1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Sáng kiến kinh nghiệm) hướng dẫn học sinh lớp 12 giải một số dạng toán trắc nghiệm về chủ đề cực trị của hàm số

34 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 3,08 MB

Nội dung

SÁNG KIẾN KINH NGHIỆM HƯỚNG DẪN HỌC SINH LỚP 12 GIẢI MỘT SỐ DẠNG TOÁN TRẮC NGHIỆM VỀ CHỦ ĐỀ CỰC TRỊ CỦA HÀM SỐ  Giáo Viên: Nguyễn Ngọc Quang THÁNG NĂM 2018 Trang A ĐẶT VẤN ĐỀ I Lý chọn đề tài: Thực tế giảng dạy cho thấy, việc lựa chọn phương pháp dạy học phù hợp sẽ kích thích được hứng thú học tập của học sinh, giúp học sinh lĩnh hội được tri thức một cách chủ động và đạt được mục đích học tâp Việc lựa chọn phương pháp giảng dạy phù hợp với một nội dung kiến thức nhất định là đặc biệt quan trọng Nó giúp người thầy có được sự định hướng việc giảng dạy tuỳ thuộc vào mục tiêu, nội dung cần đạt, trình độ nhận thức của học sinh Nó giúp người học dễ dàng tiếp cận kiến thức, tích lũy kiến thức đó và vận dụng vào làm bài thi đạt được kết quả cao nhất Trong đề thi THPT QG năm qua, các bài toán chủ đề hàm số chiếm một tỷ lệ đáng kể và gây không ít khó khăn cho học sinh Trong quá trình giảng dạy nhận thấy học sinh gặp nhiều khó khăn học các nội dung chủ đề hàm số nói chung và chủ đề cực trị hàm số nói riêng, đặc biệt là các bài toán mức độ vận dụng và vận dụng cao Đặc biệt là từ Bộ GD và ĐT áp dụng phương thức thi trắc nghiệm cho mơn Toán, địi hỏi học sinh khơng phải có kiến thức sâu, rợng mà cịn phải có các cách tiếp cận, các phương pháp phù hợp để giải bài toán một cách nhanh nhất Để giúp học sinh có cách tiếp cận nhanh nhất, hiệu quả nhất việc giải các bài toán cực trị của hàm số, chọn đề tài sáng kiến kinh nghiệm: “ Hướng dẫn học sinh lớp 12 giải số dạng toán trắc nghiệm chủ đề cực trị hàm số” II Mục đích nghiên cứu: Mục đích nghiên cứu của đề tài là nhằm cung cấp thêm cho học sinh cách tiếp cận nhanh nhất, hiệu quả nhất việc giải các bài toán cực trị của hàm số; từ đó bước tháo gỡ vướng mắc, khó khăn mà học sinh thường hay gặp phải với mong muốn nâng cao chất lượng dạy và học chủ đề cực trị của hàm số III Nhiệm vụ nghiên cứu: Nghiên cứu, tìm tòi các cách tiếp cận, các phương pháp giải các bài toán trắc nghiệm chủ đề “Cực trị hàm số” IV Đối tượng khách thể nghiên cứu: Đối tượng nghiên cứu: các phương pháp giải bài toán trắc nghiệm chủ đề “Cực trị hàm số” Khách thể nghiên cứu: học sinh hai lớp 12A1 và 12A9 Trang V Phạm vi nghiên cứu: các dạng toán: tìm số điểm cực trị của hàm số, tìm điều kiện của tham số m để hàm số có n điểm cực trị, tìm điều kiện của tham số m để hàm số đạt cực trị tại điểm x  x0 VI Phương pháp nghiên cứu: - Phương pháp điều tra thực tiễn - Phương pháp đối chứng - Phương pháp nghiên cứu tài liệu VII Cấu trúc SKKN A Đặt vấn đề I Lý chọn đề tài II Mục đích nghiên cứu III Nhiệm vụ nghiên cứu IV Đối tượng và khách thể nghiên cứu V Phạm vi nghiên cứu VI Phương pháp nghiên cứu VII Cấu trúc của SKKN B Nội dung I Cơ sở lý thuyết II Một số dạng toán III Các biện pháp tiến hành để giải quyết vấn đề IV Hiệu quả của sáng kiến kinh nghiệm C Kết luận và đề xuất I Kết luận II Đề xuất B GIẢI QUYẾT VẤN ĐỀ I Cơ sở lý thuyết: Khái niệm cực trị hàm số : Giả sử hàm số xác định tập hợp D  D �� và x0 �D x0 được gọi là một điểm cực đại của hàm số f nếu tồn tại một khoảng  a; b  chứa �  a; b  �D � điểm x0 cho: f � �f ( x)  f ( x0 ), x � a; b  \  x0  Trang Khi đó f  x0  được gọi là giá trị cực đại của hàm số f x0 được gọi là một điểm cực tiểu của hàm số f nếu tồn tại một khoảng  a; b  chứa �  a; b  �D � điểm x0 cho: � �f ( x )  f ( x0 ) x � a; b  \  x0  Khi đó f  x0  được gọi là giá trị cực tiểu của hàm số f Giá trị cực đại và giá trị cực tiểu được gọi chung là cực trị Nếu x0 là một điểm cực trị của hàm số f thì người ta nói hàm số f đạt cực trị tại điểm x0 Như : Điểm cực trị phải là một điểm của tập hợp D y Điểm cực đại Điểm cực tiểu Điểm cực tiểu x O Điểm cực đại , cực tiểu gọi chung là điểm cực trị của hàm số , f(x0 ) là giá trị cực trị (hay cực trị ) của hàm số Điều kiện cần để hàm số đạt cực trị: Định lý 1: Giả sử hàm số f đạt cực trị tại điểm x0 Khi đó , nếu f có đạo hàm tại điểm x0 thì f '  x0   Chú ý : � Đạo hàm f ' triệt tiêu tại điểm x0 hàm số f không đạt cực trị tại điểm x0 � Hàm số đạt cực trị tại một điểm mà tại đó hàm số không có đạo hàm � Hàm số đạt cực trị tại một điểm mà tại đó đạo hàm của hàm số , hoặc tại đó hàm số không có đạo hàm Điều kiện đủ để hàm số đạt cực trị: Định lý 2: Giả sử hàm số f liên tục khoảng  a; b  chứa điểm x0 và có đạo hàm các khoảng  a; x0  và  x0 ; b  Khi đó : �f '  x0   0, x � a; x0  � Nếu � thì hàm số đạt cực tiểu tại điểm x0 f ' x  0, x � x ; b     � 0 x a x0 b   f '( x) f (a) f ( x) f (b) f ( x0 ) Trang � �f '  x0   0, x � a; x0  Nếu � thì hàm số đạt cực đại tại điểm x0 f ' x  0, x � x ; b     � 0 x a x0 b   f '( x) f ( x0 ) f ( x) f (a) f (b) Định lý 3: Giả sử hàm số f có đạo hàm cấp một khoảng  a; b  chứa điểm x0 , f '  x0   và f có đạo hàm cấp hai khác tại điểm x0 Nếu f ''  x0   thì hàm số f đạt cực đại tại điểm x0 Nếu f ''  x0   thì hàm số f đạt cực tiểu tại điểm x0 Chú ý : Nếu x0 là một điểm cực trị của hàm số f thì điểm ( x0 ; f ( x0 )) được gọi là điểm cực trị đồ thị hàm số f �f '( x0 )  Trong trường hợp f '( x0 )  không tồn tại hoặc � thì định lý không dùng �f ''( x0 )  được Tịnh tiến đồ thị Cho hàm số y  f  x  có đồ thị  C  Khi đó, với số a  ta có: a x 1 a) Nếu tịnh tiến  C  theo phương của y  lên a đơn vị ta được đồ thị xb hàm số y  f  x   a b) Nếu tịnh tiến  C  theo phương của y  a   xuống dưới a đơn vị ta được đồ thị hàm số y  f  x   a c) Nếu tịnh tiến  C  theo phương của a, b, c qua trái a đơn vị ta được đồ thị hàm số y  f  x  a d) Nếu tịnh tiến  C  theo phương của a  2, b  1, c  1; qua phải a đơn vị ta được đồ thị hàm số y  f  x  a  e) Đồ thị của hàm số y  f  x  a  có được cách lấy đối xứng (C) qua trục Oy tịnh tiến theo phương của Ox qua trái a đơn vị f) Đồ thị của hàm số y  f  x  a  có được cách lấy đối xứng (C) qua trục Oy tịnh tiến theo phương của Ox qua phải a đơn vị g) Đồ thị của hàm số y  f  x  a  có được cách tịnh tiến (C) theo phương của Ox qua trái a đơn vị lấy đối xứng qua trục Oy h) Đồ thị của hàm số y  f  x  a  có được cách tịnh tiến (C) theo phương của Ox qua trái a đơn vị lấy đối xứng qua trục Oy Quan hệ cực trị hàm số phép biến đổi đồ thị a) Nếu đồ thị hàm số y  f ( x) có n điểm cực trị có hoành độ dương(các điểm cực trị nằm bên phải Oy) thì đồ thị hàm số y  f ( x ) có 2n  điểm cực trị Trang b) Nếu đồ thị hàm số y  f ( x) có n điểm cực trị và phương trình f  x   có m nghiệm bội lẻ thì đồ thị hàm số y  f ( x ) có m  n điểm cực trị c) Số điểm cực trị của đồ thị hàm số y  f  ax  b   c số điểm cực trị của đồ thị hàm số y  f ( x) d) Khi tịnh tiến đồ thị thì số điểm cực trị không thay đổi II Một số dạng toán: Dạng 1: Cho đồ thị hàm số f ( x) Hỏi số điểm cực trị đồ thị hàm số có chứa dấu giá trị tuyệt đối liên quan đến f ( x) Phương pháp: Sử dụng các kết quả của mục I.5 Câu Cho hàm số y  f ( x) có đồ thị hình vẽ Hỏi hàm số y  f ( x ) có điểm cực trị? A B C D Lời giải Ta thấy đồ thị hàm số y  f ( x) có điểm cực trị có hoành độ dương nên đồ thị hàm số y  f ( x ) có điểm cực trị Câu Cho hàm số y  f ( x) có đồ thị hình vẽ sau: Hàm số y  f ( x ) có điểm cực trị? Hàm số y  f ( x ) có điểm cực trị? Hàm số y  f ( x ) có điểm cực trị? Lời gải Đồ thị hàm số y  f ( x) có điểm cực trị có hoành độ dương nên hàm số y  f ( x ) có điểm cực trị Đồ thị hàm số y  f ( x) có điểm cực trị và phương trình f ( x)  có nghiệm đơn nên hàm số y  f ( x ) có điểm cực trị Đồ thị hàm số y  f ( x ) có điểm cực trị và phương trình f ( x )  có nghiệm đơn nên hàm số y  f ( x ) có điểm cực trị  x  hình vẽ bên dưới Câu Cho hàm số y  f ( x) Đồ thị hàm số y  f � Trang  x  m  có điểm cực trị Tìm m để hàm số g  x   f  x  m  có điểm cực trị Tìm m để hàm số g  x   f  x  m  có điểm cực trị Tìm m để hàm số g  x   f Ta có BBT của hàm số f  x  : Lời giải Đồ thị hàm số g  x   f  x  m  có được cách: + Lấy đối xứng đồ thị hàm số y  f ( x) qua Oy được đồ thị hàm số y  f  x  + Tịnh tiến đồ thị hàm số y  f  x  theo phương của Ox sang phải hoặc trái m đơn vị được đồ thị hàm số g  x   f  x  m  Ta thấy: Hàm số y  f ( x) có điểm cực trị đó có cực trị dương � f  x  có điểm cực trị � f  x  m  có điểm cực trị với mọi m Đồ thị hàm số g  x   f  x  m  có được cách: + Tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox sang phải hoặc trái m đơn vị được đồ thị hàm số y  f  x  m  + Lấy đối xứng phần đồ thị hàm số y  f  x  m  nằm bên phải Oy qua Oy được đồ thị hàm số g  x   f  x  m  Từ đó ta thấy: để hàm số g  x   f  x  m  có điểm cực trị thì hàm số y  f  x  m  phải có cực trị dương � tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox sang phải lớn đơn vị và không quá đơn vị � 2 �m  1 Vậy 2 �m  1 Để hàm số g  x   f  x  m  có điểm cực trị thì hàm số y  f  x  m  phải có cực trị dương � tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox (sang phải hoặc trái) phải thỏa mãn:  Tịnh tiến sang phải không quá đơn vị ۳�0 m  m   Tịnh tiến sang trái nhỏ đơn vị ۣ Vậy 1 �m   x  hình vẽ bên dưới Câu Cho hàm số y  f ( x) Đồ thị hàm số y  f � Trang  x  m  có điểm cực trị Tìm m để hàm số g  x   f  x  m  có điểm cực trị Tìm m để hàm số g  x   f  x  m  có điểm cực trị Tìm m để hàm số g  x   f Ta có BBT của hàm số f  x  : Lời giải Đồ thị hàm số g  x   f  x  m  có được cách: + Lấy đối xứng đồ thị hàm số y  f ( x) qua Oy được đồ thị hàm số y  f  x  + Tịnh tiến đồ thị hàm số y  f  x  theo phương của Ox sang phải hoặc trái m đơn vị được đồ thị hàm số g  x   f  x  m  Ta thấy: Hàm số y  f ( x) có điểm cực trị đó có cực trị dương � f  x  có điểm cực trị � f  x  m  có điểm cực trị với mọi m Vậy không có giá trị nào của m để hàm số g  x   f  x  m  có điểm cực trị Đồ thị hàm số g  x   f  x  m  có được cách: + Tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox sang phải hoặc trái m đơn vị được đồ thị hàm số y  f  x  m  + Lấy đối xứng phần đồ thị hàm số y  f  x  m  nằm bên phải qua Oy được đồ thị hàm số g  x   f  x  m  Từ đó ta thấy: để hàm số g  x   f  x  m  có điểm cực trị thì hàm số y  f  x  m  phải có cực trị dương � tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox sang phải lớn đơn vị � m  Vậy m  Để hàm số g  x   f  x  m  có điểm cực trị thì hàm số y  f  x  m  phải có cực trị dương � tịnh tiến đồ thị hàm số y  f ( x) theo phương của Ox trái nhỏ  m  đơn vị ۣ Vậy �m  u  x � Dạng 2: Cho đồ thị f '  x  Hỏi số điểm cực trị hàm số f � � � Phương pháp: + Từ đồ thị hàm số f '  x  tìm hoành độ giao điểm của đồ thị f '  x  với trục hoành u  x � + Tính đạo hàm của hàm số g ( x)  f � � � + Dựa vào đồ thị của f '  x  và biểu thức của g '  x  để xét dấu g '  x  Trang  x  Số điểm cực trị Câu Đường cong hình vẽ bên dưới là đồ thị hàm số y  f � của hàm số y  f  x  là A B C D Lời giải � Ta thấy đồ thị hàm số f  x  có điểm chung với trục hoành x1; 0; x2 ; x3 cắt thực sự tại hai điểm là và x3 Bảng biến thiên Vậy hàm số y  f  x  có điểm cực trị Chọn A Cách trắc nghiệm Ta thấy đồ thị của f '  x  có điểm chung với trục hoành cắt và băng qua trục hoành có điểm nên có hai cực trị  Cắt và băng qua trục hoành từ xuống thì đó là điểm cực đại  Cắt băng qua trục hồnh từ lên điểm cực tiểu  x  hình Câu Cho hàm số y  f  x  Đồ thị hàm số y  f � bên Tìm số điểm cực trị của hàm số g  x   f  x  3 A B C D Lời giải  x   xf � Ta có g �  x  3 ; x0 � g� 0���� �  x = � 2� �  x  3  �f � theo thi f ' x  � x0 �2 x � � x    nghiem kep  � � x0 � x � � x  �2  nghiem kep  � Bảng biến thiên Dựa vào bảng biến thiên và đối chiếu với các đáp án, ta chọn B  x  được xác định sau: Ví dụ xét khoảng  2; � Chú ý: Dấu của g �  1  x � 2; � � x    � x   ����� �f�  x � 2; � � x  ��  x  3  theo thi f ' x  x   xf � Từ  1 và   , suy g �  x  3  khoảng  2; � nên  Trang  2 g�  x  mang dấu  x  qua nghiệm đổi Nhận thấy các nghiệm x  �1 và x  là các nghiệm bội lẻ nên g �  x  tiếp xúc dấu; các nghiệm x  �2 là nghiệm bội chẵn (lí dựa vào đồ thị ta thấy f � với trục hoành tại điểm có hoành độ 1) nên qua nghiệm không đổi dấu  x  Câu Cho hàm số y  f  x  có đạo hàm � và có bảng xét dấu của y  f � sau Hỏi hàm số g  x   f  x  x  có điểm cực tiểu ? A B C Lời giải  x    2x  2 f � Ta có g �  x  2x  ; 2x   � g� 0������ �  x = �  x  2x  �f � theo BBT f ' x  D x 1 � �2 x  x  2 � � x  x  1 nghiem kep  � � x2  2x  � x 1 � � x  �  nghiem kep � � x  1 � x3 � Bảng biến thiên Dựa vào bảng biến thiên và đối chiếu với các đáp án, ta chọn A  x  được xác định sau: Ví dụ xét khoảng  3; � Chú ý: Dấu của g �  1  x � 3; � � x      x � 3; � � x  x  ������ f �  x  x   theo BBT f ' x  2  x   2x  2 f � Từ  1 và   , suy g �  x2  x   khoảng  3; � nên g � x  mang dấu   x  qua nghiệm đổi Nhận thấy các nghiệm x  �1 và x  là các nghiệm bội lẻ nên g � dấu Câu Cho hàm số y  f  x  có đạo hàm liên tục � và f    0, f  1  0, đồng  x  hình vẽ bên dưới thời đồ thị hàm số y  f � Số điểm cực trị của hàm số g  x   f  x  là A B C Lời giải x  2 �  x  � � Dựa vào đồ thị, ta có f � x   nghiem kep  � Bảng biến thiên của hàm số y  f  x  Trang 10 D     Vậy hàm số g  x    có điểm cực trị Chọn B Câu Cho hàm số y  f  x  có đạo hàm R và có đồ thị hình vẽ bên dưới Đồ thị hàm số g  x   f  x   có tổng tung độ của các điểm cực trị f x A f x B C D Lời giải Đồ thị hàm số g  x   f  x   có được cách  Tịnh tiến đề thị hàm số f  x  lên đơn vị ta được f  x    Lấy đối xứng phần phía dưới Ox của đồ thị hàm số f  x   qua Ox, ta được f  x  Dựa vào đồ thị hàm số g  x   f  x   , suy tọa độ các điểm cực trị là  1;0  ,  0;4  ,  2;0  �� � tổng tung độ các điểm cực trị    Chọn C Câu Cho hàm số y  f  x  có đạo hàm R và có đồ thị hàm số hình bên Đồ thị hàm số h  x   f  x   có điểm cực trị ? A B C D Lời giải � g�  x  f �  x ; Xét g  x   f  x   �� x  1 � � x0 theo thi f  x  g� Ta tính được  x  � f �  x   ������ � � x  a   a  2 � x2 � Bảng biến thiên của hàm số g  x  Dựa vào bảng biến thiên suy Trang 20 �g  1  � �g    7 � g a    � �g  �   Đồ thị hàm số g  x  có điểm cực trị  Đồ thị hàm số g  x  cắt trục Ox tại điểm phân biệt Suy đồ thị hàm số h  x   f  x   có điểm cực trị Chọn C u  x � Dạng 7: Cho bảng biến thiên hàm f  x  Hỏi số điểm cực trị hàm f � � � Câu Cho hàm số y  f  x  xác định, liên tục � và có bảng biến thiên sau Hàm số g  x   f  x   đạt cực tiểu tại điểm nào sau ? A x  1 B x  C x  �1 Lời giải  x   f ' x  Ta có g � D x  Do đó điểm cực tiểu của hàm số g  x  trùng với điểm cực tiểu của hàm số f  x  Vậy điểm cực tiểu của hàm số g  x  là x  �1 Chọn C Câu Cho hàm số y  f  x  có bảng biến thiên hình vẽ bên dưới Hỏi hàm số g  x   f  x  1 có điểm cực trị ? A B C 2  x   x f � Lời giải Ta có g �  x  1 ; x0 � 0��� g� x =  � �   �  � f x  1  � theo BBT D x0 � � x   nghiem don  �2 x � � x   nghiem kep  � � x   � x  nghiem boi 3  x   có nhất nghiệm bội lẻ x  nên hàm số g  x  có điểm cực trị Vậy g � Chọn B Câu Cho hàm số y  f  x  có bảng biến thiên sau Tìm số điểm cực trị của hàm số g  x   f   x  A B C Lời giải Trang 21 D  x   f �   x Ta có g � 3 x  x3 � � theo BBT �� ��  x  � f �   x   ����  g� 3 x  x 1 � �  x  không xác định �  x  � x   g� Bảng biến thiên Vậy hàm số g  x   f   x  có điểm cực trị Chọn B Câu Cho hàm số y  f  x  có bảng biến thiên sau Hỏi đồ thị hàm số g  x   f  x  2017   2018 có điểm cực trị ? A B C D Lời giải Đồ thị hàm số u  x   f  x  2017   2018 có được từ đồ thị f  x  cách tịnh tiến đồ thị f  x  sang phải 2017 đơn vị và lên 2018 đơn vị Suy bảng biến thiên của u  x  Dựa vào bảng biến thiên suy đồ thị hàm số g  x   u  x  có điểm cực trị Chọn B u  x � Dạng 8: Cho biểu thức f  x, m  Tìm m để hàm số f � � �có n điểm cực trị Câu Cho hàm số f  x   x   2m  1 x    m  x  với m là tham số thực Tìm tất cả các giá trị của m để hàm số g  x   f  x  có điểm cực trị 5 5 A 2  m  B   m  C  m  D  m �2 4 4 Lời giải  x   3x   2m  1 x   m Ta có f � Hàm số g  x   f  x  có điểm cực trị � hàm số f  x  có hai cực trị dương Trang 22 � f�  x  có hai nghiệm dương phân biệt �  2m  1    m   � 0 � � � �2  2m  1 � �S  � � 0 �  m  �P  � � �2  m 0 � �3 Chọn C Câu Cho hàm số f  x   mx  3mx   3m   x   m với m là tham số thực Có giá trị nguyên của tham số m � 10;10 để hàm số g  x   f  x  có điểm cực trị ? A B C 10 D 11 Lời giải Để g  x   f  x  có điểm cực trị � f  x   có nghiệm phân biệt  * x 1 � Xét f  x   �  x  1  mx  2mx  m    � � mx  2mx  m   �  * � phương trình  1 có hai nghiệm phân Do đó  1 biệt khác �m �0 � 1� � �  m2  m  m  2  �f  1  2 �0 � m�� � m  ���� � m � 1; 2; 3; ; 10 Chọn C m� 10;10 Câu Cho hàm số bậc ba f  x   ax  bx  cx  d có đồ thị nhận hai điểm A  0;3 và B  2; 1 làm hai điểm cực trị Khi đó số điểm cực trị của đồ thị hàm số g  x   ax x  bx  c x  d C Lời giải 2 Ta có g  x   ax x  bx  c x  d  f  x  A B D 11 Hàm số f  x  có hai điểm cực trị đó có một điểm cực trị và một điểm cực  1 trị dương �� � hàm số f  x  có điểm cực trị Đồ thị hàm số f  x  có điểm cực trị A  0;3 �Oy và điểm cực trị B  2; 1 thuộc góc phần tư thứ IV nên đồ thị f  x  cắt trục hoành tại điểm (1 điểm có hoành độ âm, điểm có hoành độ dương) �� � đồ thị hàm số f  x  cắt trục hoành tại điểm phân biệt   Từ  1 và   suy đồ thị hàm số g  x   f  x  có điểm cực trị Chọn B Cách Vẽ phát họa đồ thị f  x  suy đồ thị f  x  , tiếp tục suy đồ thị f  x  Câu Tìm tất cả các giá trị của m để hàm số y  x  3x   m có ba điểm cực trị A m  hoặc m  1 B m �1 hoặc m �3 C �m �3 D m �3 hoặc m �1 Lời giải Xét hàm số f ( x)  x  3x   m Trang 23 x0 � Ta có: f '( x)  x  x; f '( x)  � � x   � Do số điểm cực trị của hàm số y  x  3x   m tổng số điểm cực trị của hàm số f ( x)  x  3x   m và số nghiệm của phương trình f ( x)  x  x   m   * (không kể nghiệm bội chẵn) Khi đó yêu cầu bài toán trở thành (*) có một nghiệm (không kể nghiệm và – là các nghiệm bội chẵn và là các điểm cực trị của hàm số f ( x) ) m  �0 m �1 � � �� Dựa vào bảng biến thiên ta có: � Chọn D m  �0 m �3 � � Câu Có giá trị nguyên của tham số m � 9;9 để hàm số y  mx  3mx   3m   x   m có điểm cực trị? A 11 B 10 C D Lời giải Xét hàm số f ( x)  mx  3mx   3m   x   m Do hàm số y  f ( x) có tối đa điểm cực trị và phương trình f ( x)  có tối đa 3 nghiệm nên để hàm số y  mx  3mx   3m   x   m có điểm cực trị thì phương trình f ( x)  có nghiệm phân biệt ( vì f ( x)  có nghiệm phân biệt thì hàm số y  f ( x) có điểm cực trị) Ta có: f ( x)  � mx  3mx   3m   x   m  �  x  1  mx  2mx  m    x 1 � �� g ( x)  mx  2mx  m   * � Để thỏa mãn yêu cầu bài toán thì (*) phải có nghiệm phân biệt khác m �0 � m0 � m �� � � � 2m �0    � m  1;2;3;4;5;6;7;8;9 � ' ��� m �  9;9 m �   �g (1)  4m  �0 � � � Chọn D Dạng 9: Tìm m để hàm số đạt cực trị x  x0 Bổ đề: Cho hàm số y  f ( x) có đạo hàm cấp liên tục D x0 �D Giả sử n 1 f '( x)   x  x0  h( x) với h  x0  �0, n �N Đặt g ( x)   x  x0  h( x) Khi đó: a) Nếu g '( x0 )  f’(x) đổi dấu từ âm sang dương x qua x0 b) Nếu g '( x0 )  f’(x) đổi dấu từ dương sang âm x qua x0 Trang 24 Chứng minh a) Vì g '( x) liên tục D và g '( x0 )  nên  a; b  �D cho x0 � a; b  và g '( x)  0, x � a; b  Vì h( x0 ) �0 nên g ( x)  có nghiệm đơn x  x0 � g ( x) đổi dấu x qua x0 Ta có BBT: Suy g ( x) đổi dấu từ âm sang dương x qua x0 Vì f '( x)   x  x0  g ( x) nên dấu của f '( x) cùng dấu với dấu của g ( x) � dpcm b) Chứng minh tương tự Áp dụng bổ đề vào tốn cực trị ta có: KQ1: Cho hàm số y  f ( x) có đạo hàm cấp liên tục D x0 �D Giả sử n 1 f '( x)   x  x0  h( x) với h  x0  �0, n �N Đặt g ( x)   x  x0  h( x) Khi đó: 2n a) g '( x0 )  � hàm số đạt cực tiểu x0 b) g '( x0 )  � hàm số đạt cực đại x0 Chứng minh a) Ta có: từ giả thiết  g '( x0 )  Nếu g '( x0 )  thì theo bổ đề f’(x) đổi dấu từ dương sang âm x qua x0 � x  x0 là điểm cực tiểu của hàm số f(x)  Nếu f(x) đạt cực tiểu tại x = x0 thì ta cần chứng minh g '( x0 )  Thật vậy, giả sử g '( x0 )  đó, theo bổ đề thì f’(x) đổi dấu từ dương sang âm x qua x0 � x  x0 là điểm cực đại của hàm số f(x) � trái giả thiết Vậy g '( x0 )  b) Chứng minh tương tự 2n KQ2: Cho hàm số y  f ( x) có đạo hàm D x0 �D Nếu f '( x)   x  x0  h( x) điều kiện cần để f(x) đạt cực trị x = x0 h(x0) = Câu Có số nguyên m � 2018;2019  để hàm số y  x  2mx5   m  1 x  đạt cực tiểu tại x  A 2018 B 2019 C 3016 D 3015 Lời giải 3 y '  x  10mx   m  1 x  x  x  10mx  4m   Đặt h( x)  x3  10mx  4m  g ( x )  x  x3  10mx  4m   � g '( x )  24 x  20mx  4m  TH1: Xét h( x)  có nghiệm x  � m  1 4 Với m = -1 � y '  x  10 x  x  x  10  � x  không là cực tiểu TH2: h(0) �0 Khi đó Trang 25 f ( x) đạt cực tiểu tại x  � g '(0)  � 4m   � m  1 Chọn B Câu Có giá trị của m để hàm số y  x   m   x  m  đạt cực tiểu tại x  A B C D Lời giải y '  x   m   x  x  x  3m  27  2 2 Đặt h( x )  x  3m  27 Điều kiện cần để HS đạt cực tiểu tại x = là h(0)  � m  �3 Với m  �3 � y '  x3 � x  là cực tiểu Chọn A Câu (Đề thi thức năm 2018) Có tất cả giá trị nguyên của m để hàm số y  x   m   x   m   x  đạt cực tiểu tại x  A B C Lời giải 3 y '  x   m   x   m   x  x  x   m   x  4m2  16  D Vô số Đặt: h( x)  x   m   x  4m  16 g ( x)  x  x   m   x  4m  16  x   m   x   4m  16  x � g '( x)  40 x  10  m   x  TH1: Xét h( x)  có nghiệm x  � m  �2 + Với m = � y '  x � x  là cực tiểu 4 + Với m = - � y '  x  x  20  � x  không là cực tiểu TH2: h(0) �0 Khi đó f ( x) đạt cực tiểu tại x  � g '(0)  � 4m  16  � 2  m  Vì m �Z � m � 1;0;1 Vậy m � 1;0;1;2 Chọn C Câu Có số nguyên m � 10;10  để hàm số y   x   m  8 x3   m2   x  m x  2m đạt cực đại tại x  A B C Lời giải 2 2 y '  4 x   m   x   m   x  m   x  1  4 x  m  Đặt: h( x)  4 x  m Điều kiện cần đề HS đạt cực đại tại x = là h(1)  � m  �2 Với m  �2 � y '  4  x  1 � x  là cực đại Chọn B Trang 26 D III Các biện pháp tiến hành để giải vấn đề Để thực đề tài này tìm đọc rất nhiều tài liệu viết vấn đề này, nghiên cứu lời giải cho dạng toán, lựa chọn bài tập phù hợp với phương pháp đưa để giúp học sinh giải quyết bài toán tốt IV Hiệu sáng kiến kinh nghiệm Qua nhiều năm giảng dạy và đúc kết kinh nghiệm nhận thấy để dạy cho học sinh học tốt các nội dung cực trị của hàm số thì cần phải giúp cho học sinh nắm vững hệ thống lý thuyết các định nghĩa, định lý, hệ quả các phương pháp giải toán Nắm vững các yếu tố sẽ giúp cho việc giảng dạy của giáo viên được thuận lợi, học sinh tiếp thu kiến thức ngày một tốt Trang 27 Đề tài này được thực các buổi dạy chuyên đề tại lớp 12A1 và 12A9 Trong quá trình học đề tài này, bước đầu học sinh thấy khó khăn qua vài ví dụ học sinh nhận thấy một bài toán có thể áp dụng nhiều phương pháp khác Trong đó việc ứng dụng phương pháp trên, tạo cho học sinh niềm đam mê, yêu thích môn toán, mở cho học sinh cách nhìn nhận, vận dụng, linh hoạt, sáng tạo kiến thức học, tạo cho học sinh tự học, tự nghiên cứu Trước dạy đề tài tiến hành khảo sát hai lớp 12A1 và 12A9 năm học 2018 – 2019 thông qua bài kiểm tra 15 phút: Câu Cho hàm số y  f ( x) Hàm số y  f '( x) có đồ thị hình vẽ: Câu Khẳng định nào sau là khẳng định đúng? A Đồ thị hàm số y  f ( x) cắt trục hoành tại ba điểm phân biệt B Đồ thị hàm số y  f ( x) có hai điểm cực trị C Đồ thị hàm số y  f ( x) có ba điểm cực trị D Đồ thị hàm số y  f ( x) có một điểm có một điểm cực trị Cho hàm số y | x3  x  | có đồ thị hình vẽ: Khẳng định nào sau là khẳng định đúng? A Đồ thị hàm số y  f ( x) có điểm cực tiểu và không có điểm cực đại B Đồ thị hàm số y  f ( x) có một điểm cực tiểu và một điểm cực đại C Đồ thị hàm số y  f ( x) có bốn điểm cực trị D Đồ thị hàm số y  f ( x) có một điểm cực đại và hai điểm cực tiểu Câu Tìm tất cả các giá trị của tham số m để hàm số y  x  mx  (2m  3) x  đạt cực đại tại x  A m  B m  C m �3 D m  2 Câu Hàm số y  x  2(m  2) x  m  2m  có đúng điểm cực trị thì giá trị của m là: A m �2 B m  C m  D m  Câu Cho hàm số f  x   x  ax  bx  c có đồ thị hàm số hình bên Hàm số g  x   f   x  3x  có điểm cực đại ? A B C D Trang 28 Câu Cho hàm số f  x  có đạo hàm R và có đồ thị hình vẽ bên dưới Số điểm cực trị của hàm số g  x   f  x   2018 là A B C D Câu Cho hàm số y  f  x  có bảng biến thiên hình vẽ bên dưới Đồ thị hàm số g  x   f  x   2m có điểm cực trị � 11 � � 11 � 2; � 2; � B m �� C m �� D m  � 2� � 2� Câu Hàm số y  f  x  có đúng ba điểm cực trị là 2; 1 và Hàm số A m � 4;11 g  x   f  x  x  có điểm cực trị ? A B C D  x  Số điểm cực trị Câu Đường cong hình vẽ bên dưới là đồ thị hàm số y  f � của hàm số y  f  x  là A B C D  x  hình vẽ Câu 10 Cho hàm số y  f  x  có đạo hàm � Đồ thị hàm số y  f � bên dưới Hỏi hàm số g  x   f  x   x đạt cực tiểu tại điểm nào dưới ? A x  C x  B x  D Không có điểm cực tiểu Kết thu sau: Trang 29 Điểm Điểm Điểm Điểm 9-10 7-8,5 5-6,5 -

Ngày đăng: 15/06/2021, 14:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w