Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 70 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
70
Dung lượng
2,48 MB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN THỊ THU THẢO NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỔ HỢP MnO2/GRAPHENE BẰNG PHƢƠNG PHÁP HÓA SIÊU ÂM KẾT HỢP PLASMA ỨNG DỤNG LÀM ĐIỆN CỰC CHO SIÊU TỤ ĐIỆN LUẬN VĂN THẠC SĨ HÓA HỌC THÁI NGUYÊN – 2020 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN THỊ THU THẢO NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỔ HỢP MnO2/GRAPHENE BẰNG PHƢƠNG PHÁP HÓA SIÊU ÂM KẾT HỢP PLASMA ỨNG DỤNG LÀM ĐIỆN CỰC CHO SIÊU TỤ ĐIỆN Hóa Vơ Cơ Mã ngành: 8.44.01.13 LUẬN VĂN THẠC SĨ HÓA HỌC Ngƣời hƣớng dẫn khoa học: TS Nguyễn Quốc Dũng THÁI NGUYÊN – 2020 i LỜI CAM ĐOAN Tôi xin cam đoan: Đề tài: “Nghiên cứu chế tạo vật liệu tổ hợp MnO2/ graphene phƣơng pháp hóa siêu âm kết hợp plasma ứng dụng làm điện cực cho siêu tụ điện” thân thực Các số liệu, kết đề tài trung thực Nếu sai thật xin chịu trách nhiệm Thái Nguyên, tháng 09 năm 2020 Tác giả luận văn Nguyễn Thị Thu Thảo Xác nhận Xác nhận Trƣởng khoa chuyên môn Ngƣời hƣớng dẫn khoa học PGS.TS Nguyễn Thị Hiền Lan TS Nguyễn Quốc Dũng i LỜI CẢM ƠN Lời đầu tiên, em xin gửi lời cảm ơn chân thành tới thầy giáo TS Nguyễn Quốc Dũng tận tình hướng dẫn trình học tập thực luận văn Em xin gửi lời cảm ơn thầy, giáo Khoa Hóa học, thầy Phịng Đào tạo, thầy Ban Giám hiệu trường Đại học Sư phạm - Đại học Thái Nguyên giảng dạy, tạo điều kiện giúp đỡ em trình học tập thời gian qua Em xin gửi lời cảm ơn chân thành tới PGS.TS Đặng Văn Thành, Bộ môn Vật lý - Lý sinh, Trường Đại học Y - Dược cho phép em sử dụng sở vật chất trang thiết bị trình thực thực nghiệm Luận văn khó hồn thành thiếu phép đo Raman, SEM TEM vật liệu đế Carbon Qua đây, cho e gửi lời cảm ơn tới tiến sỹ Nguyễn Văn Trường, thạc sỹ Phùng Thị Oanh Đại học Giao thông Quốc lập Đài Loan cho hỗ trợ nhiệt tình kịp thời vơ quý giá Mặc dù có nhiều cố gắng, song thời gian có hạn, lực kiến thức cịn hạn chế nên luận văn khơng tránh khỏi sai sót Vì vậy, em mong nhận góp ý, bảo thầy bạn để luận văn hồn thiện Em xin trân trọng cảm ơn! Thái Nguyên, tháng 09 năm 2020 Tác giả Nguyễn Thị Thu Thảo ii MỤC LỤC Trang phụ bìa i Lời cam đoan i Lời cảm ơn ii Mục lục .iii Danh mục kí hiệu chữ viết tắt iv Danh mục bảng v Danh mục hình vi MỞ ĐẦU Chƣơng TỔNG QUAN 1.1 Tổng quan siêu tụ điện 1.1.1 Cấu tạo, nguyên lí làm việc siêu tụ điện 1.1.2 Phân loại 1.2 Tổng quan vật liệu làm điện cực 1.2.1 Graphene 1.2.2 Manganese dioxide MnO2 12 1.2.3 Vật liệu tổ hợp MnO2/graphene 16 1.2.4 Điện ly plasma 23 1.3 Nghiên cứu Việt Nam 25 Chƣơng THỰC NGHIỆM 27 2.1 Dụng cụ, hóa chất 27 2.1.1 Thiết bị 27 2.1.2 Hóa chất 27 2.2 Tổng hợp vật liệu 28 2.3 Chế tạo điện cực 29 2.4 Các phương pháp nghiên cứu vật liệu 30 2.4.1 Phương pháp nhiễu xạ tia XRD 30 2.4.2 Phương pháp phổ hồng ngoại (FT- IR) 31 iii 2.4.3 Phương pháp kính hiển vi điện tử quét (SEM) kính hiển vi điện tử truyền qua (TEM) 32 2.4.4 Phương pháp phổ Raman 32 2.4.5 Phương pháp hóa siêu âm 33 2.4.6 Phương pháp đẳng nhiệt hấp phụ- khử hấp phụ N2 (BET) 33 2.4.7 Phép đo điện hóa 33 Chƣơng KẾT QUẢ VÀ THẢO LUẬN 36 3.1 Các đặc trưng MnO2/graphene 36 3.2 Cơ chế đề xuất tạo vật liệu MnO2/graphene 43 3.3 Tính chất điện hóa vật liệu điện cực 44 KẾT LUẬN 54 TÀI LIỆU THAM KHẢO 55 PHỤ LỤC iv DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Tên tiếng việt Tên tiếng Anh Viết tắt Graphen oxit Graphene oxide GO Graphen oxit khử Reduced graphene oxide rGO Kính hiển vi điện tử quét Scanning electron microscopy SEM Lắng đọng pha hóa học Chemical vapor deposition CVD Nhiễu xạ tia X X-ray diffraction XRD Ống nano carbon Carbon nanotubes CNTs Phóng nạp Galvanostatic charge/discharge GCD Quang phổ hồng ngoại biến Fourier transform đổi Fourie spectroscopy Quét vòng tuần hoàn Cyclic voltammetry Tụ điện tĩnh lớp kép infrared Electrochemical double layer capacitor iv FT-IR CV EDLC DANH MỤC BẢNG Bảng 1.1 Cấu trúc tinh thể MnO2 14 Bảng 3.1 Ảnh hưởng thời gian đến việc hình thành hạt MnO2 37 Bảng 3.2 Diện tích bề mặt riêng BET graphene MG2 39 Bảng 3.3 Dung lượng Graphene, MnO2, MG2 tốc độ quét khác 47 Bảng 3.4 Điện dung riêng Graphene, MnO2, MG2 mật độ dòng khác 49 Bảng 3.5 So sánh với kết khác 52 v DANH MỤC HÌNH Hình 1.1 Mối liên hệ mật độ lượng mật độ công suất thiết bị lưu trữ lượng Hình 1.2 Cấu tạo siêu tụ điện Hình 1.3 Sơ đồ mô tả hoạt động siêu tụ điện Hình 1.4 Các siêu tụ điện Hình 1.5 Cấu trúc mạng tinh thể graphene Hình 1.6 Cấu trúc tinh thể MnO2 13 Hình 1.7 Sơ đồ minh họa chế tạo vật liệu MnO2/graphene b) Điện dung riêng vật liệu 17 Hình 1.8 Sơ đồ minh họa chế tạo vật liệu MnO2/GO 18 Hình 1.9 Sơ đồ trình tổng hợp rGO/MnOx 19 Hình 1.10 Cơ chế hình thành GO/MnO2 20 Hình 1.11 Sơ đồ biểu diễn MnO2 neo graphene nhờ lực hút tĩnh điện (a) ảnh TEM (b) 21 Hình 2.1 Sơ đồ biểu diễn quy trình thí nghiệm chế tạo vật liệu 28 Hình 2.2 Ảnh chụp điện cực (a) graphene, (b) MnO2 , (c) MG2 30 Hình 3.1 Ảnh SEM (a) Graphene, (b) MnO2, (c) MG1, (d) MG2 (e) MG3 36 Hình 3.2 Ảnh TEM MG2 38 Hình 3.3 Phổ raman MnO2, graphene, MG2 39 Hình 3.4 Giản đồ XRD MnO2, graphene MG2 41 Hình 3.5 Giản đồ FT-IR graphene, MnO2, MG2 42 Hình 3.6 Cơ chế mơ tả trình tạo vật liệu MnO2/graphene 44 Hình 3.7 Đường CV Graphene (a), MnO2 (b) MG2 (c) tốc độ khác 10, 20, 40, 60, 80, 100mV/s 45 Hình 3.8 So sánh CV mẫu tốc độ quét 10mV/s 46 vi Hình 3.9 Điện dung riêng tương ứng với tốc độ quét khác dung dịch chất điện li KOH 6M 47 Hình 10 Đường cong (phóng điện/ nạp điện) nạp/xả (a) graphene, (b) MnO2 (c) MG2 dung dịch điện li KOH 6M mật độ dòng khác 0,2; 0,4; 0,6; 0,8; 1,0 A g-1 48 Hình 3.11 So sánh dung lượng riêng 50 Hình 3.12 Đường cong nạp/xả vật liệu mật độ dòng 0,2 A/g 50 vii trường hợp mẫu MnO2 (Hình 3.7b), cho thấy đặc điểm vật liệu giả tụ [40] Khi so sánh tốc độ qt (Hình 3.8), thấy mẫu MG2 composite có diện tích bên (diện tích đường cong CV) rộng nhiều so với mẫu graphene MnO2, cho thấy lớn đáng kể điện dung riêng vật liệu tổ hợp Hình 3.8 So sánh CV mẫu tốc độ quét 10mV/s 46 Bảng 3.3 Dung lượng Graphene, MnO2, MG2 tốc độ quét khác Điện dung C (F/g) Mẫu Tốc độ quét 10 20 40 60 80 100 Graphene 92,25 56,60 36,01 29,17 25,00 22,13 MnO2 174,42 10,15 64,57 46,57 35,71 28,61 MG2 267,08 221,09 157,07 122,35 99,61 83,43 (mV/s) Hình 3.9 Điện dung riêng tương ứng với tốc độ quét khác dung dịch chất điện li KOH 6M 47 Trong hình 3.9, điện dung riêng (Cs) vật liệu tính tốn có thấy xu hướng giảm dần theo thứ tự MG2 > MnO2 > graphene Cụ thể, tốc độ quét 10 mV/s, Cs MG2 267,08 F g−1, mẫu MnO2 graphene 174,42 92,25 F g−1 Đối với vật liệu MnO2, thực phép đo điện hố bề mặt vật liệu MnO2 có xảy phản ứng oxi-hố khử làm điện dung riêng cao Cịn graphene t có xảy q trình xen kẽ ion K+ điện dung riêng khơng cao Cịn MnO2/graphene composite có kết hợp chế giả điện dung tụ điện tĩnh lớp kép (q trình Faraday khơng Faraday để lưu trữ điện tích) nên đạt dung lượng cao Hình 10 Đường cong (phóng điện/ nạp điện) nạp/xả (a) graphene, (b) MnO2 (c) MG2 dung dịch điện li KOH 6M mật độ dòng khác 0,2; 0,4; 0,6; 0,8; 1,0 A g-1 48 25 Wang Y (2017), "A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life", Energy Environ Sci, 10(4), pp 941–949 26 Wei W., Cui X., Chen W., Ivey D G (2011), "Manganese oxide-based materials as electrochemical supercapacitor electrodes", Chemical Society Reviews, 40(3), pp 1697-1721 27 Wu Z S., Ren W., Wang D W., B Liu F Li, Cheng H M (2010), "Highenergy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors", ACS Nano, 4(10), pp 5835–5842 28 Xiong C., Li T , Khan M., Li H., Zhao T (2015), "A three-dimensional MnO2/graphene hybrid as a binder-free supercapacitor electrode", RSC Adv, 5(104), pp 85613–85619 29 Yagi H., Ichikawa T., Hirano A., Imanishi N., Ogawa S., Takeda Y (2002), "Electrode characteristics of manganese oxides prepared by reduction method", Solid State Ionics, 154–155, pp 273–278 30 Yan J., Fan Z., Wei T., Qian W., Zhang M., Wei F (2010), "Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes", Carbon N Y, 48(13), pp 3825–3833 31 Yang S., Song X., Zhang P., Gao L (2013), "Facile synthesis of nitrogendoped graphene-ultrathin MnO2 sheet composites and their electrochemical performances", ACS Appl Mater Interfaces, 5(8), pp 3317–3322 32 Zhang H., Cao G., Wang Z., Yang Y., Shi Z., Gu Z (2008), "Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage", Nano Lett, 8(9), pp 2664–2668 58 33 Zhang J., Jiang J., Zhao X S (2011), "Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets", J Phys Chem, 115(14), pp 6448–6454 34 Zhang Q (2019), "One-step hydrothermal synthesis of MnO /graphene composite for electrochemical energy storage", Journal of Electroanalytical Chemistry, 837, pp 108–115 35 Zheng Y., Pann W., Zhengn D., Sun C (2016), "Fabrication of Functionalized Graphene-Based MnO Nanoflower through Electrodeposition for High-Performance Supercapacitor Electrodes ", J Electrochem Soc, 163(6), pp D230–D238 36 Zhou G., Wang D W., Yin L C., Li N., Li F., Cheng H M (2012), "Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage", ACS Nano, 6(4), pp 3214-3223 37 Zhou J (2013), "Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor", Ind Eng Chem Res, 52(28), pp 9586-9593 38 Zhu J., He J (2012), "Facile synthesis of graphene-wrapped honeycomb MnO nanospheres and their application in supercapacitors", ACS Appl Mater Interfaces, 4(3), pp 1770–1776 39 Zhu J J., Yu L L., Zhao J T (2014), "3D network mesoporous betamanganese dioxide: Template-free synthesis and supercapacitive performance", J Power Sources, 270, pp 411–417 40 Zhu S., Zhang H., Chen P., Nie L H., Li C H., Li S K (2015), "Selfassembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors", journal of Materials Chemistry A, 3(4), pp 1540–1548 59 PHỤ LỤC KẾT QUẢ CHỤP BET CỦA MẪU GRAPHENE KẾT QUẢ CHỤP BET CỦA MẪU MnO2/GRAPHENE ... giá hai loại vật liệu graphene nano MnO2, lựa chọn đề tài: ? ?Nghiên cứu chế tạo vật liệu tổ hợp MnO2/ graphene phƣơng pháp hóa siêu âm kết hợp plasma ứng dụng làm điện cực cho siêu tụ điện? ?? Mục tiêu... THẢO NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỔ HỢP MnO2/ GRAPHENE BẰNG PHƢƠNG PHÁP HÓA SIÊU ÂM KẾT HỢP PLASMA ỨNG DỤNG LÀM ĐIỆN CỰC CHO SIÊU TỤ ĐIỆN Hóa Vơ Cơ Mã ngành: 8.44.01.13 LUẬN VĂN THẠC SĨ HÓA HỌC... - Chế tạo thành công vật liệu tổ hợp cấu trúc nano MnO2/ graphene phương pháp hóa siêu âm kết hợp plasma - Khảo sát đặc trưng điện hóa vật liệu chế tạo định hướng ứng dụng làm điện cực cho siêu