1. Trang chủ
  2. » Luận Văn - Báo Cáo

De thi thu DHVINH Chuyen toan nam 2012

26 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 294,19 KB

Nội dung

2) Cần tích cực, chủ động đọc các tài liệu tham khảo, tự làm các đề thi thử, các đề tham khảo , các đề đã thi để nâng cao trình độ kiến thức và kỹ thuật, kỹ năng trình bày một bài thi t[r]

(1)

www.VIETMATHS.com TRƯỜNG ĐẠI HỌC VINH

KHỐI CHUYÊN TOÁN ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 MƠN TỐN KHỐI A

Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)

Câu I (2.0 điểm) Cho hàm số y = (C)

Khảo sát biến thiên vẽ đồ thị hàm số (C)

Viết phương trình tiếp tuyến với đồ thị (C), biết khoảng cách từ tâm đối xứng đồ thị (C) đến tiếp tuyến lớn

Câu II (2.0 điểm)

1.Tìm nghiệm phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x [ ;].

Giải hệ phương trình

3

2

3 5.6 4.2

( )( )

x y x x y

x y y y x y x

 

   

 

    

 

Câu III (1.0 điểm) Tính tích phân

3

1 4

2

( )

1

x x

x e dx

x

 

Câu IV (1.0 điểm)

Cho x, y, z số thực dương lớn thoả mãn điều kiện xy + yz + zx  2xyz Tìm giá trị lớn biểu thức A = (x - 1)(y - 1)(z - 1)

Câu V (1.0 điểm)

Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c Tính thể tích tứ diện ABCD

PHẦN RIÊNG ( 3.0 điểm)

Thí sinh làm hai phần A B (Nếu thí sinh làm hai phần không chấm điểm)

A Theo chương trình nâng cao Câu VIa (2.0 điểm)

Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = (d2): 4x + 3y - 12 = Tìm toạ độ tâm bán kính đường trịn nội tiếp tam giác có cạnh nằm (d1), (d2), trục Oy Cho hình lập phương ABCD.A’B’C’D’ có cạnh Gọi M trung điểm đoạn AD, N tâm hình vng CC’D’D Tính bán kính mặt cầu qua điểm B, C’, M, N

Câu VIIa (1.0 điểm)

Giải bất phương trình

2

3

2

log ( 1) log ( 1)

5

x x

x x

  

 

B Theo chương trình chuẩn Câu VIb (2.0 điểm)

Cho elip (E) : 4x2 + 16y2 = 64.Gọi F1, F2 hai tiêu điểm M điểm (E).Chứng tỏ

rằng tỉ số khoảng cách từ M tới tiêu điểm F2 tới đường thẳng x =

3 có giá trị không đổi

(2)

Giải bất phương trình

2

2

1

10

2AxAxxCx  (Cnk, k n

A là tổ hợp, chỉnh hợp chập k n phần tử)

ĐÁP ÁN KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 MƠN TỐN

Thời gian:180 phút (Không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)

CÂU NỘI DUNG THANG

ĐIỂM Câu I

(2.0đ) (1.0đ)

TXĐ : D = R\{1}

0.25 Chiều biến thiên

lim ( ) lim ( )

x  f xx   f x  nên y = tiệm cận ngang đồ thị hàm số

1

lim ( ) , lim

x  f x  x   nên x = tiệm cận đứng đồ thị hàm số y’ =

1 (x 1)

 

0.25

Bảng biến thiên

1 +

-

-y y'

x - +

Hàm số nghịc biến ( ;1)và (1;) Hàm số khơng có cực trị

0.25

Đồ thị.(tự vẽ)

Giao điểm đồ thị với trục Ox (0 ;0) Vẽ đồ thị

Nhận xét : Đồ thị nhận giao điểm đường tiệm cận I(1 ;1) làm tâm đối xứng

0.25

2.(1.0đ) Giả sử M(x0 ; y0) thuộc (C) mà tiếp tuyến với đồ thị có khoảng cách từ tâm đối xứng đến tiếp tuyến lớn

Phương trình tiếp tuyến M có dạng :

0

0

1

( )

( 1)

x

y x x

x x

  

 

2

2

0

1

0

( 1) ( 1)

x x y

x x

    

 

0.25

Ta có d(I ;tt) =

4

1 1

( 1) x

x

 

(3)

-+ f(t) f'(t) x

0 +

www.VIETMATHS.com Xét hàm số f(t) =

2 ( 0) t t t

 ta có f’(t) =

2

4

(1 )(1 )(1 ) (1 )

t t t

t t

  

 

f’(t) = t = Bảng biến thiên

từ bảng biến thiên ta c

d(I ;tt) lớn

chỉ t = hay

0 0 1 x x x         0.25

+ Với x0 = ta có tiếp tuyến y = -x

+ Với x0 = ta có tiếp tuyến y = -x+4 0.25 Câu

II(2.0đ) (1.0đ)

Phương trình cho tương đương với 2(cos4x + cos2x) = (cos2x + 1) + sin2x

0.25

2 cosx=0

4 os3xcosx=2 os 2sinxcosx

2cos3x= osx+sinx

c c x

c

   

0.25

+ cosx=0 x= k     + 3x=x- os3x= osx+sinx cos3x=cos(x- )

6

3

6 k

c c

x x k

                0.25 12 24 x k k x             

 x  

11 13

0; , , ,

2 12 24 24

xxxx

       0.25 2.(1.0đ) ĐK: , x y x y     

Hệ phương trình

3 3

3 5.6 4.2 5.6 4.2

(2 )( ) (2 )( )( )

x y x x y x y x x y

x y y y x y x x y y x y x x y y

(4)

3 3 2 3 2

3 5.6 4.2 5.6 4.2

2

(2 )[( )( ) 1]

x y x x y x y x x y

y x

y x y x x y y

                           

(do 2yx)( x y  y) 0  )

3 2

3 5.6 4.2 5.6 4.2 (1)

2 (2)

x y x x y x x x

y x y x

                  Giải (1):

2 2

3 ( )

3

3 5.6 4.2 ( ) 5.( )

3

2

( )

x

x x x x x

x              

 32

0 log x x        0.25 0.25 Với x thay vao (2) ta y =

Với 32 log x

thay vao (2) ta y = 32

log

Kết hợp với điều kiện ta nghiệm phương trình 32 log x

,y = 32 log 0.25 Câu III (1.0đ)

Đặt I =

3 ( ) x x

x e dx

x

 

Ta có I =

1

2

0 01

x x

x e dx dx

x

  0.25

Ta tính x I x e dx

Đặt t = x3 ta có

1

1

1 0

0

1 1

3 3

t t

I  e dtee 0.25

Ta tính 01 x I dx x   

Đặt t = xx t 4 dx4t dt3

0.25

Khi

1

2

2 2

0

1

4 ( ) 4( )

1

t

I dx t dt

t t

      

 

 

Vậy I = I1+ I2

3 3e

  

0.25

Câu IV

Ta có

1 1

2

xy yz xz xyz

x y z

      

nên

(5)

www.VIETMATHS.com (1.0đ)

1 1 1 ( 1)( 1)

1 y z y z (1)

x y z y z yz

   

      

Tương tự ta có

1 1 1 ( 1)( 1)

1 x z x z (2)

y x z x z xz

   

      

1 1 1 ( 1)( 1)

1 x y x y (3)

y x y x y xy

   

      

0.25

Nhân vế với vế (1), (2), (3) ta

1 ( 1)( 1)( 1)

8

xyz  0.25

vậy Amax =

1

8 x  y z

0.25

Câu V (1.0đ)

Qua B, C, D dựng đường thẳng Song song với CD, BD, BC cắt M, N, P Ta có MN = 2BD, MP = 2CD, NP = 2BC từ ta có tam giác AMN, APM, ANP vuông A Đặt x = AM, y = AN, AP = z ta có

2 2 2

2 2

2( ), 2( )

2( )

x a c b y b c a

z a b c

     

  

Vậy V = 12

2 2 2 2 2

2(acb b)( ca )(abc )

1.0 Câu VIa (2.0đ) (1.0đ)

Gọi A giao điểm d1 d2 ta có A(3 ;0)

Gọi B giao điểm d1 với trục Oy ta có B(0 ; - 4) Gọi C giao điểm d2 với Oy ta có C(0 ;4)

0.5

Gọi BI đường phân giác góc B với I thuộc OA ta có I(4/3 ; 0), R = 4/3

0.5

(1.0đ) Chọn hệ trục toạ độ hình vẽ Ta có M(1 ;0 ;0), N(0 ;1 ;1) B(2 ;0 ;2), C’(0 ;2 ;2)

Gọi phương trình mặt cầu qua điểm M,N,B,C’ có dạng

x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 Vì mặt cầu qua điểm nên ta có

5

1

5

2 2

2

8 4

1

8 4 2

4 A A D

B C D B

A C D

C

B C D

(6)

Vậy bán kính R = A2B2C2 D  15

Câu VIIa (1.0đ)

Câu VIb (2.0đ) (1.0đ)

Đk: x > - 0.25

bất phương trình

3

3 3log ( 1) 2log ( 1)

log ( 1)( 6)

x x

x x

  

 

 

3 log ( 1)

0 x x

 

0.25

0.25 x

   0.25

Ta có F1( 12;0), ( 12;0)F2 Giả sử M(x0 ; y0)thuộc (E) H hình chiếu M

đường thẳng

3 x

Ta có MF2 = a - cx0/a =

0

8

2 x

0.5

MH =

0

8

3 x

Vậy MF

MH không đổi

0.5

2

(1.0đ) Ta có AB(1;1;1), nQ(1; 2;3), AB n; Q   (1; 2;1)

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Vì AB n; Q                                           

nên mặt phẳng (P) nhận AB n; Q  

làm véc tơ pháp tuyến Vậy (P) có phương trình x - 2y + z - =

1.0

Câu VIIb (1.0đ)

nghiệm bất phương trình x = x = 1.0

(7)

www.VIETMATHS.com

TRƯỜNG ĐAI HỌC VINH đề thi thử đại học

Trường THPT chuyên MÔN: TOÁN; Thời gian làm bài: 180 phút - -A PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I (2,0 điểm) Cho hàm số y=x33(m

+1)x2+9x − m , với m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số cho ứng với m=1

2 Xác định m để hàm số cho đạt cực trị x1, x2 cho |x1− x2|2 Câu II (2,0 điểm)

1 Giải phương trình:

√2cotx+

sin 2x

sinx+cosx=2 sin(x+ π

2)

2 Giải phương trình: log5(3x −1)+1=log3

√5(2x+1) Câu III (1,0 điểm) Tính tích phân I=

1

x2+1

x√3x+1dx

Câu IV (1,0 điểm) Cho hình lăng trụ tam giác ABC A ' B ' C ' có AB=1,CC'=m(m>0) Tìm m biết góc hai đường thẳng AB' BC' 600

Câu V (1,0 điểm) Cho số thực không âm x , y , z thoả mãn x2+y2+z2=3 Tìm giá trị lớn

của biểu thức

A=xy+yz+zx+ x+y+z

B PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần a, b). a Theo chương trình Chuẩn:

Câu VIa (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(4;6) , phương trình đường thẳng chứa đường cao trung tuyến kẻ từ đỉnh C

2x − y+13=0 6x −13y+29=0 Viết phương trình đường tròn ngoại tiếp tam giác ABC Trong khơng gian với hệ toạ độ Oxyz, cho hình vng MNPQ có M(5;3;−1), P(2;3;−4) Tìm toạ độ đỉnh Q biết đỉnh N nằm mặt phẳng (γ):x+y − z −6=0

Câu VIIa (1,0 điểm) Cho tập E={0,1,2,3,4,5,6} Từ chữ số tập E lập số tự nhiên chẵn gồm chữ số đôi khác nhau?

b Theo chương trình Nâng cao:

Câu VIb (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, xét elíp (E) qua điểm M(−2;−3) có phương trình đường chuẩn x+8=0 Viết phương trình tắc (E)

2 Trong khơng gian với hệ toạ độ Oxyz, cho điểm A(1;0;0), B(0;1;0), C(0;3;2) mặt phẳng (α):x+2y+2=0 Tìm toạ độ điểm M biết M cách điểm

(8)

Câu VIIb (1,0 điểm) Khai triển rút gọn biểu thức 1− x

¿n

1− x¿2+ +n¿

1− x+2¿

thu đa thức P(x)=a0+a1x+ +anx

n

Tính hệ số a8 biết n số nguyên dương thoả mãn

1

Cn 2+

7

Cn 3=

1

n

ĐÁP ÁN ĐỀ THI THỬ LẦN – NĂM 2009

Câu Đáp án Điểm

I

(2,0 đim) Víi 1 (1,25 m=đi1m) ta cã

y=x36x2+9x −1

* Tập xác định: D = R * Sự biến thiên

 ChiỊu biÕn thiªn:

y '=3x212x+9=3(x24x+3)

Ta cã

y '>0 x>3

¿

x<1

¿ ¿ ¿ ¿ ¿

,

y '<01<x<3 Do đó:

+ Hàm số đồng biến khoảng

(− ∞,1) vµ

(3,+∞)

+ Hàm sè nghịch biến khoảng

(1,3)

0,5

Cực trị: Hàm số đạt

cực đại x=1

yCD=y(1)=3

; đạt cực tiểu

x=3

yCT=y(3)=1

Giới hạn:

lim

x →− ∞y=− ∞;x→lim+∞y=+

0,25

Bảng biến thiên:

x y

y

3

-1

 

 

0

3

1 

 

  

Trêng Đ¹i häc Vinh

(9)

www.VIETMATHS.com 0,25

* Đồ thị:

Đồ thị cắt trục tung điểm

(0, −1)

0,25

2 (0,75 ®iĨm)

Ta cã

y '=3x26(m+1)x+9

+) Hàm số đạt cực đại, cực tiểu x1, x2

phơng trình

y '=0 có hai

nghiệm pb lµ x1, x2

Pt

x22

(m+1)x+3=0

có hai nghiệm phân biệt x1, x2

m+1¿23>0

¿

m>−1+√3

¿

m<−1√3

¿ ¿ ¿ ¿

⇔Δ'=¿

(1)

0,25

+) Theo định lý Viet ta có

x1+x2=2(m+1);x1x2=3

Khi

|x1− x2|2⇔(x1+x2)

4x1x244(m+1)2124 m+1¿24⇔−3≤ m≤1(2)

¿

Tõ (1) (2) suy giá

trị m lµ

3≤ m<−1√3 vµ

1+√3<m ≤1

0,5

(10)

II (2,0 đim)

1 (1,0 điểm)

Điều kiện:

sinx 0,sinx+cosx 0

Pt cho trở thành

cosx

√2 sinx+

2sinxcosx

sinx+cosx 2 cosx=0

cosx

√2 sinx−

2cos2x

sinx+cosx=0

cosx(sin(x+π

4)−sin 2x)=0

+)

cosx=0⇔x=π

2+kπ , k∈Z

0,5

+)

sin 2x=sin(x+π

4)

2x=x+π

4+m2π

¿

2x=π − x −π

4+n2π

¿

x=π

4+m2π

¿

x=π

4+

n2π

3

¿

m, n∈Z

¿

¿ ¿ ¿ ¿

⇔x=π

4+

t2π

3 , t∈Z

Đối chiếu điều kiện ta có nghiệm pt

x=π

2+kπ ;

x=π

4+

t2π

3 , k ,t∈Z

0,5

2 (1,0 điểm)

Điều kiện x>1

3 (*)

Với đk trên, pt cho

3x −1¿2+1=3 log5(2x+1)

log5¿

(11)

www.VIETMATHS.com

2x+1¿3 ¿

2x+1¿3

3x −1¿2=¿

3x −1¿2=log5¿ ¿

log55¿

8x333x2+36x −4=0 x −2¿2(8x −1)=0

¿

¿

x=2

¿

x=1

8

¿ ¿ ¿ ¿ ¿

¿

Đối chiếu điều kiện (*), ta có nghiệm pt lµ

x=2

0,5

III (1,0 đim)

Đặt

t=3x+1dt= dx

23x+1dx=

2 tdt

Khi x=1 th× t = 2,

và x = t =

Suy

I= (t

2 1

3 )

2 +1 t21

3 t

.2 tdt

¿2

92

4

(t21)dt+2

dt

t21

0,5

¿2

9( 3t

3− t

) ¿4

¿ ¿2

+ln|t −1

t+1|

¿4 ¿ ¿2

=100

27 +ln

0,5

IV

(1,0 ®iĨm)

- KỴ

BD // AB'(D∈A ' B ')

(AB ', BC')=(BD,BC')=600

⇒∠DBC'=600

hc

DBC'=1200

(12)

- NÕu DBC'=600

Vì lăng trụ nên

BB'⊥(A ' B ' C ')

áp dụng định lý Pitago định lý cosin ta có

BD=BC'=m2+1 vµ

KÕt hỵp DBC'=600

ΔBDC'

Do m2

+1=3⇔m=√2

- NÕu DBC'=1200

áp dụng định lý cosin cho

suy m=0 (lo¹i)

VËy m=√2.

* Chó ý: - NÕu HS xét trờng hợp góc

600 chØ cho 0,5®

khi giải

- HS giải phơng pháp vectơ toạ độ với nhận xét:

cos(AB ', BC')=|cos(AB' ,BC')|=|AB'.BC'|

AB' BC'

0,5

V

(1,0 điểm) Đặt t=x+y+z

t2=3+2(xy+yz+zx)xy+yz+zx=t 23

2

Ta cã

0xy+yz+zx≤ x2+y2+z2=3

nªn

3≤t29√3≤t ≤3

t>0

Khi

A=t

3

2 +

5

t

0,5

XÐt hµm sè

f(t)=t

2+

t

3

2,√3≤t ≤3

Ta cã

f '(t)=t −5 t2=

t35

t2 >0

t ≥√3

Suy f(t) đồng

biÕn trªn [√3,3]

Do

0,5

C

C’ B’

B

A’ m

D 3

1 1200

A

(13)

www.VIETMATHS.com f(t)≤ f(3)=14

3

Dấu đẳng thức xảy

t=3⇔x=y=z=1

VËy GTLN cđa A lµ

14

3 , đạt đợc

x=y=z=1

VIa.

(2,0 ®iĨm)

1 (1 ®iĨm)

- Gọi đờng cao trung tuyến kẻ từ CM Khi ú

CH có phơng trình 2x y+13=0

CM có phơng trình 6x 13y+29=0

- Tõ hÖ

¿

2x − y+13=0

6x −13y+29=0

⇒C(−7;−1)

¿{

¿

- ABCHn❑AB=u❑CH=(1,2)

pt AB :x+2y −16=0

- Tõ hÖ

¿ x+2y −16=0

6x −13y+29=0

⇒M(6;5) ¿{

¿ ⇒B(8;4)

0,5

- Giả sử phơng trình đ-ờng tròn ngoại tiếp

ΔABC:x2

+y2+mx+ny+p=0

Vì A, B, C thuc ng

tròn nên

52+4m+6n+p=0

80+8m+4n+p=0

507m− n+p=0

¿{ {

¿

m=−4

n=6

p=−72

¿{ {

Suy pt đờng tròn:

x2+y24x+6y −72=0

hay y+3¿

2

=85 x −2¿2+¿

¿

0,5

2 (1 ®iĨm)

- Giả sử

N(x0; y0; z0) Vì

M(6; 5)

A(4; 6)

C(-7; -1)

B(8; 4)

(14)

N∈(γ)⇒x0+y0− z06=0(1)

- MNPQ hình vuông

MNP vuông

cân N

MN=PN

MN PN=0

¿{

z0+4¿2 ¿

y03¿2+(z0+1)(z0+4)=0

¿

y03¿2+¿

x02¿2+¿

z0+1¿2=¿

y03¿2+¿ ¿

x05¿2+¿ ¿

0,5

x0+z01=0(2)

¿

y03¿2+(z0+1)(z0+4)=0(3)

¿

(x05)(x02)+¿

- Tõ (1) vµ (2) suy

¿

y0=−2x0+7 z0=− x0+1

¿{

¿

Thay

vào (3) ta đợc

x0

5x0+6=0

x0=2, y0=3, z0=−1

¿

x0=3, y0=1, z0=−2

¿ ¿ ¿ ¿ ¿

(15)

www.VIETMATHS.com

hay

N(2;3;−1)

¿

N(3;1;−2)

¿ ¿

- Gọi I tâm hình

vuông I trung

điểm MP vµ NQ

I(7

2;3;− 2)

NÕu

N(2;31) th×

Q(5;3;−4)

Nếu N(3;1;2)

thì Q(4;5;3)

VIIa.

(1,0 điểm)

Giả sử abcd số

thoả mÃn ycbt Suy

d∈{0,2,4,6}

+) d=0 Sè cách

sắp xếp abc

A6

+) d=2 Số cách

sắp xếp abc lµ

A6

− A5

0,5

+) Víi d=4 hc

d=6 kết giống

nh trờng hợp d=2

Do ta có số số

lập đợc

A63+3(A63− A52)=420

0,5

VIb.

(2,0 điểm)

1 (1 điểm)

- Gọi phơng tr×nh

(E):x a2+

y2

b2=1(a>b>0)

- Gi¶ thiÕt

4

a2+

9

b2=1(1) a2

c=8(2) ¿{

Ta cã

(2)⇔a2=8c⇒b2=a2−c2=8c − c2=c(8−c)

Thay vào (1) ta đợc

4 8c+

9

c(8−c)=1

(16)

2c217c+26 =0 c=2

¿

c=13

2

¿ ¿ ¿ ¿ ¿

* NÕu c=2 th×

a2

=16, b2=12(E): x

16+

y2

12=1

* NÕu c=13

2 th×

a2=52, b2=39

4 (E):

x2

52+

y2

39/4 =1

0,5

2 (1 điểm)

Giả sử

M(x0; y0; z0) Khi

đó từ giả thiết suy

x01¿

+y02+z02

¿

y01¿2+z02

¿

z02¿

¿

y03¿2+¿

x02 +¿

x02+¿ ¿

√¿

y01¿

+z02(1)

¿

z02¿2(2)

¿

x0+2y0+2¿2 ¿ ¿5(3)

¿

x01¿2+y02+z02=¿

y03¿2+¿

y01¿2+z02=x02+¿ ¿

x01¿

+y02+z02=x02+¿ ¿

0,5

(17)

www.VIETMATHS.com

¿ y0=x0

z0=3− x0

¿{ ¿

Thay vào (3) ta đợc

3x0+2¿2

5(3x028x0+10)=¿

x0=1

¿

x0=23

3

¿ ¿ ¿ ¿ ¿

M(1;1;2)

¿

M(23

3 ; 23

3 ;−

14 )

¿ ¿ ¿ ¿ ¿

0,5

VIIb.

(1,0 ®iĨm)

Ta cã

1

Cn 2+

7

Cn 3=

1

n⇔ n≥3

n(n −1)+

7 3!

n(n−1)(n−2)=

1

n ¿{

n ≥3

n25n −36 =0

⇔n=9

¿{

0,5

Suy a8 lµ hƯ sè

cđa x8 biĨu

thøc

1− x9

1 x8+9

8

Đó

8 C88+9 C98=89

0,5

TRƯỜNG THPT

(18)

THANH

CHƯƠNG-NGHỆ AN Thời gian làm 180 phút, không kể thời gian giao đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): Câu I: (2 điểm) Cho hàm số

2

1 x y

x  

 (C) Khảo sát hàm số

2 Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) điểm phân biệt A, B cho AB = Câu II: (2 điểm)

1 Giải phương trình: cos cos 3x xsinxcos8x , (x  R)

2 Giải hệ phương trình:

2

5

x y x y y

x y

    

 

 

 (x, y R)

Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn đường yex 1 ,trục hoành, x = ln3 x = ln8

Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD hình thoi ; hai đường chéo AC = 2 3a, BD = 2a cắt O; hai mặt phẳng (SAC) (SBD) vng góc với mặt phẳng (ABCD) Biết

khoảng cách từ điểm O đến mặt phẳng (SAB) a

, tính thể tích khối chóp S.ABCD theo a

Câu V: (1 điểm) Cho x,y  R x, y > Tìm giá trị nhỏ

 3  2 ( 1)( 1)

x y x y

P

x y

  

 

PHẦN RIÊNG (3 điểm) : Thí sinh làm hai phần ( phần A B) A Theo chương trình Chuẩn

Câu VI.a (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = có tâm I và đường thẳng : mx + 4y = Tìm m biết đường thẳng  cắt đường tròn (C) hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB 12

2 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

1 1

2 1

xyz

 

 ; d2:

1

1

xyz

 

mặt phẳng (P): x - y - 2z + = Viết phương trình tắc đường thẳng , biết  nằm mặt phẳng (P)  cắt hai đường thẳng d1 , d2

Câu VII.a (1 điểm) Giải bất phương trình

2

log 2log

2 2xx x  20 0 B Theo chương trình Nâng cao

Câu VI.b (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - = 0, phương trình cạnh AC: x + 2y - = Biết trọng tâm tam giác G(3; 2) Viết phương trình cạnh BC

3 Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng  :

1

1

xyz

 

(19)

www.VIETMATHS.com Câu VII.b (1 điểm) Giải phương trình nghiệm phức :

25

8

z i

z

  

(20)

ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC

CÂU NỘI DUNG ĐIỂM

I-1 (1 điểm)

Tập xác định D = R\- 1 Sự biến thiên:

-Chiều biến thiên:

' 0,

( 1)

y x D

x

   

 .

Hàm số nghịch biến khoảng (- ; - 1) (- ; + ) - Cực trị: Hàm số khơng có cực trị

0,25

- Giới hạn vô cực, giới hạn vô cực tiệm cận:

2 2

lim ; lim

1

x x

x   x x  x

 

 

  Đường thẳng y = tiệm cận ngang.

1

2 2

lim ; lim

1

x x

x   x x   x

 

  

  Đường thẳng x = - tiệm cận đứng.

0,25

-Bảng biến thiên:

x - - +

y’ + +

y

+

2 - 

0,25

Đồ thị:

-Đồ thị hàm số cắt trục Ox điểm (1;0) -Đồ thị hàm số cắt trục Oy điểm (0;- 2) - Đồ thị hàm số có tâm đối xứng giao điểm hai tiệm cận I(- 1; 2)

0,25

I-2

(1 điểm) Phương trình hoành độ giao điểm: 2x

2 + mx + m + = , (x≠ - 1) (1) 0,25 d cắt (C) điểm phân biệt  PT(1) có nghiệm phân biệt khác -1  m2 - 8m - 16 > (2) 0,25 Gọi A(x1; 2x1 + m) , B(x2; 2x2 + m Ta có x1, x2 nghiệm PT(1)

Theo ĐL Viét ta có

1

1

2 2

m

x x

m x x

 

  

 

 .

0,25

AB2 =  (x1 x2)2 4(x1 x2)2 5 

2

1 2

(xx )  4x x 1  m2 - 8m - 20 = 0  m = 10 , m = - ( Thỏa mãn (2))

0,25 y

x

2 y=2

x= -1 -1 O

1

(21)(22)

II-1 (1 điểm)

PT  cos2x + cos8x + sinx = cos8x 0,25

 1- 2sin2x + sinx = 0 0,25

 sinx = v

1 sin

2

x 0,25

7

2 ; ; , ( )

2 6

x kx  kx  kkZ 0,25

II-2 (1 điểm)

ĐK: x + y  , x - y  0, y  0 0,25

PT(1)  2x2 x2  y2 4yx2  y2 2y x

2 (3)

5 (4)

y x y xy        0,25

Từ PT(4)  y = v 5y = 4x

Với y = vào PT(2) ta có x = (Khơng thỏa mãn đk (3)) 0,25 Với 5y = 4x vào PT(2) ta có x2 x  3 x1

KL: HPT có nghiệm

4 ( ; ) 1;

5 x y  

  0,25 III (1 điểm) Diện tích ln8 ln x S  edx

; Đặt tex  1 t2 ex  1 ext2 

0,25

Khi x = ln3 t = ; Khi x = ln8 t = 3; Ta có 2tdt = exdx  2 t dx dt t   0,25 Do

3

2 2 2 2 1 t

S dt dt

t t

 

     

   

  0,25

=

3

1

2 ln ln

2 t t t               

  (đvdt) 0,25

IV (1 điểm)

Từ giả thiết AC = 2a 3; BD = 2a AC ,BD vng góc với trung điểm O đường chéo.Ta có tam giác ABO vuông O AO = a 3; BO = a , A D B 600 Hay tam giác ABD

Từ giả thiết hai mặt phẳng (SAC) (SBD) vng góc với mặt phẳng (ABCD) nên giao tuyến chúng SO  (ABCD)

0,25

Do tam giác ABD nên với H trung điểm AB, K trung điểm HB ta có

DHAB DH = a 3; OK // DH

1

2

a OKDH

 OK  AB  AB  (SOK) Gọi I hình chiếu O lên SK ta có OI  SK; AB  OI  OI  (SAB) , hay OI khoảng cách từ O đến mặt phẳng (SAB)

0,25

Tam giác SOK vuông O, OI đường cao  2

1 1

2 a SO

OIOKSO  

Diện tích đáy SABCD 4SABO 2.OA OB 2 3a2; đường cao hình chóp

a SO

Thể tích khối chóp S.ABCD:

(23)

www.VIETMATHS.com

1

3

D D

S ABC ABC

a

VS SO

(24)

V (1 điểm)

Đặt t = x + y ; t > Áp dụng BĐT 4xy  (x + y)2 ta có

2 t

xy 0,25

3

(3 2) t t xy t P

xy t

  

  Do 3t - >

2 t xy

 

nên ta có 2 (3 2) 4 t t

t t t

P t t t         0,25

Xét hàm số

2

2

( ) ; '( ) ;

2 ( 2)

t t t

f t f t

t t

 

  f’(t) =  t = v t = 4.

t + f’(t) - +

f(t)

+  +

8

0,25

Do P = (2;min ( )) f t = f(4) = đạt

4

4

x y x

xy y          

  0,25

VI.a -1 (1 điểm)

Đường trịn (C) có tâm I(1; m), bán kính R = 0,25 Gọi H trung điểm dây cung AB

Ta có IH đường cao tam giác IAB

IH = 2

| | | |

( , )

16 16

m m m

d I m m       0,25 2 2 2

(5 ) 20

25

16 16

m

AH IA IH

m m

    

  0,25

Diện tích tam giác IAB SIAB 12 2SIAH 12

2

3

( , ) 12 25 | | 3( 16) 16

3 m

d I AH m m

m             0,25 VI.a -2 (1 điểm)

Gọi A = d1(P) suy A(1; ; 2) ; B = d2  (P) suy B(2; 3; 1) 0,25 Đường thẳng  thỏa mãn toán qua A B 0,25 Một vectơ phương đường thẳng  u(1;3; 1)

0,25

Phương trình tắc đường thẳng  là:

1

1

xy z

 

 0,25

VII.a (1 điểm)

Điều kiện: x> ; BPT  24log22xx2log2x  20 0 0,25

Đặt t log2 x Khi x 2t.

BPT trở thành 42t2 22t2  20 0 Đặt y = 22t2

; y 

0,25 BPT trở thành y2 + y - 20   -  y  4. 0,25

I

A B

H

(25)

www.VIETMATHS.com Đối chiếu điều kiện ta có : 22t2  4 2t2  2 t2 1  -  t  1. Do -  log2 x  

1

2 2 x

0,25

VI.b- 1 (1 điểm)

Tọa độ điểm A nghiệm HPT:

- - 2 - x y x y     

  A(3; 1) 0,25

Gọi B(b; b- 2)  AB, C(5- 2c; c)  AC 0,25

Do G trọng tâm tam giác ABC nên

3

1

b c b c             b c    

 Hay B(5; 3), C(1; 2) 0,25 Một vectơ phương cạnh BC uBC  ( 4; 1)

  

Phương trình cạnh BC là: x - 4y + = 0,25

VI.b-2 (1 điểm)

Giả sử n a b c( ; ; ) 

vectơ pháp tuyến mặt phẳng (P) Phương trình mặt phẳng (P): ax + by + cz + 2b =

Đường thẳng  qua điểm A(1; 3; 0) có vectơ phương u (1;1; 4)

 0,25

Từ giả thiết ta có 2

/ /( ) (1)

| |

( ;( )) (2)

n u a b c

P

a b

d A P

a b c

                     0,25

Thế b = - a - 4c vào (2) ta có (a5 )c (2a2 17c2 8 )aca2- 2ac 8c2 0

a a

v

cc 

0,25

Với a

c  chọn a = 4, c =  b = - Phương trình mặt phẳng (P): 4x - 8y + z - 16 = 0.

Với a

c  chọn a = 2, c = -  b = Phương trình mặt phẳng (P): 2x + 2y - z + = 0.

0,25

VII.b (1 điểm)

Giả sử z = a +bi với ; a,b  R a,b không đồng thời 0,25

Khi 2

1

;

a bi z a bi

z a bi a b

   

  0,25

Khi phương trình 2

25 25( )

8 a bi

z i a bi i

z a b

       

 0,25

2 2

2 2

( 25) 8( ) (1)

(2)

( 25) 6( )

a a b a b

b a b a b

    

 

   

 Lấy (1) chia (2) theo vế ta có ba

vào (1) Ta có a = v a =

Với a =  b = ( Loại)

Với a =  b = Ta có số phức z = + 3i

0,25

Chú ý:

I – Cách chấm thi tự luận:

(26)

2) Học sinh làm cách khác với đáp án , cho điểm tối đa câu !

3) Học sinh làm sai sót bước 0, 25 đ cắt 0, 25 điểm đó.

4) Một tốn bước trên(0,25 đ) sai kết bước phía (0,25 đ) liên quan đến bước trên thì cắt điểm từ chỗ làm sai bước sau có liên quan.

5) Một toán bước trên(0,25 đ) sai bước phía (0,25 đ) khơng liên quan đến bước phía trên cho 0, 25 đ.

6) Học sinh cho điểm câu Sau cộng điểm câu để có điểm thi.

II – Phương pháp học tập:

1) Học sinh cần trình bày đầy đủ câu dẫn, dấu tương đương “”, v , không viết tắt (trừ

các ký hiệu toán học cho phép ), không làm ngắn gọn với đáp án.

Ngày đăng: 21/05/2021, 11:51

w