1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận án tiến sĩ) nghiên cứu tổng hợp hệ xúc tác cuo co3o4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp

144 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 144
Dung lượng 4,86 MB

Nội dung

MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING Ha Noi – 2021 MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS Major: Environmental Engineering Code: 9520320 DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING SUPERVIORS: Assoc Prof Dr Vu Đuc Thao Prof Dr Le Minh Thang Ha Noi - 2021 ACKNOWLEDGEMENT First of all, I would like to thank Prof Nguyen Huu Phu, who raises my interest in catalysis Secondly, I would like to thank Associate Prof Dr Vu Duc Thao and Prof Dr Le Minh Thang, who are my supervisors, because of their guidance, encouragement, and kindly help in the scientific works Also, I would like to thank my colleagues at Vietnam National Institute of Occupational Safety and Health (VNNIOSH), lectures in School of Environmental Science and Technology (INEST) and School of Chemical Engineering (SCE), and all members in Laboratory of the Petrochemical Refining and Catalytic Materials (LPRCM), and Laboratory of Environmentally Friendly Material and Technologies, that I believe my work cannot be completed without their generous assistance Moreover, I would like to thank Dr Sebastian Wohlrab and all staff in LIKAT for their friendly attitude and support, when I conducted the short-course research in University of Rostock - Germany Finally, I would like to give special thanks to my parents, my wife, and my beloved daughters because of their faced difficulties, supports, encourage as well as love The financial supports of the Rohan Program – DAAD & BMZ, German, and the Project no 216/02/TLD (VNNIOSH) are acknowledged in this thesis i|Page COMMITMENT The study has been conducted at the School of Environmental Science and Technology (INEST), School of Chemical Engineering (SCE), Hanoi University of Science and Technology (HUST), Leibniz-Institute for Catalysis (LIKAT), University of Rostock (Germany) and Vietnam National Institute of Occupational Safety and Health (VNNIOSH) The work has been completed under the supervision of Associate Prof Dr Vu Duc Thao and Prof Dr Le Minh Thang I assure that this is my research All the data and results in the thesis are entirely true, were agreed to use in this paper by the co-author This research has not been published by other authors than me Ngo Quoc Khanh ii | P a g e TABLE OF CONTENTS ACKNOWLEDGEMENT i COMMITMENT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES viii LIST OF ACRONYM AND ABBREVIATIONS xi INTRODUCTION CHAPTER LITERATURE REVIEW 1.1 Overview of volatile organic compounds 1.2 Overview of VOCs treatment technologies 1.2.1 Oxidation method 1.2.2 Biological method 11 1.2.3 Absorption method 14 1.2.4 Adsorption method 14 1.2.5 Condensation method 15 1.3 Catalytic oxidation of VOCs 16 1.3.1 Mechanisms and kinetics of catalytic oxidation of VOCs 16 1.3.2 Catalysts for oxidation of VOCs 17 1.3.2.1 Noble-metal based catalysts 17 1.3.2.2 Non-noble metal oxides 22 1.3.2.3 Non-noble mix metal oxides 26 1.3.3 Catalytic supports and preparation methods for VOCs oxidation 29 1.4 The summary of literature review 30 CHAPTER EXPERIMENT 32 2.1 Catalyst preparation 32 iii | P a g e 2.1.1 Wet impregnation method 32 2.1.2 Solid-solid blending method 34 2.2 Catalyst characterization 36 2.2.1 Thermal analysis 36 2.2.2 Physical adsorption 37 2.2.3 X-ray diffraction 38 2.2.4 Scanning electron microscopy 39 2.2.5 Chemical and temperature programmed desorption 40 2.3 Adsorption and catalytic activity measurement 43 2.3.1 Adsorption and nitrogen desorption measurement 43 2.3.2 Catalytic activity measurement for complete oxidation of toluene 45 2.3.3 Catalytic activity measurement for complete oxidation of methane 50 CHAPTER RESULTS AND DISCUSSIONS 52 3.1 Characterizations of supports and catalysts 52 3.1.1 Thermal analysis 52 3.1.2 Physisorption 53 3.1.3 X-ray diffraction (XRD) 59 3.1.4 Scanning electron microscopy 66 3.1.5 Chemisorption 69 3.1.5.1 CO pulse 69 3.1.5.2 Oxygen temperature programed desorption (O2-TPD) 71 3.2 Total oxidation ability of the catalysts for methane 73 3.3 Toluene treatment 82 3.3.1 Toluene adsorption on catalysts/ sorbents 82 3.3.1.1 Toluene adsorption over Cu-Co/Activated carbon 82 3.3.1.2 Toluene adsorption over Cu-Co/Silica gel 83 3.3.1.3 Toluene adsorption over Cu-Co/MCM-41 84 iv | P a g e 3.3.2 Oxidation over catalysts in desorption process 87 3.3.2.1 Toluene oxidation over Cu-Co/Activated carbon in desorption process 87 3.3.2.2 Toluene oxidation over Cu-Co/ /Silica gel in desorption process 91 3.3.2.3 Toluene oxidation over Cu-Co/MCM-41 in desorption process 93 3.3.3 Toluene treatment by complete oxidation over catalysts 97 3.3.3.1 Complete oxidation of toluene on Cu-Co/Silica gel 97 3.3.3.2 Directed oxidation of toluene on Cu-Co/MCM-41 98 3.3.3.3 Directed oxidation of toluene on Cu-Co oxides 100 CONCLUSIONS 104 RECOMMENDATIONS 105 LIST OF PUBLICATIONS 106 REFERENCES 107 APPENDIX 116 v|Page LIST OF TABLES Table 1.1 Definition of volatile organic compounds (VOCs) Table 1.2 The temperature required for complete oxidation of VOCs 10 Table 1.3 The required temperature for catalytic oxidation of VOCs 11 Table 1.4 Performance evaluation of bioreactors for VOCs and odor control 13 Table 1.5 The absorption solutions can absorb the organic solvent vapor 14 Table 1.6 The noble metal catalysts for VOCs oxidation 19 Table 1.7 The non-noble metal oxide catalysts overview 24 Table 1.8 The mixed non-noble metal oxide catalysts overview 27 Table 2.1 Properties of chemicals using to prepare catalysts 32 Table 2.2 List of catalysts prepared by wet impregnation method 34 Table 2.3 List of catalysts prepared by solid-solid bleeding method 36 Table 2.4 Technique of thermal analysis 37 Table 2.5 Operating factors of GC 44 Table 3.1 The Surface characteristics of AC, silica gel and MCM-41 56 Table 3.2 The surface characteristics of catalysts on AC and silica gel 56 Table 3.3 The surface characteristics of catalysts on MCM-41 57 Table 3.4 Crystalline size and phase of Cu-Co/Silica gel 60 Table 3.5 Crystalline sizes and phases of 10% Cu-Co on MCM-41 62 Table 3.6 Crystalline sizes and phases of 20% Cu-Co on MCM-41 64 Table 3.7 Crystalline sizes of Cu-Co oxides 65 Table 3.8 Crystalline sizes of catalysts without supports 66 Table 3.9 Metal dispersion of catalysts 71 Table 3.10 O2 - TPD profile of catalysts 73 Table 3.11 CH4-TPD quantities of Cu-Co/MCM-41 75 Table 3.12 Adsorption amount of toluene on Cu-Co/Activated carbon 83 vi | P a g e Table 3.13 Adsorption amount of toluene on Cu-Co/Silica gel 84 Table 3.14 Adsorption amount of toluene on Cu-Co/MCM-41 86 Table 3.15 Generated toluene by thermal desorption 90 Table 3.16 Evaluation of total toluene oxidation over the catalysts on AC 90 Table 3.17 Toluene adsorption capacity of catalysts on Silica gel base 93 Table 3.18 Evaluation of total toluene oxidation over the catalysts on silica gel 93 Table 3.19 Evaluation of total toluene oxidation over catalysts on MCM-41 95 Table 3.20 Comparison with other studies 103 vii | P a g e LIST OF FIGURES Figure 1.1 Photochemical smog formation Figure 1.2 VOCs emission control technologies Figure 1.3 Catalytic oxidation technology for treatment of VOCs 10 Figure 1.4 The relationship between temperature and vapor pressure of the most common VOCs 15 Figure 1.5 The mechanisms of VOCs oxidation over catalysts 16 Figure 2.1 Procedure of wet impregnation method 33 Figure 2.2 Procedure of solid-solid blending method 35 Figure 2.6 Bragg ‘s diffraction 38 Figure 2.7 Schematic diagram of the core components of an SEM microscope 39 Figure 2.8 Experimental for temperature programmed reduction, oxidation and desorption 41 Figure 2.9 Adsorption and desorption experiment systems 43 Figure 2.10 The toluene adsorption – desorption oxidation experiment systems 46 Figure 2.11 The complete oxidation of toluene experiment systems 49 Figure 2.12 Total methane oxidation experiment systems 51 Figure 3.1 Thermal analysis in static air of catalyst on AC 52 Figure 3.2 Isotherm linear plot of AC, silica gel and MCM-41 55 Figure 3.3 Pore distribution of AC, silica gel and MCM-41 55 Figure 3.4 Pore distribution of catalyst on MCM41 58 Figure 3.5 XRD patterns of catalysts on AC 59 Figure 3.6 XRD patterns of catalysts on silica gel 60 Figure 3.7 XRD patterns of 10% catalysts on MCM-41 prepared by solid-solid blending method 61 Figure 3.8 XRD patterns of 10% catalysts on MCM-41 prepared by wet impregnation method 61 viii | P a g e APPENDIX Appendix 1: Adsorption-desorption of toluene Appendix 1.1: Adsorption-desorption of toluene on Cu-Co/Activated carbon Time (min) WI-AC180 WI-AC7Cu3Co WI-AC5Cu5Co WI-AC3Cu7Co Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 0 2336 1417 1760 1680 15 2063 1186 1428 1431 30 1695 1295 1248 1053 45 1411 870 944 574 60 973 575 645 494 75 550 501 482 313 90 237 378 428 232 105 185 326 377 157 120 119 253 168 87 135 107 197 111 0 150 69 135 0 165 0 73 0 180 0 57 0 195 0 0 0 210 0 0 225 0 0 240 0 180 255 69 432 270 308 454 285 407 454 300 550 514 373 315 821 876 454 330 940 1075 552 345 69 997 1075 876 360 181 997 1075 985 116 | P a g e 375 829 997 1075 985 390 776 997 1075 985 405 1012 997 1075 985 420 1012 997 1075 985 435 1012 997 1075 985 117 | P a g e Appendix 1.2: Adsorption-desorption of toluene on Cu-Co/Silica gel Time (min) SS-S5Cu5Co SS-S20Co Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 12704 3538 12.75 7053 539 10408 499 25.5 8649 120 11389 75 38.25 9315 11389 51 10375 63.75 10572 76.5 10738 89.25 10889 102 10889 118 | P a g e Appendix 1.3: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by solid-solid blending method SS-M7Cu3Co SS-M5Cu5Co Ad (ppm) De (ppm) Ad De Ad De Ad De Ad De Ad De (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 0 0 0 0 0 0 15968 12639 4739 10388 11522 247 9610 11281 12.75 15330 12314 5122 12288 8510 2081 9298 25.5 15513 339 9664 2526 35 12125 5726 4456 6523 38.25 11645 466 6561 1489 1674 56 10543 61 3217 7189 4166 51 8749 1036 4159 4801 945 971 9268 2357 1848 7746 2870 63.75 129 6142 1778 3191 6284 471 2575 7475 4446 1660 9587 2239 76.5 4845 3192 2448 7267 273 4827 5970 6399 10717 1595 89.25 2067 3853 5808 1893 7943 16 6740 5115 6835 11690 1231 102 5033 2968 7354 1551 8291 8182 4184 6579 11804 851 114.75 7771 2140 8270 1287 9019 9656 3482 8111 12356 762 127.5 10241 1819 8648 8965 10591 2592 8141 12356 140.25 12210 1438 9344 9688 11552 8576 1209 9522 10192 12377 8547 165.75 14333 10264 10262 13492 8662 178.5 17187 11420 10549 11178 9075 191.25 16954 11791 10714 10931 9266 Time (min) 153 13601 SS-M3Cu7Co SS-M10Co SS-M10Cu SS-M20Co 119 | P a g e 204 216.75 12001 10816 12001 9983 9370 229.5 120 | P a g e Appendix 1.4: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by wet impregnation method Time WI-M5Cu5Co (min) Ad (ppm) De (ppm) WI-M20Co MCM-41 Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 5706 620 3689 20009 12.75 6903 3387 7783 16013 25.5 458 5773 8224 1479 9903 4476 38.25 1504 3985 11910 497 13453 1788 51 4893 2946 12909 15273 863 63.75 6120 2865 13528 16091 482 76.5 7173 2245 14098 17893 89.25 7444 1936 14098 18702 102 8025 1566 19185 114.75 8729 1327 19977 127.5 8830 994 20747 140.25 8980 153 9016 165.75 9097 178.5 9097 121 | P a g e Appendix 2: Oxidation in desorption process Appendix 2.1 Oxidation in desorption process over Cu-Co/Activated carbon Time WI-AC7Cu3Co WI-AC5Cu5Co WI-AC3Cu7Co (min) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) 0 0 0 1067 4368 693 5761 1371 5395 15 739 1939 627 3681 1114 4289 30 465 2128 418 2528 928 3035 45 378 1505 185 1320 748 1320 60 185 450 83 820 574 1292 75 123 0 551 380 90 88 0 304 105 0 0 97 120 0 0 0 122 | P a g e Appendix 2.2 Oxidation in desorption process over Cu-Co/MCM-41 Time (min) SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co SS-M10Co SS-M10Cu WI-M5Cu5Co WI-M20Co Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 10773.05 8476 14568.79 12062.92 8451.669 10875 13247 12.75 7173.878 7511 7026.384 7638.593 6826.916 5578 1544 25.5 4368.943 4587 3815.359 4259.829 3527.449 3291 38.25 2501.978 2849 1354.354 2230.476 1968.266 1789 0 51 1593.242 1935 619.5319 1324.665 1534.247 1049 0 63.75 1136.649 2043 379.6313 583.0763 1078.386 662 76.5 7.959375 1078 0 6.8175 540.4388 485 89.25 0 835 0 0 0 247 102 0 644 0 0 0 234 114.75 594 0 178 127.5 0 137 0 123 | P a g e Appendix 2.3 Oxidation in desorption process over Cu-Co/Silica gel Time SS-S5Cu5Co SS-S20Co (min) Toluene (ppm) COx (ppm) Toluene COx (ppm) (ppm) 12143 2901 125 180 12.75 13 0 25.5 0 0 38.25 0 0 51 0 o 124 | P a g e Appendix 3: Directed oxidation over Cu-Co/MCM-41 and Cu-Co/Silica gel Toluene conversion at temperature (%) Samples 150oC 180oC 200oC 250oC 300oC 350oC 400oC 450oC 500oC SS-M7Cu3Co 99.9 65.9 55.9 54.1 54.4 62.5 100 100 100 SS-M5Cu 5Co 96.2 80.3 97 76.7 28.4 43.6 73.3 100 100 SS-M3Cu7Co 98.2 66.7 58.9 57.2 59.1 69.8 100 100 100 SS-M10Co 100 79.6 59.5 61.3 57.1 62.5 100 100 100 SS-M10Cu 100 63.7 52.1 50 61.1 69.1 99.9 100 100 SS-M20Co 58.7 100 68.2 73.1 81.2 77.2 98.8 100 100 WI-M5Cu 5Co 100 100 86.8 56.2 23.5 70.9 73.6 96.8 100 WI-M20Co 99 95.9 96.4 19 55 63.5 100 100 100 SS-100Co 100 79.1 66.9 66.1 67.3 100 100 100 100 SS-100Cu 59.6 50.1 42.6 38.9 38.4 67.3 100 100 100 SS-5Cu5Co 73.5 63.9 51.9 53.2 52.8 100 100 100 100 SS-S5Cu 5Co - - - 55.3 59.6 68.3 70.1 71.2 100 SS-S20Co - - - 49.1 49.5 81.5 100 100 100 125 | P a g e CO2 yield at temperature (%) Samples 150oC 180oC 200oC 250oC 300oC 350oC 400oC 450oC 500oC SS-M7Cu3Co 0 0 1.1 10.2 100 93.5 90.7 SS-M5Cu 5Co 0 0 23.6 100 100 SS-M3Cu7Co 0 0 2.2 24.8 80.6 75.1 74.1 SS-M10Co 0 0 1.9 14.8 96.1 80 89.2 SS-M10Cu 0 0 2.5 19.6 91.1 80.2 65.4 SS-M20Co 0 15.6 53.3 50.2 100 100 100 WI-M5Cu5Co 0 0 10.4 100 100 WI-M20Co 0 13.8 41 100 100 100 SS-100Co 0 1.7 2.3 75.2 78.2 78.6 79.7 SS-100Cu 0 0 2.9 76.6 100 100 100 SS-5Cu5Co 0 0.8 19.4 90.3 90.9 90.3 93.5 SS-S5Cu5Co 0 0 0 1.8 17 64.9 SS-S20Co 0 4.1 28.7 100 100 100 100 126 | P a g e Appendix 4: Pictures of the research Picture Toluene adsorption, desorption and oxidation experiment system Picture Gas Chromatography with TCD detector 127 | P a g e Picture Temperature control and reactor Picture Nitrogen or Oxygen Mass flow controller Picture Toluene generator 128 | P a g e Appendix 5: Pictures of some prepared catalysts Activated carbon Silica gel MCM-41 WI-AC5Cu5Co SS-S20Co WI-S20Co SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co 10 SS-M10Co 129 | P a g e 11 SS-M20Cu 12 WI-M5Cu5Co 13 WI-M3Cu7Co 14 WI-M10Co 15 WI-10Cu 16 SS-5Cu5Co 17 SS-100Co 18 SS-100Cu 130 | P a g e ... metal-oxide catalysts include copper oxide, manganese dioxide, iron oxide, nickel oxide, chromium oxide, and cobalt oxide, etc Co3O4 is the most common non-noble metal catalyst in VOCs oxidation... metal oxide catalysts for VOCs oxidation in the previous studies 23 | P a g e Table 1.7 The non-noble metal oxide catalysts overview VOCs Catalyst Support Prepare method Co3O4 Clay Co3O4 Clay Co3O4. .. m-Xylene 2,000 l/min 400 100 37 Co-Ce Co3O4 Exo-templating Ce-Ni Co3O4 Al2O3 Wet impregnation method Cr2O3 Co3O4 AC Co3O4 CNT CuO SiO2 Ref VOCs - Ce-Cu CuO Experiment conditions Wet impregnation

Ngày đăng: 20/05/2021, 06:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w