1. Trang chủ
  2. » Mẫu Slide

DE TH HK II TOAN 10

6 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 15,24 KB

Nội dung

Số liệu sau đây cho ta lãi (quy tròn) hàng tháng của một cửa hàng trong năm 2011.. Viết phương trình đường tròn ngoại tiếp tam giác AOB.( O là gốc tọa độ).[r]

(1)

SỞ GD & ĐT – ĐÔNG THÁP MA TRẬN ĐỀ KIỂM TRA TRƯỜNG THPT – TP CAO LÃNH TỐN 10 HỌC KÌ 2

*********** Chủ đề

MạchKTKN

Mức nhận thức Cộng

1

Phần chung Phương trình Bất phương trình

1 1,0

1

1,0 1,0

2 2,0

Thống kê

1,0

1 1,0

Lương giác

1,0

1,0

2 2,0 PP tọa độ MP

1,0

1,0

2 2,0 Tổng phần chung 3

3,0 3 3,0 2 2,0 8 8,0

Phần riêng PT, Bất PT

1,0 1,0

HTL tam giác PP tọa độ MP

1

1,0

1 1,0

Tổng phần riêng 2

2,0

2 2,0 Tổng toàn bài 3

3,0 5 5,0

2

2,0

10 10,0 Diễn giải:

1) Chủ đề: - Hình học: điểm - Đại số : điểm 2) Mức nhận biết:

(2)

SỞ GD & ĐT- ĐỒNG THÁP KIỂM TRA CHẤT LƯƠNG HỌC KÌ II TRƯỜNG THPT – TP CAO LÃNH Năm học: 2011 – 2012

Mơn thi: TỐN – Lớp 10

Thời gian: 90 phút ( Không kể thời gian phát đề )

**************** I PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( điểm )

Câu (3,0 điểm).

1 Giải phương trình bất phương trình sau:

a) x2 - | x – 1| - = b) x

+2x

4− x2 0

Tìm giá trị tham số m để phương trình sau có hai nghiệm phân biệt: (m – 2)x2 – 2mx – = 0

Câu (1,0 điểm) Số liệu sau cho ta lãi (quy tròn) hàng tháng cửa hàng năm 2011 Đơn vị triệu đồng

Th 10 11 12

Lãi 12 15 18 13 13 16 18 14 15 17 20 17

Tìm số trung bình, số trung vị bảng số liệu Câu (2,0 điểm)

1 Tính giá trị lượng giác cịn lại góc α , biết tanα=4

5vàπ<α< 3π

2

2 Chứng minh hệ thức sau:

4 sin2x 1cos2x

2

=16 cos2x

2

Câu (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho hai điểm A(- , 0) B(0 ; 6). Viết phương trình đường thẳng d qua hai điểm A B

2 Viết phương trình đường trịn ngoại tiếp tam giác AOB.( O gốc tọa độ) II PHẦN RIÊNG – PHẦN TỰ CHỌN (2 điểm).

Học sinh làm hai phần (phần phần 2) 1 Theo chương trình Chuẩn.

Câu 5a (1,0 điểm) Giải phương trình: √4+2x − x2=x −2

Câu 6a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy,cho elip (E): x2 25+

y2

9 =1 Qua tiêu điểm elip dựng đường thẳng song song với Oy cắt elip hai điểm M N

1/ Tìm tọa độ tiêu điểm elip 2/ Tính độ dài đoạn MN

2 Theo chương trình Nâng Cao.

Câu 5b (1,0 điểm) Giải bất phương trình: 2√1− x2<x+2

Câu 6b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình tắc elip (E) có hai tiêu điểm F1 F2, biết (E) qua điểm M(2√5;2) có MF1 + MF2 = 12

(3)

SỞ GD & ĐT- ĐỒNG THÁP ĐÁP ÁN – TOÁN 10 TRƯỜNG THPT – TP CAO LÃNH

Câu Mục Nội dung Điểm

1 (3đ)

1.a (1đ)

* Bảng xét dấu:

x − ∞ +

x-1 - + 0,25

*

¿ x −10 x2− x

=0

¿x ≥1 x=0∨x=1

⇔x=1

¿{

¿

0,25

*

¿ x −1<0

x2

+x −2=0

¿x<1

x=1∨x=2

⇔x=2

¿{

¿

0,25

* Tập nghiệm T = {2,1}

0,25

1.b (1đ)

x − ∞ -2 +

x2 + 2x + - + + – x2 - + + -

VT +

-0,25 0,25 0,25 * Tâp nghiệm T = (− ∞;−2)¿(2;+) 0,25

2 (1đ)

* ycbt

a≠0 Δ'>0

¿{

0,25

*

¿ m −20 m2+m−2>0

¿{

¿

0,25

*

¿ m ≠2 m<2∨m>1

¿{

¿

0,25

*Kết luận: m∈(− ∞;−2)(1;2)(2;+) 0,25

(4)

(1đ) * Số trung vị 15,5 triệu đồng 0,5

3 (2đ)

1 (1đ)

* Vì π<α<3π

2 sinα<0,cosα<0

0,25

* cos2α=

1+tan2α=

25

41 cosα= √41

0,25

* sinα=tanα.cosα=

√41

0,25

* cotα=

tanα =

0,25

2 (1đ) *

4 sin2x 1cos2 x

2

=4 sin

2 x sin2x

2

0,25

*

2 sinx cos

x 2¿ ¿ 4¿ ¿ 0,25 *

16 sin2x cos

2x sin2x

2

0,25

* 16 cos2x 0,25 (2đ) (1đ)

* Phương trình d: xa+y

b=1 (a.b )

0,25

* d: −x4+y

6=1

0,25

* d: -3x + 2y = 12 0,25

* d: 3x – 2y + 12 = 0,25

2 (1đ)

* ΔAOB vuông O nên tâm I đường tròn trung điểm AB 0,25

* I (xA+xB ;

yA+yB

2 )⇒I(2;3)

0,25

* Bán kính R = OI = √13 0,25

* Phương trình đường tròn: (x + 2)2 + (y – 3)2 = 13 0,25

5a (1đ)

*

√4+2x − x2=x −2

x −20 ¿ x −2¿2

¿ 4+2x − x2=¿

0,25

*

¿ x ≥2 x23x=0

¿{

¿

(5)

*

¿ x ≥2 x=0∨x=3

¿{

¿

0,25

* Tâp nghiệm S = {3} 0,25

1.a 6a (1đ) 2.a

* c2 = a2 – b2 = 25 – = 16 ⇒c=4 0,25

* F1(-4 ; 0), F2(4 ; 0) 0,25

* Đường thẳng // Oy qua tiêu điểm bên phải elip có phương trình x =

* Tọa độ M, N nghiệm hệ:

¿ x=4

x2 25+

y2 =1

¿x=4

y=±9

5 ¿{

¿

0,25

* M(4;9

5), N(4;−

5) MN = 18

5

0,25

5b (1đ)

*

2√1− x2

<x+2

1− x20 x+2>0

4(1− x2)<x2+4x+4

¿{ {

0,25

*

¿ 1≤ x ≤1

x>2

5x2

+4x>0

¿{ {

¿

0,25

*

¿

1≤ x ≤1

x>2

x<4

5∨x>0

¿{ {

¿

0,25

* Tâp nghiệm T = ¿¿ 0,25

6b (1đ)

* Gọi (E): x

a2+ y2

b2=1(a>b>0) elip cần tìm * Vì MF1 + MF2 = 12 nên a =

0,25

* Vì (E) qua M(2√5;2) nên ta có : 20

a2+ b2=1

0,25

* 2036+

b2=1⇔b

(6)

* Vậy (E) : x 36+

y2 =1

0,25

Ngày đăng: 18/05/2021, 11:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w