từ nhóm tổ hợp chấp 11: C11 y  f  x Cho hàm số có bảng biến thiên sau: Hàm số cho nghịch biến khoảng nào, khoảng đây?  0;1  1;1  1;0   �; 1 A B C D Lời giải Chọn C  1;  Hàm số cho nghịch biến khoảng Người làm: Hoàng Tuấn Anh Facebook: Anh Tuân Email: hoangtuananhgvtoan@gmail.com f  x   3x  Câu 10 Họ tất nguyên hàm hàm số 3 A 6x  C B 3x  x  C C x  x  C D x  C Lời giải GVSB: Anh Tuấn;GVPB: Huỳnh Đức Vũ Chọn C  Ta có f  x  dx  �  3x �  1 dx  x  x  C Câu 11 Cho số phức z   3i , phần ảo số phức z A B 3 C Lời giải Trang 10 D 2 TÀI LIỆU ÔN THI THPT QUỐC GIA ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT 1 V  B.h  3a.4a.3a  6a 3 Câu 24 Cho hai số phức z   4i w   3i Số phức z  2w A 1  7i B  10i C  2i D 1  10i Lời giải GVSB: Đỗ Nhung; GVPB: Trần Đào Chọn D z  w   4i    3i    4i   6i  1  10i Câu 25 f  x  dx  x Cho � A 12 x  cos x f  x  2sin x  C , B x  cos x C 12  2cos x D x  4cos x Lời giải GVSB: Hồng Hà Nguyễn; GVPB: Trần Đào Chọn A Ta có  6x Câu 26 Hàm số  2sin x  C  � 12 x  4cos x y  f  x xác định liên tục Giá trị lớn A y  f  x B  1;5  �; � có bảng biến thiên hình vẽ sau C D Lời giải GVSB: Hồng Hà Nguyễn; GVPB: Trần Đào Chọn C y  f  x 1;5 Từ bảng biến thiên suy giá trị lớn   x x Câu 27 Tập nghiệm bất phương trình  3.2  �0  4; �  2; �  4; �  2; � A B C D Lời giải GVSB: Hồng Hà Nguyễn; GVPB: Trần Đào Trang 14 TÀI LIỆU ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ: 2020-2021 Chọn C t �1 � x  3.2 x  �0 � t  3t  �0 � �  t  t  0 t �4 � Đặt BPT 2x x Kết hợp với t  ta t ۳4 �  2; � Vậy tập nghiệm bất phương trình Câu 28 Cho hình chóp S ABCD có đáy hình vng cạnh 2a , cạnh bên SA vng góc với mặt đáy Khoảng cách hai đường thẳng SA BD x A a B 2a C a D a Lời giải GVSB: Trần Tuấn Ngọc, GVSB: Đinh Ngọc Chọn A Gọi O tâm hình vng ABCD , ta có AO  BD SA   ABCD  � SA  AO Mặt khác Vậy AO đoạn vng góc chung hai đường thẳng SA BD nên d  SA; BD   AO  AC  a 2 A  1; 1;0  B  2;0; 1 Câu 29 Trong không gian Oxyz , đường thẳng qua hai điểm có phương trình tham số �x   t �x  t �x   t �x   t � � � � �y  t �y  2  t �y   t �y  1  t �z  1  t �z   t �z   t �z  t A � B � C � D � Lời giải GVSB: Trần Tuấn Ngọc, GVSB: Đinh Ngọc Chọn B uuu r AB   1;1; 1 A , B Đường thẳng qua hai điểm có VTCP: nên loại A , D TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 15 ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT 1 2t t  1 � � � � 1   t � � t  2 � � �  1 t t 1 � Lấy tọa độ điểm A thay vào phương án C ta có: � vô lý Vậy phương án B log  5a.125b   log 25 a , b Câu 30 Xét số thực thỏa mãn điều kiện Mệnh đề đúng? A 2a  6b  B 6ab  C 6a  2b  D a  3b  Lời giải GVSB: Trần Tuấn Ngọc, GVSB: Đinh Ngọc Chọn A log  5a.125b   log 25 � log 5a  log 53b  log 52 � a log 5  3b log 5  log 5 Ta có: � a  3b  � 2a  6b  Câu 31 Thiết diện qua trục hình trụ hình vng có cạnh 2a Thể tích khối trụ tạo nên hình trụ 2 a 3 A 2 a B C 8 a 8 a D Lời giải GVSB: Nguyễn Phương Thảo; GVPB: Đinh Ngọc Chọn A Thiết diện qua trục hình vng ABCD có cạnh 2a Do đó: h  2a ; r  a 2 Thể tích khối trụ bằng: V   r h   a 2a  2 a Câu 32 Trong khơng gian, cho tam giác ABC vng A có AB  4a AC  3a Khi quay tam giác ABC quanh quanh cạnh góc vng AB đường gấp khúc ACB tạo thành hình nón Diện tích tồn phần hình nón 2 2 A 15 a B 24 a C 36 a D 20 a Lời giải GVSB: Nguyễn Phương Thảo; GVPB: Đinh Ngọc Chọn B Trang 16 TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN BC  AB  AC   4a  ĐỀ THI THỬ: 2020-2021   3a   5a Ta có: Do đó, hình nón cho có bán kính đường tròn đáy r  3a , độ dài đường sinh l  5a Vậy diện tích tồn phần hình nón cho là: Stp  S xq  S d   rl   r   3a.5a    3a   24 a  P  : x  y  z   điểm I  1;0;3 Mặt cầu có Câu 33 Trong không gian Oxyz , cho mặt phẳng tâm điểm I tiếp xúc với mặt phẳng 2 x  1  y   z  3   A 2  x  1  y   z  3  C  P có phương trình 2 x  1  y   z  3   B 2  x  1  y   z  3  16 D Lời giải GVSB: Nguyễn Phương Thảo; GVPB: Đinh Ngọc Chọn A R  d  I, P    2.0  2.3  1   2    P  Mặt cầu có tâm I tiếp xúc với mặt phẳng I  1;0;3  P  là: Phương trình mặt cầu tâm tiếp xúc với mặt phẳng  x  1  y   z  3  2 2 Câu 34 Cho khối chóp tứ giác S ABCD có cạnh đáy cạnh bên 6a Thể tích khối chóp 3 3 A 36 3a B 108 2a C 18 2a D 36 2a Lời giải GVSB: Giang Sơn, GVSB: Đinh Ngọc Chọn D 2 Ta có AC  6a � OC  3a � SO  SC  OC  3a TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 17 ĐỀ THI THỬ: 2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT 1 V  Sh  3a 2.36a  36 2a 3 Khi thể tích khối chóp cho 1 Câu 35 Biết A �f ( x)dx  1 f (2 x  1)dx � , tích phân B C 12 Lời giải D GVSB: Giang Sơn, GVSB: Đinh Ngọc Chọn A Ta có f (2 x  1)dx  � 1 1 f (2 x  1)d (2x  1)  � f (t )dt   � 20 1 S   1; 2;3; ;19; 20 Câu 36 Cho tập gồm 20 số tự nhiên từ đến 20 Lấy ngẫu nhiên ba số thuộc S Xác suất để ba số lấy lập thành cấp số cộng A 38 B 38 C 38 D 114 Lời giải GVSB: Giang Sơn, GVSB: Đinh Ngọc Chọn B Số phần tử không gian mẫu: n     C20 b ac �� Do a Gọi a , b , c ba số lấy theo thứ tự lập thành cấp số cộng, nên c chẵn lẻ đơn vị  a, b, c  theo thứ tự lập thành cấp số cộng số cặp  a, c  chẵn Số cách chọn lẻ, số cách chọn 2.C10 P 2.C102  C20 38 Vậy xác suất cần tìm là: Người làm: Bùi Thanh Sơn Facebook: Bùi Thanh Sơn Email: phuongson1102@gmail.com y  f  x Câu 37 Cho hàm số có đồ thị hình vẽ gọi A ; B hai hình phẳng gạch hình bên có diện tích 14 I Giá trị Trang 18 �f  3x  1 dx 1 bằng: TÀI LIỆU ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN 19 B A ĐỀ THI THỬ: 2020-2021 C 27 Lời giải D Chọn D I Xét �f  3x  1 dx 1 dx  dt Đặt 3x   t � Với x  1 � t  2 x  � t 1 1 � 1 1� I� f  t  dt  � f  x  dx  � f x d x  f x d x     �  S A  S B   � � 3 � 2 2 2 � � Câu 38 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a ; SA  a SA vuông góc với mặt đáy  ABCD  Gọi M ; N hình chiếu vng góc đỉnh A lên cạnh SB SD Khi góc đường thẳng SB mặt phẳng  AMN  bằng: A 45� B 30� C 60� D 90� Lời giải Chọn C P  SC I  AMN  O  AC I BD � MN AP SO ; ; ; đồng quy I �SA  BC � BC   SAB  � BC  AM Ta có: �AB  BC � AM   SBC  � AM  SC Mà AM  SB nên �SA  CD � �AD  CD � CD   SAD  � CD  AN Gọi AN   SCD  � AN  SC Mà AN  SD nên SC   AMN  � AP  SC  AMN  hay Do PM hình chiếu SM mặt phẳng PM hình chiếu SB mặt phẳng  AMN  � � � �  SB ;  AMN     SB ; PM   SMP (do tam giác SMP vuông P ) TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 19 ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT Từ gt � Tam giác SAC vuông cân A � P trung điểm SC � I trọng tâm tam giác SAC Lại có: SAB  SAD � SA  SB AM  AN � SAM  SAN SM SN SM SI 2 2a    SM  SB  SA2  AB  � SB SD � MN / / BD � SB SO � 3 1 SP  SC  SA2  AC  a 2 Mặt khác Do �  sin SMP SP �  � SM �  SB ;  AMN    SMP  60�  m  1 16 x   2m  3 x  6m   có Câu 39 Số giá trị nguyên tham số m để phương trình hai nghiệm trái dấu là: A B C D Lời giải Chọn C 4x  t  t  0  m  1 t   2m  3 t  6m    1 Đặt Phương trình trở thành:  1 có hai nghiệm phân biệt t1 ; t2 thỏa mãn  t1   t2 Yêu cầu toán � Phương trình � � � � m �1 � � m �1 � 2m  23m   � � 2m  23m   � �6m  m �1 � � 0 � �6m  m  � � 0 � �  2m  23m   � �2  2m  3 �m  � 0 t t  � �1 �2  2m  3 m  �  � � t t  �6m   2m  3 �1 � m 1  1  � t  t   t1t2   t1  t2    � �    m 1 �� �� � �m  �23  561 23  561 m � 4 � �� m  1 �� � m �� �� �2m  23m   �� m  1 � ��  6m  5  m  1  � �� � m �� m  m       � � �  3m  12   m  1  � �4  m  1 �� � 4  m  1 m � 3;  2 Do m nguyên nên Vậy có giá trị nguyên tham số m thỏa mãn yêu cầu toán y  f  x  y  f  x Câu 40 Cho hàm số có đồ thị hình bên Hàm số có điểm cực trị? Trang 20 TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN ĐỀ THI THỬ: 2020-2021 B A C D Lời giải GVSB: Nguyễn Linh Trang; GVPB: Phạm Tuyến Chọn D Ta có bảng biến thiên: y  f  x  Vậy hàm số có điểm cực trị Câu 41 Có số nguyên dương y cho ứng với số y có khơng số nguyên x 3 thỏa mãn x 1  2.3x  1  x  y  �0 A B 27 C 81 D Lời giải GVSB: Nguyễn Linh Trang; GVPB: Phạm Tuyến Chọn C �    2.3  1�   y  �0  2.3  1   y  �0 � �  � Ta có: �   1  3.3  1   y  �0 �   1   y  �0 (do   0, x ) x 1 x x x x x x TÀI LIỆU ÔN THI THPT QUỐC GIA x 1 x x x x Trang 21 ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT x 1 ����  x TH1:  nguyên dương) x ta có x 1 3x �� y  0 y 3x 31 (vơ lý y số 3x �� y  0 y 3x 31 (ln y số �۳ x 1 x ta có TH2: �� nguyên dương) Để ứng với số y có khơng q số ngun x thỏa mãn bất phương trình nên nghiệm x  1;0;1;2;3 y 34 81 nằm khoảng Vậy có 81 số nguyên dương y thỏa mãn yêu cầu đề Câu 42 Hàm số y  f  x liên tục � có bảng biến thiên hình vẽ Phương trình A f  x  3   B có nghiệm? C D Lời giải GVSB: Nguyễn Linh Trang; GVPB: Phạm Tuyến Chọn A Gọi g  x   f  x  3  Ta có: x0 � � g ' x  � � x   1 � x  � x2   � g '  x   x f '  x  3 Ta có bảng biến thiên: g  x  � g  x  � � g  x   5 � Mà Từ bảng biến thiên ta thấy phương trình có nghiệm Câu 43 Một khn viên dạng nửa hình trịn, người thiết kế phần để trồng hoa có dạng cánh hoa hình parabol có đỉnh trùng với tâm có trục đối xứng vng góc với đường kính nửa hình trịn, hai đầu mút cánh hoa nằm nửa đường trịn (phần tơ màu) cách khoảng 4m Phần lại khuôn viên (phần không tô màu) dành để trồng cỏ Nhật Bản Biết kích thước cho hình vẽ, chi phí để trồng hoa cỏ Nhật Bản tương ứng Trang 22 TÀI LIỆU ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ: 2020-2021 150.000 đồng/ m 100.000 đồng/ m Hỏi số tiền cần để trồng hoa trồng cỏ Nhật Bản khn viên gần với số sau đây? A 3.739.000 (đồng) B 1.948.000 (đồng) C 3.926.000 (đồng) D 4.115.000 (đồng) Lời giải GVSB: Nguyễn Bảo; GVPB: Phạm Tuyến Chọn A Kết hợp vào hệ trục tọa độ, ta được:  P  : y  ax Do F  2;  � P  nên  P  : y  x  C  : x  y  R Do F  2;  � C  Gọi đường tròn có tâm gốc tọa độ Gọi parabol nên nửa đường tròn y  20  x   �5� S1  2.� 20  x  x dx  20 arcsin � �5 � � S1 � � Đặt diện tích phần tơ đậm Khi đó: �5�8 S   R  S1  10  20 arcsin � �5 � � S2 � � Đặt diện tích phần khơng tơ đậm Khi đó: Vậy: Số tiền cần để trồng hoa cỏ Nhật Bản là: T  150000.S1  100000.S2 �3738574 (đồng) A  1;1;3 B  1; 4;3 C  5;1;3  Câu 44 Trong không gian Oxyz , cho , , Ba mặt cầu tiếp xúc đôi tiếp xúc với mặt phẳng 769 A B 120  ABC  ba đỉnh A , B , C Tổng bán kính ba mặt cầu 769 37 C 60 D Lời giải GVSB: Nguyễn Bảo; GVPB: Phạm Tuyến Chọn B TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 23 ĐỀ THI THỬ: 2020-2021 NHĨM WORD  BIÊN SOẠN TỐN THPT Gọi I , J K tâm ba mặt cầu tiếp xúc đôi tiếp xúc với mặt  ABC  điểm A , B , C tương ứng với bán kính R1 , R2 R3 phẳng Ta có: AB  , AC  BC  Dựng JH  IA H IJ  IH  HJ �  R1  R2    R1  R2   AB � R1 R2  2 Xét IHJ vuông H , ta có: 25 R2 R3  R3 R1  Tương tự ta được: � �R1  � 769 � 15 �R2  � R1  R2  R3  120 � � 10 �R3  Từ đó, ta có: � z z z  z2  39 z z 2 Câu 45 Cho hai số phức z1 , z2 thỏa mãn Khi A B 39 C 12 D Lời giải GVSB: Nguyễn Bảo; GVPB: Phạm Tuyến Chọn C z z Gọi A B điểm biểu diễn mặt phẳng tọa độ Khi đó: OA  OB  39 AB  �AB � z1  z2  2OC  OA  � �  39   12 �2 � Nhận xét: OAB cân O Khi đó: với C trung điểm cạnh AB y  f  x y  g  x Câu 46 Cho hai hàm liên tục � có đồ thị hình vẽ Khi tổng số nghiệm phương trình Trang 24 f  g  x   g  f  x   TÀI LIỆU ƠN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TOÁN A 25 ĐỀ THI THỬ: 2020-2021 B 22 D 26 GVSB: Nguyễn Văn Ngà; GVPB: C 21 Lời giải Chọn C �f  x   2 (1) � g  f  x    � �f  x    ,   � 0;1  (2) � �f  x   (3) Ta có g  x  1 có nghiệm; phương trình   có Dựa vào đồ thị hàm số suy phương trình nghiệm phương trình  3 � g  x � � g  x � f  g  x   � � g  x � g  x � � g  x � Ta có g  x Dựa vào đồ thị hàm số có nghiệm Vậy phương trình có 10 nghiệm  3 (4)  1 (5)  (6)  a,  a � 1;   (7)  b,  b � 4;5   (8) suy phương trình phương trình có nghiệm phương trình f  g  x   g  f  x   có 11 nghiệm Vậy tổng số nghiệm phương trình  4  8 f  g  x   có nghiệm; phương trình  5 ;   ;   có nghiệm suy phương trình g  f  x   21 log x2 9 y  x  y  �1 Câu 47 Cho số thực x, y thỏa mãn bất đẳng thức Giá trị lớn biểu thức P  x  y gần với số số sau? A B C D GVSB: Nga Nguyen; GVPB: Lời giải Chọn A 2 ĐK: x  y  0; x  y  TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 25 ĐỀ THI THỬ: 2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT 1  x2  y  � x  ; y  � P  x  y  Th1: Nếu 2 Th2: Nếu x  y  2 � 1� � 1� log x2 9 y  x  y  �1 � x  y �4 x  y � � x  � � y  �� � 2� � 2� 2 2 1� 1�� 1� 5� 10  � � � �� P  x  y  �2 x  � � y  � � � y  �� � �2 x  � � 2� 2� � 2� 4� � � � �� Ta có � 4x 1  y  � �  10 � �x  � 10  � 20 �� �x  y  � �y   10 2 � � � 1� � 1� 30 � x  � � y  � � � � 2� � 2� � Vậy MaxP   10 �1, 54 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh 1, biết khoảng cách từ A đến mặt phẳng  SBC  15 SCA   10 , khoảng , khoảng cách từ B đến mặt phẳng 30 cách từ C 20 hình chiếu vng góc S xuống đáy nằm tam giác ABC Tính thể tích khối chóp VS ABC 1 1 A 24 B 12 C 36 D 48  SAB  đến mặt phẳng GVSB: Nga Nguyen; GVPB: Lời giải Chọn D Trang 26 TÀI LIỆU ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN ĐỀ THI THỬ: 2020-2021  ABC  F , G, K hình chiếu H Gọi H hình chiếu S AB, BC , CA Đặt V  VS ABC ; h  SH 3V  h.S ABC  d  A, ( SBC )  S SBC  d  B, ( SAC )  S SAC  d  C , ( SAB )  S SAB Ta có � 15 30 h SF  SG  SK 4 10 20 � SF  h 2; SG  h 5; SK  h 10 � HF  h; HG  2h; HK  3h Mặt khác SABC  SHAB  S HBC  SHCA � 1  HF  HG  HK � h  2 12 3 VS ABC   12 48 Vậy Câu 49 Cho hàm số y  f ( x) liên tục �và có đồ thị hình vẽ Khi hiệu giá trị lớn giá trị nhỏ hàm số A 54 h( x)  f  log x  1  x  x  15 x  B C 33 Lời giải đoạn  1; 4 bằng: D GVSB: Lê Duy; GVPB: Chọn C max g ( x)  g (1)  � � 1;4 � g ( x)  g (4)  � g ( x)  f  log x  1 t  log x  1, t � 1;1 + Xét hàm số Đặt Ta có: � 1;4 (1) max k ( x)  k (1)  � � 1;4 � k ( x)  k (4)  19 � + Xét hàm số k ( x)  x  x  15 x  có � 1;4 (2) max h( x)  h(1)  20 � � 1;4 � max h( x)  h( x)  33 �  1;4  1;4 h( x)  h(4)  13 �  1;4 � Từ (1) (2) ta có: 2 Câu 50 Trong không gian Oxyz , cho mặt cầu ( S ) : x  y  z  điểm �x   t � M  x0 ; y0 ; z0  �d : �y   2t �z   3t � Ba điểm A, B, C phân biệt thuộc mặt cầu ( S ) cho MA, MB, MC tiếp tuyến mặt cầu Biết mặt phẳng ( ABC ) qua điểm D  1;1;  Khi z gần với số số sau: A B 1 TÀI LIỆU ÔN THI THPT QUỐC GIA C D Trang 27 ĐỀ THI THỬ: 2020-2021 NHÓM WORD  BIÊN SOẠN TOÁN THPT Lời giải GVSB: Lê Duy; GVPB: Chọn D uuuu r + Mặt phẳng ( ABC ) qua D(1;1; 2) có VTPT OM nên có phương trình dạng: x0 x  y0 y  z0 z  x0  y0  z0  + Gọi H giao điểm OM với ( ABC ) Xét tam giác MAO vuông A có đường cao AH Ta có: OH OM  OA2 � x0  y0  z0 x y z 2 x02  y02  z02  � x0  y0  z0  t  1 � M (0; 1;5) � � 3t   � � t  � M (6;11; 13) � z Vậy gần với Trang 28 TÀI LIỆU ÔN THI THPT QUỐC GIA ... TOÁN 1. B 11 .B 21. D 31. A 41. C Câu Câu 2.B 12 .A 22.D 32.B 42.A 3.C 13 .C 23.B 33.A 43.A ĐỀ THI THỬ: 2020- 20 21 ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT BẢNG ĐÁP ÁN 4.B 5.D 6.C 7.A 8.C 14 .C 15 .C 16 .D 17 .D 18 .C... ÔN THI THPT QUỐC GIA NHĨM WORD  BIÊN SOẠN TỐN A 36 3a B 10 8 2a ĐỀ THI THỬ: 2020- 20 21 C 18 2a D 36 2a 1 f (2 x  1) dx � �f ( x)dx  Câu 35 Biết ? ?1 A , tích phân B C 12 D S   1; 2;3; ;19 ;... nên loại A , D TÀI LIỆU ÔN THI THPT QUỐC GIA Trang 15 ĐỀ THI THỬ: 2020- 20 21 NHĨM WORD  BIÊN SOẠN TỐN THPT 1? ?? 2t t  ? ?1 � � � � ? ?1   t � � t  2 � � �  1? ?? t t ? ?1 � Lấy tọa độ điểm A thay

Ngày đăng: 24/06/2021, 16:49

w