Nếu một số A chi hết cho một số B thì mọi số nguyên tố có trong B phải có trong A, số mũ mỗi số nguyên tố ñó ít nhất phải bằng số mũ cữ số ñó trong B... * Nếu tích ab chia hết cho m, tr[r]
(1)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
1
Phần II:
TÍNH CHIA ĐÚNG CỦA CÁC SỐ NGUYÊN SỐ NGUYÊN TỐ - BSCNN - USCLN
I Tính chia hết số nguyên: 1 Định nghĩa:
a gọi chia hết cho b ñạt ñược ba ñiều kiện sau: * a = bq (r = 0)
* a = kb (k số nguyên, a bội b) * b = a
k (k số nguyên, b ước a)
Đặc biệt : Số chia hết cho tất số Tính chia hết:
a Hai số a a/ chia ñúng cho d tổng chúng chia hết cho d Chứng minh :
Vì a = dq a/ = dq/ nên a ± a/ = d q( ±q/)
Hệ quả: Một tổng ñại số chia hết cho số số hạng tổng chia hết cho số
b Tích nhiều số chia hết cho số thừa số tích chia hết cho số
Hệ quả:
m
a d ka d (Béi sè cña a d) a d a d
⇒ ⇒
⋮ ⋮ ⋮
⋮ ⋮
c Nếu hai số a b chia hết cho m, số khơng chia hết cho m a + b a – b đề khơng chia hết cho m Nếu tổng hiệu hai số chia hết cho m hai số chia hết cho m số cịn lại chia hết cho m
3 Qui ước: Chia hết: “⋮”
Không chia hết: “⋮ ”
4. Điều kiện chia hết:
a Chia hết cho 5:
* Nhận xét: Số dư phép chia số nguyên cho số dư phép chia chữ số cuối bên phải số cho
VÝ dô: abc = 100a + 10b + c = BS5 + BS5 + c abc = 100a + 10b + c = BS2 + BS2 + c
Nh− vËy abc vµ c chia cho hc chia co cã cïng sè d−
(2)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc * Ta có điều kiện:
- Một số chia hết cho chữ số tận chia hết cho2
- Một số chia hết cho 25 số hợp hai chữ số tận bên phải số chia hết cho 25
- Một số chia hết cho 125 số hợp ba chữ số tận bên phải số chia hết cho 125
- Một số vừa chia hết cho chia hết cho 10 - Một số vừa chia hết cho 25 chia hết cho 100 - Một số vừa chia hết cho 125 chia hết cho 1000
b Chia hết cho 9:
* Nhận xét:
Số dư phép chia số nguyên cho số dư phép chia tổng chữ số số cho
Thật vậy: 10 = = = Bs9 + = Bs3 + 100 = 99 = = Bs9 + = Bs3 + 10n = 99 + = Bs9 + = Bs3 + Vì số abcd= 1000a + 100b + 10c + d =
= a(Bs9 + 1) + b(Bs9 + 1) + c(Bs9 + 1) + d = aBs9 + a + bBs9 + b + cBs9 + c + d
= Bs9(a = b = c) + a = b = c = d = Bs9 + (a + b + c + d) * Điều kiện:
Một số nguyên chia hết cho tổng chữ số chia hết cho * Lưu ý:
- Một số chia hết cho chia hết cho 18
- Một số chia hết cho chia hết cho 6, chia hết cho chia hết cho 18
- Một số chia hết cho chia hết cho 15, chia hết cho chia hết cho 45
c Chia hết cho 11:
Trong số nguyên N gọi L tổng chữ số hàng lẻ (Kể từ phải sang trái) C tổng chữ số hàng chẵn (Kể từ phải qua trái), số dư phép chia N co 11 số dư hiệu (L – C) hay (C – L) ch 11
Thật vậy: 102 = 99 + = Bs11 + 104 = 999 + = Bs11 + 102n = Bs11 +
Mặt khác: 102n+1 = 102n.10 = Bs11 – Vì ta có số :
5
(3)TRNG THCS TH TRN Vì nghiệp giáo dôc
3
( ) ( )
( ) ( )
11 f + d + b Bs11+ a + c + e = Bs11 + f + d + b a + c + e
= a(Bs11 -1) + b(Bs11 + 1) + c(Bs11 - 1) + d(Bs11 + 1) + e(Bs11 - 1) + f
= Bs + −
−
* Điều kiện:
Một số nguyên chia hết cho 11 hiệu tổng chữ số hàng lẻ với tổng chữ số hàng chẵn chia hết cho 11
Lưu ý :
- Một số nguyên chia hết cho 11 chia hết cho 22 - Một số nguyên chia hết cho 11 chia hết cho 33 - Một số nguyên chia hết cho 11 chia hết cho 55 - Một số nguyên chia hết cho 11 chia hết cho 99
………
Bài tập áp dụng:
1 Chứng minh (a3 – a) chia hết cho Giải:
Ta thấy a3 – a = a(a2 -1) = a.(a + 1)(a – 1) = (a – 1)a(a + 1)
Đây tích ba số tự nhiên liên tiếp có thừa số bội Nghĩa là: (a3 – a) chia hết cho
………
2 Chứng minh (2n + 1)2 – chia hết cho Giải:
Ta có (2n + 1)2 – = 4n2 + 4n + – = 4n2 + 4n = 4n(n + 1)
Đây tích thừa số có thừa số thừa số lại hai số nguyên liên tiếp, tích vừa chia hết cho vừa chia hết cho
Do ñó (2n + 1)2 – chia hết cho ………
3 Cho số 2x chia hết cho Hãy tìm số ?
Giải:
( ) ( )
( )
( )
( )
( )
3x2 3 + x + + x Mµ x x nên ta có: x = + =
5 + x x = + = x = + = 12 ậy số cần tìm là: 312; 342; 372
V
⇔ ⇔ ≥ ≤
⇒
⇔ ⇒
⇒
⋮ ⋮ ⋮
⋮
⋮ ⋮
(4)TRƯỜNG THCS THỊ TRẤN Vì nghiệp giáo dục Tỡm s 80x2 , biÕt r»ng chia cho 11 cßn d− 7.
Giải:
80x2 = Bs11 + => 80x2 + = Bs11 = 80x6
Vậy theo ñiều kiện chia hết cho 11 ta có: (8 + x) – (0+ 6) = 11k (k nguyên) hay + x – = x + = 11k hay x = 11k –
Vì ≤ x nên k = x = Số phải tìm là: 8092 ………
5 Tỡm số 742 , biết số chia hết cho 4.x
Giải :
* 742x nên 2x 2x là: 20; 24; 28 Tøc lµ x = 0; 4; 8.⋮ ⋮ * 742x nªn (7 + + + x) => 13 + x = Bs3
=> x = Bs3 -1= Bs3 + = 3k +2
à x nên k = => x =2 k = => x = k = => x =
So sánh hai điều kiện ta thÊy r»ng chØ cã x = lµ thÝch hợp Vậy
M
số phải tìm lµ 7428
………
6 Cho số N gồm chữ số khác khơng Biết chữ số hàng nghìn chữ số hàng đơn vị, chữ số hàng trăm chữ số hàng chục
a Chứng minh N chia hết cho 11 b Tính N N chia hết cho
Giải:
a Theo ñề ta biểu diễn số phải tìm sau: abba Khi muốn cho abba chia hết cho 11 (a + b - b + a 11) ( )
⋮
Thật vậy: (a + b) – (b + a) = a + b – b – a = Mà ⋮ 11 nên abba ⋮ 11
b - N chia hết chữ số cuối bên phải a = 5, theo ñiều kiện a khác nên a = số phải tìm có dạng: 5bb5
( ) ( )
( ) ( )
- N chia hÕt cho nªn + b + b + 10 + 2b
2 + b + b mµ b nên có trờng hợp b = Vậy số phải tìm là: 5445
⋮ ⋮
⋮ ⋮
(5)TRNG THCS TH TRN Vì nghiệp giáo dục
5
7 Tìm số tự nhiên n cho: a) n + chia hết cho n – b) 2n + chia hết cho n + c) 2n + chia hết cho – n d) 3n chia hết cho – 2n e) 4n + chia hết cho 2n + Giải:
Căn vào tính chất chia hết tổng, hiệu, tich tâ rút phương pháp chung để giải loại tốn dựa vào nhận xét sau đây:
Nếu A ⋮ B th× (mA ± nB) B (m, n ⋮ ∈ N )*
a) (n + 2) ⋮ (n – 1) suy [(n + 2) – (n – 1)] ⋮ (n – 1) hay ⋮ (n – 1) Do (n -1) phải ước
Với n – = ta suy n = Với n – = ta suy n =
Vậy với n = n = n + chia hết cho n –
b) (2n + 7) ⋮ (n + 1) => [(2n + 7) – 2(n + 1)] ⋮ (n + 1) => ⋮ (n + 1) Với n + = n =
Với n + = n = Số n phải tìm
c) (2n + 1) ⋮ (6 – n) => [(2n + 1) + 2(6 - n)]⋮ (6 – n) => 13 ⋮ (6 – n) Với – n = n =
Với – n = 13 khơng có sơ tự nhiên thỏa mãn Vậy với n = 2n + chia hết cho – n
d) 3n ⋮ (5 – 2n) => [2.3n + 3(5 – 2n)] ⋮ ((5 – 2n) => 15 ⋮ (5 – 2n) Với – 2n = n =
Với – 2n = n = Với – 2n = n =
Với – n = 15 khơng có số tự nhiên n thỏa mãn Vậy với n lấy giá trị 0, 1, 3n chia hết cho – 2n
e) Ta thấy với số tự nhiên n 4n + = 2(2n + 1) + số lẻ 2n + = 2(n + 3) số chẵn Một số chẵn ước số lẻ Vậy khơng thể có số tự nhiên n ñể 4n + chia hết cho 2n +
………
(6)TRƯỜNG THCS THỊ TRN Vì nghiệp giáo dục Gii:
abab - baba = (1000a + 100b + 10a + b) - (1000b + 100a + 10b + a) (1000 + 10 - 100 - 1)a - (1000 + 10 - 100 - 1)b
= 909a - 909b = 101.(a - b)
=
Vậy: với a > b ta có (abab - baba) vµ 101.⋮ ………
9 Tìm tất số có chữ số có dạng : 34x5y mà chia hết cho 36 Giải:
Vì 36 = 9.4 nên số 34x5y vừa chia hết cho vừa chia hết cho
Để 34x5y ⋮ ta ph¶i cã (3 + +x + + y) 9⋮ Vì x y chữ số nên x + y = x + y = 15
Mặt khác 34x5y nªn 5y 4, suy y = hc y = 6.⋮ ⋮ Kết hợp với điều kiện trên, ta có :
Nếu y = x = – =
Nếu y = x = – = x = 15 – = Vậy số phải tìm : 34452 ; 34056 ; 34956
………
10 Cho A = 9999931999 – 555571997 Chứng minh A chia hết cho Giải:
Để chứng minh A chia hết cho 5, ta xét chữ số tận A việc xét chữ số tận số hạng
Ta có: 31999 = (34)499.33 = 81499.27 Suy số bị trừ có số tận Mặt khác: 71997 =(74)499.7 = 2041499.7 Do số trừ có tận bằn Vậy A tận (7 – 7=) 0, nên A chia hết cho
11 Cho số tự nhiên A người ta ñổi chỗ chữ số A ñể ñược số B gấp ba lần số A Chứng minh số B chia hết cho 27
Giải:
Theo ñầu ta có B = 3A (1) , suy B ⋮ 3, tổng chữ số B A (vì người ta đổi chỗ chữ số) nên ta có A ⋮ (2)
Từ (1) (2) suy B ⋮ Nếu A ⋮ (vì chữ số chúng nhau) (3)
(7)TRNG THCS TH TRN Vì nghiệp giáo dục
7
12 Cho B =
n ch÷ sè
88 88 - + n Chøng minh r»ng B chia hÕt cho 9 Giải:
Ta viết B dạng sau:
n n
B = 88 - 8n + 9n - = 8(11 - n) + (n - 1) Vì n tổng chữ số số
n n
11 nªn 11 n chia hÕt cho 9.−
Từ suy B chia hết cho ………
13 Tìm số tự nhiên viết chữ số 1, hai chữ số 2, ba chữ số 3, … , chữ số cho số lại lập phương số tự nhiên
Giải:
Giả sử số tự nhiên N ñược viết chữ số 1, chữ số 2, chữ số 3,… ,9 chữ số 9.Như tổng chữ số số N bằng: + 2.2 + 3.3 + ….+ 9.9 = 285 Số 285 chia hết cho khơng chia hết cho Nếu N lập phương số tự nhiên (vì n = a3⋮ số nguyên tố nên a3 ch hết cho 3.3.3.)
Vậy khơng có số tự nhiên thỏa mãn điều kiện đầu ………
14 Có số có chữ số thỏa mãn hai ñiều kiện sau: a Chia hết cho
b Có chữ số Giải:
Số số có chữ số là: 99999 – 10000 + = 90000 (số) Cứ ba số tự nhiên liên tiếp lại có số chia hết số số có chữ số chia hết cho là: 90000 : = 30000 (số) Bây giờ, ta tìm số có chữ số chia hết cho mà khơng có chữ số
Có cách chọn chữ số hàng vạn (chọn số 1, 2, 3, 4, 5, 7, 8, 9)
Có cách chọn chữ số hàng nghìn, hàng trăm, hàng chục (chọn chữ số 0, 1, 2, 3, 4, 5, 7, 8, 9)
Có cách chọn chữ số hàng đơn vị (phụ thuộc vào tổng chữ số bốn hàng ñể chia hết 0, 3, 1, 4, 2, 5,
Do số số có chữ số chia hết cho mà khơng có chữ số là: 8.9.9.9.3 = 17496 (số)
Vậy số số có chữ số thoả mãn hai ñiều kiện ñầu là: 30000 – 17796 = 12504 (số)
(8)TRƯỜNG THCS THỊ TRN Vì nghiệp giáo dục 15 Chng minh rng A = 10n + 18n – chia hết cho 27
Giải:
Ta viết số A dạng sau:
A = 10n + 18n – = 10n – – 9n + 27 n
n
n
n n
= 99 9n + 27n = 9(11 n) + 27n
n tổng chữ số 11 nên (11 n) Từ suy A 27 với n tự nhiên
− −
− ⋮
⋮
………
II SỐ NGUYÊN TỐ
1 Định nghĩa : Số nguyên tố số có hai ước số
Lưu ý :
- Hai số gọi nguyên tố UCLN chúng - Hợp số số có từ ước số trở lên
- Số phương số bình phương số tự nhiên Định lý tìm số nguyên tố :
a Định lý : Muốn tìm số ngun tố khơng lớn số N Ta viết tất số tự nhiên từ đến N Sau bỏ số bội số số nguyên tố khơng lớn N, trừ số Những số lại số nguyên tố
b Định lý : Muốn phát xem số N cho trước có phải số ngun tố khơng ta làm sau : Lần lượt ñem chia N cho số nguyên tố từ nhỏ ñến lớn dừng lại thương số nhỏ số chia Nếu phép chia tất số dư khác khơng N chắn số ngun tố
3 Phân tích số thừa số nguyên tố: a Định lý:
1 Mọi số phức hợp ñều phân tích nhiều thừa số nguyên tố Phép phân tích có cách độc
b Định lý ñiều kiện chia hết:
(9)TRNG THCS TH TRN Vì nghiệp giáo dơc
9
( × )
, , ,
p p
m n m n
Tổng quát: A = a b c B = a b c
, , ,
a, b, c số nguyên tố m m ; n ≥ n ; p ≥ p th A B⋮
Chú ý :
* Nếu số chia hết cho hai số nguyên tố chia hết cho tích hai số
* Nếu tích ab chia hết cho m, ñó b m hai số nguyên tố a chia hết cho m
c Cách làm:
Muốn phân tích số N thừa số nguyên tố, ta chia N cho số nguyên tố từ đến (khơng theo thứ tự), đến thương dừng lại
Ví dụ:
10200 510 255 85 17
2
1020 = 22.3.5.17
4 Cách tìm ước số số N:
* Ta phân tích số thừa số ngun tố: N = a b cα β γ * Số ước số N tích x = (α + 1)(β + 1)(γ + ) * ước số có giá trị theo cơng thức:
P = (1 + a + a2 + a3 + + a α)(1 + b + b2 + b3 + + bα)(c + )
5 Bài tập áp dụng:
1 Phân tích số sau thừa số nguyên tố: 10200; 11274 Giải:
10200 5100 2550 1275 255
2 2
5 10200 = 23.3.52.17
11274 5637 1879
(10)TRNG THCS TH TRN Vì nghiệp giáo dục 51
17
3 17
2 Tìm xem 72 có ước số? Liệt kê ước số ? Giải:
Áp dụng định lý tìm ước số số ta làm sau: + Phân tích 72 thừa số nguyên tố: 72 = 23 32 = 2 3α β
+ Vậy số ước 72 là: n = (α+1)(β + 1)= (3 + 1) (2 + 1) = 12
+ Giá trị ước số dó : P = (1 + a + a2 +….+ a )α (1 + b + b2+ b+ β) Ta có P = (1 + + 22 + 23).(1 + + 32) = (1 n+ + + 8).(1 + + = + + + + + 18 + + 12 + 36 + + 24 + 72
Vậy ước số 1, 2, 3, 4, 6, 9, 12, 18, 24, 36, 72 ………
3 Tìm số nhỏ có 15 ước số ? Giải :
Gọi số nhỏ N ; Ta thấy N = a b c α β γ số ước số tính cơng thức: n = (α + 1)(β+1)(γ+1 ) Ở ñây số US 15.1 3.5 5.3
Vậy: - N = 15.1 n = (α+1)(β + 1) ⇔ = 14 vµ = 0α β số là: N = 214 30 = 214 = 16348
- Nếu n = 3.5 n = (α+1)(β + 1) ⇔ = vµ = 4α β số : N = 22.34 = 324
- Nếu n = 5.3 n = (α+1)(β + 1) ⇔ = vµ = 2α β số : N = 24.32 = 144
So sánh ba số vừa tìm số 144 thỏa mãn nhỏ bảo đảm có 15 ước số
………
4 Cho số N phân tích thừa số nguyên tố có dạng: N = 2x.5y, biết N có 15 ước số Nhưng đem chia cho số cjỉ cịn ước số Tìm số N ?
Giải :
Theo ta có: N = 2x.5y (1) n = (x + 1)(y + 1) = 15 (2)
,
N th× n (3)
8 =
(11)TRNG THCS TH TRN Vì nghiệp giáo dôc
11
Mặt khác N = 5x = 5x = 2x-3.5
8 2
y y
yvà n = (x – + 1).(y + 1) =
=> (x – 2)(y + 1) = => xy + x – 2y – = => xy + x – 2y = (5) Trừ vế (4) (5) cho ta có :
3y = xy + x - 2y = xy + x + y = 14
Thay y = vào (5) ta có : 2x + x – = => 3x = 12 => x = Do N = 2x.5y = 24.52 = 16.25 = 400
………
5 Hãy chứng tỏ số nguyên ñược tạo thành ba chữ số giống ñều chia hết cho 37
Gii :
37
ọi số phải tìm lµ xxx ta cã xxx = 100x + 10x + x 111x = 3.37x điều chứng tỏ xxx
G
⋮
………
6 Cho số N phân tích thừa số ngun tố có dạng N = 2x.3y đem chi N cho ñược số có 10 ước số Nếu ñem chia N cho số có ước số Tìm số N ?
Giải:
Theo ta có :
* N = 3x = 2x - 1.3 n = x - + 1( )( + = 10 ) xy + x = 10 (1)
2
y
y⇒ y ⇔
* ( )( )
6 2.3
x
N = 2 3y = 2x - 1.3y - 1⇒ n = x - + 1 y -1 + = ⇔ xy = (2) Từ
(1) (2) ta suy x = y = Vậy N = 22 34 = 4.81 = 324 ………
7 Một số có chữ số giống có hai ước số số nguyên tố Hãy tính số ước số ngun tố ?
Giải:
Ta biểu diễn số N aaaa = 1000a + 100a + 10a + a = 1111a = 101.11.1 => a = số N = 1111 Các −ớc số là: 11 101
(12)
TRNG THCS TH TRN Vì nghiệp giáo dơc
8 Tìm tất số ngun tố p q cho số 7p + q pq + 11 số nguyên tố
Giải:
Nếu pq + 11 số nguyên tố phải số lẻ (vì số ngun tố lớn 2) Suy số p q phải chẵn tức
a) Giả sử p = Khi 7p – q = 7.2 + q = 14 + q pq + 11 = 2q + 11 Nếu q = 14 + q = 14 + = 16 hợp số
Nếu q số ngun tố lớn khơng chia hết cho Với q = 3k + 14 + q = 14 + 3k + = 3(k + 5) hợp số Với q = 3k + 2q + 11 = 2(3k + 2) + = 6(k + 1) hợp số Vậy p = q = ñáp số cần tìm
b) Giả sử q = Lập luận tương tự phần a), ta có đáp số : p = , q =
Như số nguyên tố cần tìm : p = ; q = p = ; q =
9 Chứng tỏ với số tự nhiên n khác số :
n ch÷ sè n chữ số
11 11 hỵp sè. Giải:
n ch÷ sè n ch÷ sè (n + 1) ch sè n ch÷ sè (n + 1) ch sè
(n + 1) ch sè
11 11 = 11 00 11 = 11 (10n + 1).
Số cho đ−ợc phân tích thành tích hai thừa số lớn Vậy hợp số
10 Tìm tổng tất số có ba chữ số mà số tích số nguyên tố khác
Giải:
Ta bắt ñầu xét thừa số nguyên tố nhỏ Vì 2.3.5 = 30 ; 2.3.7 = 42 ; 2.3.11 = 66 nên thừa số thứ tư số ngun tố sau : 7, 11, 13, 17, 19, 23, 29, 31
Đối với tích thứ hai, ta có : 11, 13, 17, 19, 23 Đối với tích thứ có số
(13)TRƯỜNG THCS TH TRN Vì nghiệp giáo dục
13
Vì 2.3.13.17 > 1000 nên trường hợp khác mà hai thừa số đầu 2.3 khơng thoả mãn đầu
Với hai thừa số ñầu ta có : 2.5.7.11.= 770 2.5.7.13 = 910
Vì 2.7.11.13 3.5.7.11 lớn 1000 nên khơng cịn bốn số ngun tố khác để tích chúng số có ba chữ số
Vậy tổng phải tìm : 8844 + 770 + 910 = 10524
………
III ƯỚC SỐ CHUNG LỚN NHẤT – BỘI SỐ CHUNG NHỎ NHẤT
1 Ước số chung lớn nhất:
ƯSC: a Khi nhiều số chia cho d, ta nói d ước số chung số
Ví dụ: 18 30 có ước số chung 1, 2, 3, Lưu ý: ước chung tất số
b Ước số chung lớn (USCLN): Ước chung lớn nhiều số số lớn chia hết cho số
Ví dụ: Trong ước chung 18 30 : 1, 2, 3, số lớn nên USCLN 18 30
Kí hiệu: USCLN a b d viết là: USCLN(a,b) = d
2 Ước số chung lớn số: (ta khảo sát USCLN a b với a > b)
a Trường hợp chia hết: a b hay a = bq⋮
- Như rõ ràng US b US bq tức a
- Ta lại thấy b US a b USCLN a b
Định lý 1: Khi a chia hết cho b thì:
* Tập hợp USC a b tập hợp ước số b * USCLN a b b
b Trường hợp chia không hết: a = bq + r hay a – bq = r
Vậy US a b US a bq nên US a – bq = r Mọi US b r tất nhiên US bq r nên US bq + r = a Nên ta có định lý 2: Khi a khơng chia hết cho b thì:
* Tập hợp USC a b tập hợp ước số số dư áp chót rn phép chia liên ñịnh luật Ơ Cơ lit
* Ước số chung lớn a b số dư rn
(14)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc Ví dụ: Tìm USCLN 19521 1357 ?
* Ta có 19521 : 1357 = 14 dư 253 1357 : 253 = dư 92 253 : 92 = dư 69 92 : 69 = dư 23 69 : 23 = dư USCLN (19521, 1357) = 23 * Khi thực hành ta ñặt:
Thương số 14
Phép chia 19521 1357 253 92 69 23
Số dư 253 92 69 23
USCLN (19521, 1357) = 23
d Cách tìm USCLN số: Có cách Cách 1:
* Nếu a chia hết cho b b USCLN a b
* Nếu a khơng chia hết cho b USCLN a b số dư áp chót phép chia a cho b thuật tính Ơ Cơ lit
Cách 2: Phân tích hai số thừa số nguyên tố lấy tích tất thừa số chung Mỗi thừa số lấy với số mũ nhỏ số ñã cho
ñ Cách tìm USCLN nhiều số: Có cáh
Cách 1: Tìm USCLN cặp số, sau tìm USCLN cặp Ví dụ:
1 a bc d
d d d
Cách 2: Tìm USCLN số đầu tìm USCLN USCLN với số thứ ……Cho ñến ñược USCLN USCLN lần thứ n – với số cuối
Ví dụ:
1
3
a b c d d
d d
e Tính chất USCLN:
* T/c 1: Tập hợp USC nhiều số a, b, c, d …… tập hợp ước số USCLN
(15)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
15
* T/c 3: Điều kiện có đủ để d USCLN nhiều số a, b, c, d,… Là thương số a ; ; ; b c d
d d d d…… nguyên tố
Chú ý: Khi chia nhiều số a, b, c, d … cho USCLN chúng nhiều số ngun tố
f Ứng dụng vào tính chia hết:
* Định lý 1: Nếu số N chia hết cho nhiều số a, b, c, nguyên tố N chia hết cho tích a.b.c
Ví dụ: N ⋮ N ⋮
N ⋮ N ⋮ 12
N ⋮ N ⋮ 15
* Định lý 2: Nếu số N nguyên tố với nhiều số a, b, c N nguyên tố với a.b.c => (a b nguyên tố am bm nguyên tố
……… Bội số chung nhỏ :
a Bội số chung : Bội số chung nhiều số số chia hết cho số Ví dụ : 48 BSC 6, 12, 16
b Bội số chung nhỏ (BSCNN) : BSCNN nhiều số số nhỏ chia hết cho số (Ký hiệu D)
4 Bội số chung nhỏ số:
a Định lý : Khi hai số A B coc BSCNN D USCLN d : D x d = A x B
b Cách tìm BSCNN hai số : ta làm theo cách Cách 1: Dựa vào ñịnh lý : D = A.B
d Nếu d = D = A.B
Cách 2: Phân tích số dố thừa số nguyên tố, ñem nhân tất thừa số nguyên tố với nhau, thừa số với số mũ cao
Ví dụ : A = a b c ; B = aα β γ α/bβ/c dγ/ β/α α β/; β γ/; γ/ > > > : D = a b c dα β γ β/
c Cách tìm BSCNN cảu nhiều số : (Tương tự cách tìm USCLN nhiều số)
d Tính chất BSCNN :
(16)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
Điều kiện có ñủ ñể D BSCNN nhiều số A, B, L cỏc thng D D; ; nguyên tè cïng nhau
A B
Chú ý : Khi chia BSCNN nhiều số cho số ấy, nhiều số ngun tố
5 Bài tập áp dụng :
1 Chứng minh hai số nguyên liên tiếp nguyên tố Giải:
Ta có n n + hai số nguyên liên tiếp => USCLN (n, n + 1) = d Ta thấy n ⋮
d (n + 1) ⋮ d nên [(n + 1) – n] ⋮ d hay ⋮ d ⇔ d =
Vậy (n, n + 1) = nên n n + nguyên tố ………
2 Chứng minh 2752 221 hai số nguyên tố Giải:
2752 221 nguyên tố USCLN chúng d = Vậy ta tìm USCLN 2752 221
Theo thuật toán Ơ Cơ lit ta có:
12
2752 221 100 21 16
100 21 16
USCLN (2752, 221) = nên 2752 221 nguyên tố
3 Chia 7600 629 cho số nguyên N số dư Tính N Giải:
N > (vì số dư 5) 7600 – = 7596 ⋮ N
629 – = 624 ⋮ N
Vậy N USC 7596 624 nên US USCLN 7596 624
Ta tìm USCLN 7596 624 12 Các Ú 7596 624 : 1, 2, 3, 4, 6, 12 Mà N > nên N = hay N = 12
………
4 Tìm hai síi ngun, biết tổng số chúng 192 USCLN 24 ? Giải :
Gọi A B là hai số phải tìm, a b thương số chúng với 24 Ta có A = 24a ; b = 24b Hay A + B = 24(a + b) = 192 => (a + b) = 192 : 24 =
(17)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
17
Vậy: a = => =
a = => b = (không hợp lý) a = => b =
a = => b = (không hợp lý)
Do số phải tìm là: a = 1, b = => A = 24 ; B = 168 a = 3, b = => A = 72 ; B = 120 ………
5 Cho ba số chẵn liên tiếp, chứng minh tích ba số chia hết cho 48 Giải:
Gọi 2n, 2n + 2, 2n + ba số chẵn liên tiếp Ta có 2.(2n + 2)(2n + 4) = 8n(n + 1)(n + 2)
n(n + 1)(n + 2) tích ba số nguyên liên tiếp nên có số chia hết cho số chia hết cho Suy n(n + 1)(n + 2) ⋮
Vậy ta có 8n(n + 1)(n + 2) ⋮ 48 Tìm BSCNN 3080 1100 ?
Giải :
* Ta tìm theo cách :
2
3080 1100 880 220
880 220
=> d = (3080, 1100) = 220 Vậy : D = 3080.1100 15400
220 = ………
7 Tìm hai số A B, biết USCLN BSCNN 120 Giải :
Gọi BSCNN A B D, USCNN A B d Ta có : A.B = D.d Nếu a = A b = a.b = B A B = D.d = D 120 20
2
d d d d d d = =
Như a b xẩy trường hợp sau:
a = a = a = 10 a = a = 20 a =
; ; ; ; ;
b = b = 10 b = b = 20 b = b =
Như (a, b) = nên a = ; a =
b = 20 b =
(18)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc * A = ad = 4.6 = 24 hc A = 5.6 = 30
B = bd = 5.6 = 30 B = 4.6 = 24 ………
8 Tìm số nhỏ 400 mà chia cho 2, 3, 4, 5, ñều dư Khi chia cho khơng cịn dư
Giải:
N – = BSC 2, 3, 4, 5, Như N = BS BSCNN (2,3,4,5,6) = 60 Số : 61, 121, 181, 241, 301, 361 Căn theo ñiều kiện N ⋮ nên ta có N = 301
………
9 Tìm hai số biết tổng chúng 288 USCLN chúng 24 Giải:
Gọi hai số phải tìm a b (giả sử a≤b) Ta có a + b = 288 (a,b) =24 Vì 24 ƯSCLN a b nên ta viết a = 24a,, b = 24 b, a, b, hai số tự nhiên nguyên tố a, ≤b, Do ñó :
,
, ,
,
24a + 24b = 288 24(a + b ) = 288 a + b = 288 : 24 = 12′
12 tổng hai cặp số nguyên tố nhau: 11,
, ,
, ,
Víi a = 1, b = 11 ta cã a = 1.24 = 24, b = 11.24 = 264 Víi a = 5, b = ta cã a = 5.24 = 120, b = 7.24 = 168 Hai số phải tìm : 24 264, 120 168
………
10 Tìm hai số biết tích chúng 4320 BSCNN chúng 360 Giải:
Gọi hai số phải tìm a b (giả sử a≤b), gọi d = (a, b) nên a = a’.d, b = b’.d (a’,b’) = Ta biết:
[a,b] = a.b
(a,b) Từ ta có a.b = a
’.b’.d2 [a,b] = a’b’d
(19)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
19
Đảo lại, (a’,b’) = a’.b’ = 30 số a = a’.12 b = b’.12 có tích 4320 có BCNN 360
Vậy cần tìm hai số a’ b’ nguyên tố (a′≤b có tích 30 Ta có bảng sau:)
a’ b’ a b
1
30 15 10
12 24 36 60
360 180 120 72
Vậy cặp số phải tìm : 12 360, 24 180, 36 120, 60 72 ………
11 Một số chia cho dư 3, chia cho 17 dư 9, chia cho 19 dư 13 Hỏi số chia cho 1292 dư bao nhiêu?
Giải:
Gọi số ñã cho A Theo ta có: A = 4q1 +
= 17q2 +
= 19q3 + 13 (q1, q2, q3 ∈ N) Nếu ta thêm vào số ñã cho 25 ta có:
A + 25 = 4q1 + + 25 = 4.(q1 + 7) = 17q2 + + 25) = 17.(q2 + 2) = 19q3 + 13 + 25 = 19.(q3 + 2)
Như A + 25 ñồng thời chia hết cho 4, 17, 19 Nhưng 4, 17, 19 ba số đơi ngun tố nhau, suy A + 25 chia hết cho 4.17.19 = 1292
Vậy A + 25 = 1292.k (k = 1, 2, 3, 4,….)
Suy A = 1292k – 25 = 1292 (k – 1) + 1267 = 1292 k’ + 1267
Do 1267 < 1292 nên 1267 số dư phép chia số ñã cho A cho 1292 ………
12 Tìm hai số biết hiệu BSCNN ƯSCLN chúng 18 Giải:
Gị hai số phải tìm a b, ƯSCLN a b d Ta có a = a’.d; b = b’.d (a’ b’ hai số nguyên tố nhau) BCNN a b a’b’d Theo đầu ta có: a’b’d – d = 18
(20)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc
Vì a’b’ số tự nhiên nên d phải ước 18 Không tính tổng quát, ta giả sử a b, a≥ , ≥b Ta cã b¶ng sau:,
d a’b’ a’ b’ a b
1 19 19 19
2 10 10
5
1
20 10
2
3 7 21
6 4 24
9 3 27
18 2 36 18
13 Tìm tất số lớn 10000 nhỏ 15000 mà chia chúng cho 393 chia chúng cho 655 ñều ñược số dư 210
Giải:
Gọi số phải tìm A Theo đầu ta có: 10000 < A < 15000 (1) A = 393q1 + 210 (2)
A = 655q2 + 210 (3) (q1, q2∈ N)
Từ (2) (3) ta suy A – 210 chia hết cho 393 655 tức A – 210 chia hết cho [393,655] = 1965
Do A – 210 = 1965 q (q ∈ N), nên A = 1965q + 210 Từ (1) suy q 5, 6,
Với q = A = 1965.5 + 210 = 10035 Với q = A = 1965.6 + 210 = 12000 Với q = A = 1965.7 + 210 = 13965
Vậy số phải tìm là: 10035, 12000, 13965 ………
14 Cho số tự nhiên khác a, b, c cho: p = bc + a, q = ab + c, r = ca + b
Chứng minh hai số p, q, r phải Giải:
Trong ba số tự nhiên a, b, c phải có hai số tính chẵn, lẻ Giả sử hai số Vì bc tính chẵn lẻ với b nên p = bc + a chẵn, p lại số ngun tố, p = 2, suy b = a = Khi q = ab + c = + c = ca + = ca + r Nếu hai số tính chẵn lẻ a c b c lý luận tương tự, ta suy ba số nguyên tố p, q, r phải có hai số
(21)TRƯỜNG THCS THỊ TRẤN V× sù nghiƯp gi¸o dơc