Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 84 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
84
Dung lượng
912,54 KB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN & TRUYỀN THÔNG LƯƠNG THANH HƯỞNG ỨNG DỤNG HỆ LUẬT MỜ CHO ĐIỀU KHIỂN LÒ NHIỆT TỪ PHÂN CỤM TRỪ DỮ LIỆU LUẬN VĂN THẠC SĨ NGÀNH KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA Thái Nguyên – 2020 i MỤC LỤC Chương TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU 1.1 Khái niệm mục tiêu phân cụm liệu 1.2 Các ứng dụng phân cụm liệu 1.3 Các yêu cầu phân cụm liệu 1.4 Những kỹ thuật tiếp cận phân cụm liệu 1.4.1 Phương pháp phân cụm phân hoạch .8 1.4.2 Phương pháp phân cụm phân cấp .10 1.4.3 Phương pháp phân cụm dựa mật độ 12 1.4.4 Phương pháp phân cụm dựa lưới 13 1.4.5 Phương pháp phân cụm dựa mơ hình 14 1.4.6 Phương pháp phân cụm có liệu ràng buộc 15 1.5 Một số thuật toán phân cụm liệu 17 1.5.1 Các thuật toán phân cụm phân hoạch 17 1.5.2 Các thuật toán phân cụm phân cấp .23 1.5.3 Các thuật toán phân cụm dựa mật độ 26 1.5.4 Các thuật toán phân cụm dựa lưới 28 1.5.5 Các thuật tốn phân cụm dựa mơ hình .31 1.5.6 Các thuật toán phân cụm có liệu ràng buộc 32 Chương XÂY DỰNG HỆ LUẬT MỜ TỪ PHÂN CỤM TRỪ .34 2.1 Phân cụm trừ liệu 34 2.2 Xây dựng hệ luật mờ từ liệu vào/ra hệ thống .36 2.3 Xem xét, đánh giá hệ luật điều khiển mờ tạo qua lý thuyết tập mờ 44 Chương ỨNG DỤNG HỆ LUẬT MỜ CHO ĐIỀU KHIỂN LÒ NHIỆT TỪ PHÂN CỤM TRỪ DŨ LIỆU 45 3.1 Phát biểu toán 45 3.2 Mơ hình động học hệ thống lò nhiệt 47 3.3 Thu thập liệu hệ luật xây dựng từ phân cụm trừ 47 3.3.1.Thu thập liệu vào hệ thốngError! Bookmark not defined 3.3.2 Hệ luật mờ cho điều khiển lò nhiệt từ phân cụm trừ 49 3.3.3 Hệ suy diễn mờ 51 3.4 Mơ hệ thống điều khiển lị nhiệt sử dụng hệ luật mờ từ phân cụm trừ 54 3.5 Kết luận 62 KẾT LUẬN VÀ KIẾN NGHỊ……………………………………………… 64 Tài liệu tham khảo 65 ii Danh mục chữ viết tắt PCDL: Phân cụm liệu CSDL: Cơ sở liệu KPDL: Khai phá liệu CLARA: Clustering LARge Applications CLARANS: Clustering LARge Applications based upon RANdomize Search PAM: Partitioning Around Medoids FCM: Fuzzy c-mens MSE: Mean Squared Error CURE: Clustering Using Representatives DBSCAN: Density based Spatial Clutering of Application with Noise STING: STatistical Information Grid EM: Expectation Maximization SC: subtractive clustering QS:Quan sát iii DANH MỤC HÌNH ẢNH Hình 1.1 Ví dụ phân cụm tập liệu giám sát nhiệt độ lị thành cụm Hình 1.2 Các chiến lược phân cụm phân cấp Hình 1.3 Một số hình dạng khám phá phân cụm dựa mật độ Hình 1.4 Mơ hình cấu trúc liệu lưới Hình 1.5 Mơ hình cấu trúc liệu Hình 1.6 Tính tốn trọng tâm cụm Hình 1.7 Các bước thực thuật tốn K- means Hình 1.8 Thuật tốn K-means chi tiết Hình 1.9 Ví dụ số hình dạng cụm liệu khám phá K-means22 Hình 1.10 Khái qt thuật tốn CURE Hình 1.11 Các cụm liệu khám phá CURE Hình 1.12 Các bước thực thuật toán CURE Hình 1.13 Ví dụ thực phân cụm thuật tốn CURE Hình 1.14 a) Mật độ trực tiếp, b) Đến mật độ, c) Mật độ liên thơng Hình 1.15 Các bước thực thuật tốn EM Hình 2.1 Luật hình thành qua phép chiếu vào khơng gian đầu vào X Hình 2.2 Dữ liệu phân cụm trừ , tâm cụm điểm đơn Hình 2.3 Số lượng luật hình thành qua phan cụn trừ từ bảng liệu 2.1 Hình 2.4 Mặt suy diễn hàm thuộc đầu vào bảng liệu 2.1 Hình 3.1 Sơ đồ tổng quát hệ điều khiển mờ xây dựng từ liệu Hình 3.2 Đồ thị biểu diễn số liệu thu thập bảng 3.1 Hình 3.3 Hệ luật mờ hình thành sau phân cụm trừ Hình 3.4 Hệ luật mờ cho điều khiển nhiệt độ Hình 3.5 Hàm liên thuộc luật Điều khiển theo TS Hình 3.6 Mơ hình đơn giản với hàm thuộc hình thang tam giác cho ánh xạ vào/ Hình 3.7 Mơ hình TS xấp xỉ đoạn cho hàm phi tuyến f(x) Hình 3.8 Mặt suy diễn hàm thuộc đầu vào hệ điều khiển Hình 3.9 Đáp ứng (xanh) bám theo tín hiệu yêu cầu (đỏ) Hình 3.10 Đáp ứng (xanh) bám theo tín hiệu u cầu (đỏ) Hình 3.11 Tín hiệu tiệm cận với tín hiệu yêu cầu iv DANH MỤC BẢNG BIỂU Bảng 2.1 Luật mờ xây dựng từ phân cụm trừ SC Bảng 2.2 Các cụm xây dựng qua phân cụm trừ Bảng 2.3 Tọa độ tâm cụm Bảng 3.1 Dữ liệu thu thập từ đầu vào/ra hệ thống điều khiển lò nhiệt Bảng 3.2 Cơ sở luật – Các luật ngôn ngữ MỞ ĐẦU Ngày nay, với phát triển nhanh chóng hệ thống điều khiển, hệ thống thơng tin, hệ mờ áp dụng thành công nhiều lĩnh vực điều khiển tự động, phân lớp liệu, phân tích việc định, hệ chuyên gia Hệ luật mờ xây dựng từ tri thức nói chung hay hệ suy luận mờ nói riêng xây dựng theo suy diễn người, phần quan trọng ứng dụng logic mờ lý thuyết tập mờ vào thực tế Trong nhiều ứng dụng cho thiết kế hệ thống điều khiển thông minh xây dựng hệ trợ giúp định, hệ mờ xây dựng theo phân lớp liệu, phân cụm liệu, xây dựng định Hệ điều khiển mờ thực từ luật mờ, luật mờ xây dựng từ tri thức chuyên gia lĩnh vực cụ thể Phân cụm liệu vấn đề quan tâm nghiên cứu tác giả ngồi nước có nhiều thuật tốn phân cụm đề xuất Tuy nhiên thuật toán đưa xét đến khía cạnh phân chia liệu thành cụm với độ xác cao mà chưa để tâm đến tối ưu luật sử dụng Vì cách tiếp cận luận văn ứng dụng hệ luật mờ cho điều khiển lò nhiệt từ phân cụm trừ liệu Nội dung luận văn xây dựng hệ luật điều khiển mờ từ phân cụm trừ liệu áp dụng cho điều khiển lò nhiệt Như biết hệ luật điều khiển mờ thu thập từ chuyên gia lĩnh vực đo lường điều khiển,cũng chuyên gia lĩnh vực công nghệ Việc thu thập tri thức mờ nói chung gặp nhiều khó khăn : - Các chun gia khơng có thời gian để trao đổi cho việc tạo lập luật mờ - Các chuyên gia không hợp tác để xây dựng hệ luật điều khiển mờ - Việc tạo luật hệ luật mờ đơi khơng xác từ nhiều ý kiến khác chuyên gia - ……… Vì tiếp cận khác xây dựng luận văn xây dựng hệ luật điều khiển mờ từ liệu quan sát ( liệu đo) đầu vào đầu đối tượng điều khiển thơng qua phân cụm trừ liệu Vì luận văn đựơc trình bày chương sau: Chương Tổng quan phân cụm liệu Chương Xây dựng hệ luật mờ từ phân cum liệu Chương ứng dụng hệ luật mờ cho điều khiển lò nhiệt từ phân cụm trừ liệu TÀI LIỆU THAM KHẢO LỜI CẢM ƠN Luận văn hồn thành hướng dẫn tận tình hai thầy TS.Trần Mạnh Tuấn PGS TS Lê Bá Dũng, em xin đặc biệt bày tỏ lòng biết ơn chân thành hai thầy Em chân thành cảm ơn thầy, cô giáo Viện Công nghệ thông tin, Trường Đại học Công nghệ Thông tin Truyền thông - Đại học Thái Nguyên tham gia giảng dạy, giúp đỡ em suốt trình học tập nâng cao trình độ kiến thức Tuy nhiên điều kiện thời gian khả có hạn nên luận văn khơng thể tránh khỏi thiếu sót Em kính mong thầy giáo bạn đóng góp ý kiến để đề tài hồn thiện Chương TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU 1.1 Khái niệm mục tiêu phân cụm liệu Trong thực tế, phân cụm liệu (PCDL) nhằm mục đích khám phá cấu trúc liệu để thành lập nhóm liệu từ tập liệu lớn, từ cho phép người ta sâu vào phân tích nghiên cứu cho cụm liệu nhằm khám phá tìm kiếm thơng tin tiềm ẩn, hữu ích phục vụ cho việc định [6,7,8] Vì vậy, PCDL phương pháp xử lý thông tin quan trọng phổ biển, nhằm khám phá mối liên hệ mẫu liệu cách tổ chức chúng thành cụm Từ ta khái quát hóa khái niệm PCDL: PCDL kĩ thuật khai phá liệu (KPDL), nhằm tìm kiếm, phát cụm, mẫu liệu tự nhiên, tiềm ẩn, quan trọng tập liệu lớn từ cung cấp thơng tin, tri thức hữu ích cho việc định Như vậy, PCDL trình phân chia tập liệu ban đầu thành cụm liệu cho phần tử cụm “tương tự” với phần tử cụm khác “phi tương tự” với Số cụm liệu phân xác định trước theo kinh nghiệm tự động xác định phương pháp phân cụm [1,3] Trong PCDL khái niệm hai nhiều đối tượng xếp vào cụm chúng có chung định nghĩa khái niệm chúng xấp xỉ với khái niệm mô tả cho trước Trong học máy, PCDL xem vấn đề học khơng có giám sát, phải giải vấn đề tìm cấu trúc tập hợp liệu chưa biết trước thông tin lớp hay thông tin tập huấn luyện Trong nhiều trường hợp, phân lớp A1 μ A2 0 Hình 3.6 Mơ hình đơn giản với hàm thuộc hình thang tam giác cho ánh xạ vào/ Giả sử hàm đầu có dạng: y y1 = a1x + b1 y2 = a2x + b2 y3 = a3x + b3 Small Hình 3.7 Mơ hình TS xấp xỉ đoạn cho hàm phi tuyến f(x) Nếu đặt ri(x) = β j (x)k j =1 y = ( (∑ri (x)aiT ) X + ∑ri (x)bi = aT (x) X + b(x) k i=1 Các thông số ai, bi xác định qua : 53 out1 a(x) = ∑ri (x)ai Degree of membership in2cluster6in2cluster3in2cluster5in2cluster1in2cluster2in2cluster4cluster7 in1cluster6in1cluster3in1cluster5in1cluster1in1cluster2in1cluster4in Hình 3.8 Mặt suy diễn hàm thuộc đầu vào hệ điều khiển 3.4 Mô hệ thống điều khiển lò nhiệt sử dụng hệ luật mờ từ phân cụm trừ 3.4.1 Các chức chương trình Luận văn đì sử dụng phần mềm lập trình Matlab xây dựng chương trình ứng dụng phân cụm liệu trừ việc đo điều khiển nhiệt độ Công cụ Matlab thực qua bước sau: - Đọc liệu - Xây dựng cấu trúc liệu - Xử lò tập liệu trước huấn luyện - Khởi tạo mẫu huấn luyện - Mô kết - Phân tích kết để đưa nhận xét 3.4.2 Chương trình mơ hệ điều khiển lò nhiệt Để điều khiển lò nhiệt sở tự động xây dựng hệ luật mờ theo (3.4) xuất phát từ liệu thu thập qua bảng 3.1 Từ bảng 3.1 ta sử dụng kỹ thuật phân cụm trừ để tạo luật điều khiển Chương trình điều khiển lị nhiệt viết phần mềm matLab sau: % TRUONG DAI HOC %///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// / % %q % % % % % % % % % % % N % L % 55 % % %///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// Ts=15;p=1.00151*10^(-4);q=8.6797*10^(-3);r=40;y0=25;y(1)=y0; a=exp(-p*Ts);b=(q/p)*(1-exp(-p*Ts)); %//////////////////////////////// %Chuong trinh tu day la DATASET / %//////////////////////////////// for k=1:120 u(k)=rand(1,1)*5; y(k+1)=a*y(k)+b/(1+exp(0.5*y(k)-r))*u(k)+(1-a)*y0; end; trndata=[y(2:101); y(1:100)]'; datout=u(1:100)' figure hold on subplot(2,1,1), plot(trndata); subplot(2,1,2), plot(datout); %//////////////////////////////////////////////// %Chuong trinh tu day la SUBSTRACTIVE CLUSTERING / %//////////////////////////////////////////////// chkdatin=trndata; fismat=genfis2(trndata,datout,0.5); % ham phan cum tru fuzout=evalfis(trndata,fismat); ruleview(fismat) 56 ruleedit(fismat) %showrule(fismat) getfis(fismat,'output',1,'mf',1) getfis(fismat,'output',1,'mf',2) figure subplot(2,1,1); gensurf(fismat); %blackbg; subplot(2,2,4); %hold on plotmf(fismat,'input',1); Title('Ham thuoc dau vao cho phan cum tru') %subplot(223); subplot(2,2,3) plotmf(fismat,'input',2); Title('Ham thuoc dau vao cho phan cum tru') %plotmf(fismat,'input',1); %subplot(2,2,4) %plotmf(fismat,'output',1); trnRMSE=norm(fuzout-datout)/sqrt(length(fuzout)); chkfuzout=evalfis(chkdatin,fismat); %chkRMSE=norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout)) Ts=25;y0=25;y(1)=y0; for k=1:180 if k40 &k80 &k120) ref(k)=80;end; end; for k=1:179 u(k)=evalfis([ref(k+1) y(k)],fismat); if (u(k)>=5) u(k)=5 else u(k)=u(k); end; y(k+1)=a*y(k)+b/(1+exp(0.5*y(k)-r))*u(k)+(1-a)*y0; end; figure hold on; grid plot (y(1:170),'b');plot(ref(1:170),'-r');plot(u(1:170),'g'); figure subplot(2,2,1); plotmf(fismat2,'input',1); Title('Ham thuoc dau vao 1') %subplot(223); subplot(2,2,2); plotmf(fismat2,'input',2); Title('Ham thuoc dau vao 2') hold off %Define training data %blackbg; subplot(2,2,3); hold on; grid; 58 plot(y(1:180),'b'); plot(ref(1:180),' r'); Title('Response-blue,desired-red'); hold off; %blackbg; subplot(2,2,4); hold on; grid; plot(u(1:180),'b'); plot((ref(1:180)-y(1:180)),' r'); Title('Control-blue - and Error-red - '); hold off; %////////////////////////////// Q trình điều khiển nhiệt độ lị nhiệt mơ phần mềm MatLab hình 3.9 80 70 60 Temperature(degree) 50 40 30 20 10 Hình 3.9 Đáp ứng (xanh) bám theo tín hiệu yêu cầu (đỏ) Từ hình 3.9 ta thấy: Với nhiệt độ đặt 350C, nhiệt độ lị 350C tín hiệu điều khiển (đường màu xanh dưới) đưa vào để điều khiển nhiệt độ lò tăng lên đến 350C (tiệm cận với nhiệt độ đặt đường màu đỏ) Khi tín hiệu điều khiển ngắt để nhiệt độ lò mức nhiệt độ đặt Tương tự nhiệt độ lò cần tăng lên mức 500 0C tín hiệu điều khiển (đường màu xanh dưới) đưa vào để điều khiển nhiệt độ lò tăng lên đến 500C (tiệm cận với nhiệt độ đặt đường màu đỏ) Khi tín hiệu điều khiển ngắt để nhiệt độ lò mức nhiệt độ đặt Khi nhiệt độ lò cần tăng đến 800 0C tín hiệu điều khiển (đường màu xanh dưới) đưa vào để điều khiển nhiệt độ lò tăng lên đến 800 0C (tiệm cận với nhiệt độ đặt đường màu đỏ) Khi tín hiệu điều khiển ngắt để nhiệt độ lò mức nhiệt độ đặt 8000C Ta có hệ luật sau: Bảng 3.2 Cơ sở luật – Các luật ngôn ngữ PL PM Change Error c(t) PS ZE NS NM NL 60 80 70 60 Temperature(degree) 50 40 30 20 10 0 Hình 3.10 Đáp ứng (xanh) bám theo tín hiệu yêu cầu (đỏ) Từ hình 3.10 ta thấy: 80 70 60 50 40 30 20 10 a 25 luật điều khiển mờ thu thập từ chuyên gia b Luật tạo thành sở phân cụm trừ 61 Trên hình 3.11 cho thây kết mơ giống số luật tương ứng với luật chuyên gia bảng 3.2: Bảng 3.2 chứa 25 luật xây dựng qua thu thập tri thức từ chun gia [9] Q trình mơ thể hình 3.10 Trên hình 3.11a,b kết đầu 3.5 Kết luận Tiếp cận đến phương pháp hệ luật mờ từ phân cụm trừ liệu độ xác cao Với thuật toán hệ luật Mandani phương pháp tiếp cận đơn giản thực dễ dàng cách sử dụng phần mềm toán học Matlab Phương pháp thực dựa liệu vào để có nghiên cứu so sánh với phương pháp có chuyên gia lĩnh vực Từ 3.11 ta thấy phương pháp tiếp cận nghiên cứu có tỷ lệ xác tương đương so với phương chuyên gia lĩnh vực 62 KẾT LUẬN VÀ KIẾN NGHỊ Kết luận: Với đề tài luận văn giải tương đối đầy đủ yêu cầu đặt ra, đảm bảo yêu cầu luận văn thạc sỹ Bản luận văn giải cho kết sau: Đã nghiên cứu tổng quan phân cụm liệu Xây dựng hệ luật mờ từ phân cụm trừ liệu Ứng dụng hệ luật mờ cho điều khiển lò nhiệt từ phân cụm trừ liệu Kiến Nghị: Kết luận văn dừng lại nghiên cứu lý thuyết, thông qua mô phần mềm Matlab Để nghiên cứu ứng dụng vào thực tế luận văn cần hoàn chỉnh mặt lý thuyết đồng thời phải kiểm nghiệm mơ hình thực tế, lúc có khả áp dụng vào thực tế sản xuất 63 Tài liệu tham khảo Trần Mạnh Tuấn, Lê Bá Dũng, Markov model in proving the convergence of fuzzy genetic algorithm, accepted for presentation at the 2012 International Conference on Systems and Informatics (ICSAI2012) to be held from 19 to 20 May 2012, Yantai, China Báo cáo Hội nghị CNTT truyền thông, Cần thơ 10/2011 [1] Mohammad GhasemiGol, Hadi Saoghi Yazdi, Reza Monsefi, A New Hierarchical Clustering Algorithm on Fuzzy Data (FHCA), International Journal of coputer and electrical engineering, Vol.2, No.1, February, 2010 [2] Agus Priyono, Muhammad Ridwad Jais Alias, Riza AtiQ O.K.Rahmat, Azmi Hassan, Mohd.Alauddin Mohd.Ali, Generation of fuzzy rules with subtractive clusterring, Universiti Teknologi Malaysia, Jurnal Teknologi, 43(D) Dis.2005:143153 [3] Siamak Tafazoli, Mathieu Leduc and Xuehong Sun, Hysteresis Modeling using Fuzzy Subtractive Clutering, International Journal of Computational Cognition, Vol.4, No.3, September 2006 [4] C.D.Doan, S.Y.Liong and Dulakshi S.K.Karunasinghe, Derivation of effective and effcient data set with subtractive clustering method and genetic algorithm, Journal of Hydroinfomatics, 07.4.2005 [5] [6] Lothar M.Schmitt, Fundamental Study Theory of genetic algorithms, Theoretical Computer Science 59 (2001) 1-61 Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, IEEE transaction on neural networks, vol.5, No.1, January 1994 [7] Mohanad Alata, Mohammad Molhim, and Abdullah Ramini, Optimizing of Fuzzy C-Means Clustering Algorithm Using GA, World Academy of Science, Engineering and Technology, pages 224-229, 39 2008, [8] Chin teng lin, George Lee, Neural Fuzzy System Prentice Hall Internatiomal, Inc 1996 [9] 64 ... qua phân cụm trừ liệu Vì luận văn đựơc trình bày chương sau: Chương Tổng quan phân cụm liệu Chương Xây dựng hệ luật mờ từ phân cum liệu Chương ứng dụng hệ luật mờ cho điều khiển lò nhiệt từ phân. .. DỰNG HỆ LUẬT MỜ TỪ PHÂN CỤM TRỪ .34 2.1 Phân cụm trừ liệu 34 2.2 Xây dựng hệ luật mờ từ liệu vào/ra hệ thống .36 2.3 Xem xét, đánh giá hệ luật điều khiển mờ tạo qua lý thuyết tập mờ. .. thành cụm với độ xác cao mà chưa để tâm đến tối ưu luật sử dụng Vì cách tiếp cận luận văn ứng dụng hệ luật mờ cho điều khiển lò nhiệt từ phân cụm trừ liệu Nội dung luận văn xây dựng hệ luật điều khiển