1. Trang chủ
  2. » Văn Hóa - Nghệ Thuật

De thi thu Toan THPT Le Xoay

11 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 4,75 MB

Nội dung

phuong Dubng thrngBcc6 le trung rou uo.rrryIlS?.* "uotl.[r]

(1)www.VNMATH.com xoev z0t0-z0n Ot 1'fff 1'fftl DAI HOC - f,AN fff ,oU*rlio\rfrort TRUoNG rHPr LE Nim hec MU*, f::ryNurEN 1: 4'- (l) + 3x2 Cho him s6 y = Khio s6t sU bii5n thi€n vi v€ <16 thi (C) cua him sO (t) Cf,u -r' -4 Chrmg minh r6ng: Mgi duong thqg qua I(l; -2).v6ihp s6 g6c k < dAu cit gO thi (C) tei ba di6m ph6n bigt d6 mQt diiAm h trung dii6m cria ttoan thAng n6i trai tti€m cdnl4i Ciu2z l Giaiphuongtrinh: tanx.tan3x Giii phuong !* * x trinh: ,12-x' a3=-2 I + cos2x =2 Giai bAt phuong trinh: logo (9' - l).log* ,?, = j '22 Ciu 3: Tinh tich ph6n: f = Jd+sinr.* Cffu 4: Cho hinh vu6ng ABCD c6 cenh ld ali L6y H thuQc do4n AC cho ATI: a/2 Kd Hx *Qng g6c vqr (ABCD) vi 6y <Ii6m S thuQc Hx cho g6c ,lSC Uing 45o Tinh b6n kfnh mat cdu ngo4i ti€p S.ABCD ry, Ciu 5: ciai he phuong trinh: {f1 J7;)0 + '[v' +t) =t lzt' - yt +(l+3x212' +3x.22r * ! =2 CAU 6: l Trong mat ph6ng vdi hq trgc to4 tlQ Oxy cho iludrng trdn (C): x ' + y' - 4x + 6y =36 Dudng thang A qua f(-2:.0) vi cit duong trdn t4i hai <li€m P, Q Vi6t phuong trinh cria A cho doan PQ ngin nhdt Trong kh6ng gian v6i hQ tryc to4 ttQ axyz Cho A (-5; -3; 2); B(-2;0; -$;C(1; 0; -1) Lfp phucmg trinh mat phing qua OA vi chia tti di$n OABC ph,an c6 t1i s6 th€ tich bAng (DiCm B thu$c ph6n c6 the tich lcm hon), (2) www.VNMATH.com oApAN L HQc- r,AN ur HQc rV NrrrSN KiroA' sAI'{ of rm rrffDAr rnrOr* !=-x3 +3xz itoii -4 TXD: R C6c gioi h4n: limy @;limY=+o J-+4 '#6- Xdt sg bi€n thi€n: Y'=-3xz +6x [x=0 ./'=0el*=Z tren Hdm s6 idng Ui6n tren (0; 2) vd nghich bi6n \,/'\ Dths cit oy @l!lL tat 9X (-*; 0) vi (2; +o) + (3) www.VNMATH.com t.2 1.I : K(x - 1)r, 2z A: y: k:> pt he so goc l(:> vdiTalild6c Y k(x Pt a: Gqi A li tlulng th6ng qua I v0i phuong trinh hoinh <tQ giao iti€m cira (C) ve A: - xl + 3r2 - = k(x-l) e (x-lXx' -2x + k -2)= e [i=l l*, _2, + k -2= (3) Xet(3)c6A: l+2-k=3'k Th"y-;=lvdo(3)=>k=3 Vflyvoi k < thi (2) c6 nghigm - {Z) ph6n biQt kh6c l; 0,25 0,25 l' xlx2 <=> (2) c6 nghiQm Phdn biQt -> L cilt(C) tai dilmphan biet A(xr;v');I$;a);B(xz;lz) \* xz =2;!t = k(xt-1) - Z;Yz = k(xr-l)-2 ) fr * lz = k(xt * xz -2) - = Viv I li trune <ti€m lcosx * Di0u ki9n: { cria AB 0,25 ^ [cos3r + Phucmg trinh: <+ tan x.tan 3x + = I + tan2 x <+ tan x(tan 3x - tan x) + = sin2x +2=0e 2sin2 -:- x +2=0el-cos2x+cos4x+cos2x=0 <)tanx.cos3xcosx cos3xcosx e cos4x - -l <+ 4v = (2k +l)n e t =4** 42 0,25 0,25 B6i ctri6u itiAu ki€n th6y thoi mdn ,rTkr =;+-; D6p s0: x Giai b6t phuong trinh: I+ =2(t) x Dk: x FJ1;J7)vax+o D$ Jz-x'z = t;(/ > o) ft l-.+ I- =2 Taduoc: {x t 'l lxz +t2 =2 Di€u kiqn: 9' -l > c+ x > Bpt elrog,ls' -t,{+)tor, <+ (logr(9' - 1))' - =I*log,(e' 4lo Er(9'-1)+3>0 (9' - 1) > < [log, (9' - l) el ftog, ol ? [g'-r>8<+l[g'>g le' -t<z L9' '3 DS : x e(0;/riv[;+o) -r)'[og,(e' -r) -tog, 16l> -3 0,25 0.25 (4) www.VNMATH.com m 1.1 2tr 2"- [ X tX ' + cos'tX + zsln-cos-.dr /= J".G-;.ar= fisin -2222r2 x x\ srn-+cos- *:M'o;<;.? 2) X a,25 I I+ ?-+ Det t= OOi c4n: ' 24 ax xl I tI rll4l 0,25 =2dt 2n 5ft/4 5r/ /4 I =2J7 [lti"tlat =z [l,intlat i'!r^0.) 0,25 % = IV 1it rJt(- cos4:/ * "o' tl'/') = 4Jl 0,25 Dung tryc d cira dudng trdn ngo?i ti6p hinh w6ng ABCD (d qua tAm I cira hinh vudng vd vu6ng g6c voi (ABCD)) Vfly d song song vsi SH vi d thuQc m{t phdng (SAC) Trong tam gi6c SAC, dYng dudmg thdng trung truc atttt 54 c6t d tai O :> O litdm m{t c6u ngo4i ti€p S.ABCD Ap dUttg dinh l)t sin t.gi6c SAC: AC- + r?o, =2R+2p= Sin45" = sinlSC R= 4,25 0,25 0,25 all \l 0,25 V$y mat cdu ngo4i tii5p S ABCD c6 ban kinh: R= c.5 1d l\ ali y*.{y+ *t1=t \\ ^,2;1.^ ne: {[(r*Jr'*rX ulal Lz" -.yt + (1 +3xz)23.+3x.22' - f =2 Q) Nhan 2v6, cia(l) voi * *J *' *t + tadusc: - (y +,[y\l) = x -'{ ; Nhen 2vEctn(l)vdi y-Jfe+0 taducr.c: \ (1) -(x+ ,!.\l)-y-,tfi =) X: -y Th6 vdo (2): 23' + x' + (1 + 3x2 )2' +3x22' * x = e23' +3x.22'+3x22' +x'+ 2" +x=2 0,25 o(z'*r|*Q'**)-z=o 0,25 D{t r = 2' +x Ta c6: t3+t-2=0et=l Ydy 2'rx = I e2' =1-.r 0,25 (3) Vsi x = thi thon m6n (3) Voi x ) 0, x < dAu kh6ng thoimdn (3) (vi I vii > 1, I VAv nehi€m cria h€ (0: 0) vi5 < l) 0,25 c6.1 (C) c6 tam I(2; -3); ban kinh R=7 Jre :) A nim (C) =5<R Gqi H la hinh chiiSu cira I tr6n PQ AI = 0,25 (5) www.VNMATH.com c6 PQ=2PH =2Jm => PQ nhO nh6t IH ton nfr6t Khi dri: H trung voi A => A qua Ặ2; 0) vd nhfn ViY A c6 pt: 4(x + 2) - 3y:0 Hay 4x 3y + g - 0,25 frg;_Z) lim :0 Gii sri (o) Vnor, rapr 4,25 0,25 h mp can tim (o) -" ^ Soou, ffi=2effi=z BM fr=2+ BM =2MC Gii sri M(xoiloizo) fxo +2 = 2(l- xo) = Jro +o =2(o- yo) [xo ++ =2(-l-xo) =) M (0;0; -3) oM(a;0;-3);oA(-s;-3;2) r_ _1 ) n =lou,o,ll= (- l;rs;o) , 0,25 phuong vor ir= (-3; 5; 0) Mp (OAM) qua O vd nh6n ta- v6cto ph6p tuyi5n => pt (OAM) ld: -3x * 5y = g n cirng 0,25 i, 0,25 C\/ -atl (6) 4k_" rrl Dt rrrr rHU DAr Hgg;l'AN www.VNMATH.com \rnr-roNc ^^- NA- THPT r'fl xoaY hgc 2010-2011 Ciuf Thdi gian ldm bdi t' n'roo inii 1oful gian giaod€ ttti pntii'r'0"erc thdi +9x ' x3 dd thi him sO ! = -6xz vdvd i fnao tnAng d"v=-x'4'lfim *t +(m+Z)x-m co AO tfri (c')vd duong Cho d6i ximg €lua x+l t4i hai di0m phdn biet dvd dvir(c",)c6t ,, dC duong th6ngr dudngthing !=x' ta x'e' Ciu II TinhtichPhdn/ = o1,' lG*z)' -, A+B ar=L s6t I# J-+ ) Nhan dang Mncbi6t: J Tinh gioi h4n =lill *fi{) Ciu , Ban co oa"" )/ )r-q;;i , j *+&'T]t III trinh: Giai Phuong z.chohQphuonu, + atan A + b tan B = lo b)tan:l- *[i]-@ (.F *r)' x-1 *:i(r-'l {f7: F=o c6 nghiQmthgc' Tim ,, eC hQ dd cho phuong Dubng thrngBcc6 le trung rou uo.rrryIlS?.* "uotl rrong hg truc dinh/gr6m.tr€n dudng thdngx+zv -3 =o'Di0mM(z;o) 2' tigh c11n6 bhne trinhr- v - =o ; ro yl.'^,!i6iolen m[t phing (or) chira ^ di.m cuaAc Tim to11O "* 'vi6t;;;;;i'ior' hefruc rrong mflt phing * v +22 = am6t g6c oo0 ' Wi tu o*1"9 :*n d, g6c gifra trvc oxvd t4o vdi m{t nr'a"e z.a;,yg thang AB,CDbhng #:r i* ;il' ;;' Cho -f" ttl di€.n lncp|rJno*9:* eiui chirngb6nga'blftts=o'ci=l'ir"rtth€tichtirdiQnABCD' -HCt - """"""""':"": Hs vdt€n thi sinh: gi th€m' A;;O;;i thi khong gi6i thich """""'SO b6o danh:';""""""" (7) iy*: fri l{'a cs K*{ t) www.VNMATH.com ?6^?, +Ulr ' ryn- D=R _p fu'vt"ut = ,tt-ll rcI 7, , 5t>- j rc lLt<+3 ,!'=u e) f :;3, B{;t +oo+ - ws i9 t";+ \r.u t2+ ArJ ,/ -*, 4) ) (, u4, .( la l+tt Re dd u) +, 1t, +); a ,14 (s,c) K> rrrg fu-W' h"q'fr 1^$7t) rtFr**_tr,r; q; i t^.L * Lw+t)u = r+,1 € t ) LtL'+ (rr^+))r + t+-L (, nd' t^' )i e ' 'l I _ rr_ v +-tn a) (,t) r i u' ,pb r'1-; fT a' ' i' \*Lyu J h' + Lu+ + rt r 7a " qT L*,* d ' = (v) f \er , t4"+-fL [*'; 'iiPrm A(k.tt yt) ) [t(',v V -) h,te G l{od I, <tt , /\,1, +* r - +, I f "; 't 1q+*u Z 1* "+t' % = rq<)_ W1 4'ri; ,+g & f g '#f-)'-w -u)=^F+t)'ry -+) L4c* }( ry cz) :U$ ='+4-q' € m=4 atd (8) t4 Lk_ Ll= lt L #;! "!,, I = = oLu=www.VNMATH.com r e-(( ,L+L) , \/= -J=& x_+L (+e)' -_tc'aL 14rL Q-zriclL+ ln Jr, u+) lL' uHu _0 ; tLt lun ' In - b Zl t1 .Q- I tD = a- L+A : +Qt )-9 J $ olr** * Afu^g : q{ +b1 lr.^ N/-" ew A t^'4 + 9r' *$to*$ = (9,n A+e;ng ) ta'-& gal -9i,-U 9* A - q^ B! L e + hreA "C4^ @- t- lau'81 9", i- l^^n = h*g L 9.u -t9 , (-L) g) ry I J+ >o coa| A,, a-4 /> ryzD l-" i") t*A L *\cr* 2- -"V It+ 7L, 1t^, lr'- rI 3w'u *'rl ; a64Cul tq -+(" l ,!,-* = L\4 A =o =4L2 I 02lrf o> 4^ (9) (hn w www.VNMATH.com t)rk -t, / TW '?, e) (ry'\ t(ry)"=n 94 Wl' (tro1 Fr!.d-y fr k =) \, t+ l'- t+f +4 ''o L'd =c \2ju) e t '4- lVt) € (ry/^- L I ) TX\D ; ) ?L = 4.,&, Lr' tt), Lf ,1 z,,t q u',ffi ) v - W ('',Vzra) IP;i.&or4 iHrv,I ' lurL-tv'=brv-t_ ( *+ V = I * u-v=u? lL QX* W V P"- {\, cui 'fr Y $" l,a J /v +L f @ 47ro Uv2 Lt -, t, /*"t ,tv ca) q4 f 'ab- o qu{ +12 42 (w { +e43 _-, we Lt, kl f-L- *n, y qbr ry4 (10) w c6'N *:; uk ro ct* www.VNMATH.com Ac' + Ắú oQ =!dt+c'2 Jl' A(b-At t) l Jco vc) =- t dttult)Y gbtrl= V" ?ti A=? rt) t=4 ; L u=-s/s ?) r-AIE,i) cr.,- AC' ud, u.o; e A /+(\ t 9,\a4 d*e &t' t\.I *+z o cft5r-a| e (-f (1,,t7 ,I) 7, - ,l <") t*, c) B l) " l,c- = t =- 'l t ' h( Lr t-+)'' ;* 4, 'vca\cl oirYb'' Bc'=L >"b t *ho' rytvt (14; ) g* )a,'rr- tt -+ =u i' ,d 'a n?:: f*: oo fr!rr, W'"f" g" + lc 0c- (,9)'r/6 Lt 1t- b) tt:;-l'^ri 8,Y rct=rt a - k' o - -6 z'a J'L =1t"clt^- 8-1V'c=4 LZ.Z u? e*4 C'-, ar ,^f ! bv X* ir- [ ,!'rrtzo ,4 + )bzo .- b= ++B(+,0/ (t+)t= L,a L t=L ] W-L/ ,!rY:j, vrI il^ = (0, 9,1 (11) (' C'& lv www.VNMATH.com b A4T.l,4 nrutrN FcFo ryy' ? h.'.4,0; U-z l/o*r, f A 1., t3 gr-{) I 4-(nor='ulle^4 llrl 'lrl l-' : W W W= ' ic'L * -'"- ?o./,.1 Fl Iro -\ c*{ 1,, r I ) (12)

Ngày đăng: 09/06/2021, 16:45

w