1. Trang chủ
  2. » Cao đẳng - Đại học

THI TUYEN SINH CAN THO 20122013

3 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 50,95 KB

Nội dung

Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.. Chứng minh tứ giác ABOC nội tiếp.[r]

(1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ

ĐỀ CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013

Khóa ngày:21/6/2012 MƠN: TỐN

Thời gian làm bài: 120 phút(không kể thời gian phát đề)

Câu 1: (2,0 điểm)

Giải hệ phương trình , phương trình sau đây:

1

43

3 19

x y x y       

2 x5 2x 18 x2 12x36 0

4 x 2011 4x 8044 3 Câu 2: (1,5 điểm)

Cho biểu thức:

1 1

2 : a K a a a a             

    (với a0,a1)

1 Rút gọn biểu thức K Tìm a để K  2012. Câu 3: (1,5 điểm)

Cho phương trình (ẩn số x): x2 4x m 2 3 * 

1 Chứng minh phương trình (*) ln có hai nghiệm phân biệt với m Tìm giá trị m để phương trình (*) có hai nghiệm x x1, thỏa x2 5x1 Câu 4: (1,5 điểm)

Một ô tô dự định từ A đến B cách 120 km thời gian quy định Sau tơ bị chặn xe cứu hỏa 10 phút Do để đến B hạn xe phải tăng vận tốc thêm km/h Tính vận tốc lúc đầu tơ

Câu 5: (3,5 điểm)

Cho đường tròn  O , từ điểm Aở ngồi đường trịn vẽ hai tiếp tuyến ABAC(B C, tiếp điểm) OAcắtBCtại E

1 Chứng minh tứ giác ABOC nội tiếp

2 Chứng minh BC vng góc với OA BA BEAE BO .

3 GọiI là trung điểm BE, đường thẳng quaI và vng góc OI cắt tia ,

AB ACtheo thứ tự DF Chứng minh IDO BCO 

DOF cân O. Chứng minh F trung điểm củaAC

(2)

Họ tên thí sinh: Số báo danh:

(3)

Ngày đăng: 24/05/2021, 09:00

w