Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 171 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
171
Dung lượng
12,83 MB
Nội dung
ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA BÙI TẤN NGHĨA NGHIÊN CỨU SỬ DỤNG VẬT LIỆU NANO TỪ TÍNH CoFe2O4 LÀM CHẤT MANG XÚC TÁC CHO PHẢN ỨNG KNOEVENAGEL, SONOGASHIRA, SUZUKI, HECK LUẬN ÁN TIẾN SĨ KỸ THUẬT TP HỒ CHÍ MINH NĂM 2013 ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA BÙI TẤN NGHĨA NGHIÊN CỨU SỬ DỤNG VẬT LIỆU NANO TỪ TÍNH CoFe2O4 LÀM CHẤT MANG XÚC TÁC CHO PHẢN ỨNG KNOEVENAGEL, SONOGASHIRA, SUZUKI, HECK Chuyên ngành: CÔNG NGHỆ HÓA HỌC CÁC CHẤT HỮU CƠ Mã số chuyên ngành: 62527505 Phản biện độc lập 1: GS.TS Đinh Thị Ngọ Phản biện độc lập 2: PGS.TS Nguyễn Thị Dung Phản biện 1: PGS.TS Nguyễn Thị Phương Phong Phản biện 2: PGS.TS Đặng Mậu Chiến Phản biện 3: PGS.TS Nguyễn Ngọc Hạnh NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS Phan Thanh Sơn Nam PGS.TS Lê Thị Hồng Nhan LỜI CAM ĐOAN Tác giả xin cam đoan cơng trình nghiên cứu thân tác giả Các kết nghiên cứu kết luận luận án trung thực, không chép từ nguồn hình thức Việc tham khảo nguồn tài liệu thực trích dẫn ghi nguồn tài liệu tham khảo theo yêu cầu Tác giả luận án Bùi Tấn Nghĩa i TÓM TẮT LUẬN ÁN Hạt nano siêu thuận từ CoFe2O4 tổng hợp phương pháp vi nhũ biến tính cách kết hợp ligand palladium acetate để hình thành xúc tác phức với hàm lượng palladium 0,30 mmol/g Đặc tính xúc tác xác định phương pháp nhiễu xạ tia X (XRD), kính hiển vi điện tử quét (SEM), kính hiển vi điện tử truyền qua (TEM), phân tích nhiệt trọng lượng (TGA), từ kế mẫu rung (VSM), biến đổi Fourier hồng ngoại (FT-IR), quang phổ hấp thụ nguyên tử (AAS), phân tích hàm lượng nitơ Kết chứng minh hạt nano từ tính Pd(II)-CoFe2O4 xúc tác hiệu cho phản ứng ghép đôi carbon-carbon phản ứng Suzuki 4’-bromoacetophenone với phenylboronic acid, phản ứng Sonogashira 4’-bromoacetophenone với phenylacetylene, phản ứng Heck 4’-bromoacetophenone với styrene điều kiện gia nhiệt thơng thường có hỗ trợ vi sóng Hiệu xúc tác đánh giá qua độ chuyển hóa xác định sắc ký khí Xúc tác tái sử dụng nhiều lần mà hoạt tính khơng giảm ii ABSTRACT Cobalt superparamagnetic (CoFe2O4) nanoparticles were synthesized following a microemulsion method and functionalized by using the supported ligand and palladium acetate to form the immobilized palladium complex catalyst with a palladium loading of 0.30 mmol/g The catalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), Fourier transform infrared (FT-IR), atomic absorption spectrophotometry (AAS), and nitrogen physisorption measurements The results proved that the Pd(II)-CoFe2O4 magnetic nanoparticles were as an efficient catalyst for several carbon-carbon couplings including for the Suzuki reaction between 4’bromoacetophenone with phenylboronic acid, and the Sonogashira reaction between 4’-bromoacetophenone with phenylacetylene, and the Heck reaction between 4’bromoacetophenone with styrene under conventional and microwave irradiation conditions Efficiency of catalysts in reactions was evaluated by conversion which was determined by gas chromatography The catalysts could be reused several times without significant degradation in catalytic activity iii LỜI CÁM ƠN Tôi xin trân trọng gởi lời cám ơn sâu sắc đến, Thầy PGS.TS Phan Thanh Sơn Nam, người thầy kính mến dẫn đường khoa học xuyên suốt cho luận án Cô PGS.TS Lê Thị Hồng Nhan, cô giáo tận tụy dành nhiều thời gian tâm huyết để hướng dẫn khoa học cho nghiên cứu Thầy PGS.TS Phạm Thành Quân, cô PGS.TS Nguyễn Ngọc Hạnh, thầy TS Tống Thanh Danh tập thể cán giảng viên mơn Kỹ thuật Hữu cơ, Khoa Kỹ thuật Hóa học, Đại học Bách Khoa Tp.HCM chân thành góp ý tạo điều kiện thuận lợi cho hồn thành luận án Có lúc khó khăn tưởng chừng vượt qua-vợ tôi- người đồng hành tơi vượt qua khó khăn trở ngại để hoàn thành nghiên cứu Cuối xin cảm ơn ba, má gia đình tạo nhiều động lực, nguồn cảm hứng cho học tập, nghiên cứu iv MỤC LỤC DANH MỤC CÁC HÌNH ẢNH .viii DANH MỤC BẢNG BIỂU xvii DANH MỤC CÁC TỪ VIẾT TẮT xviii GIỚI THIỆU CHƯƠNG 1: TỔNG QUAN 1.1 Giới thiệu 1.2 Phản ứng ghép đôi carbon-carbon xúc tác palladium mang chất mang polymer 1.3 Phản ứng ghép đôi carbon-carbon xúc tác palladium mang chất mang silica 13 1.4 Phản ứng ghép đôi carbon-carbon xúc tác nano palladium 20 1.5 Phản ứng ghép đôi carbon-carbon xúc tác palladium mang chất mang nano từ tính 22 1.5.1 Vật liệu từ tính 22 1.5.2 Vật liệu nano từ tính 27 1.5.3 Vật liệu nano từ tính ứng dụng làm chất mang xúc tác 28 CHƯƠNG 2: THỰC NGHIỆM 37 2.1 Nguyên vật liệu trang thiết bị 37 2.1.1 Nguyên vật liệu 37 2.1.2 Trang thiết bị 37 2.2 Tổng hợp xúc tác 39 2.2.1 Tổng hợp hạt nano từ tính CoFe2O4 (CoFe2O4 MNPs) 39 2.2.2 Làm giàu -OH bề mặt hạt nano từ tính CoFe2O4 39 2.2.3 Gắn nhóm chức amino lên hạt nano từ tính CoFe2O4 làm giàu –OH 39 2.2.4 Gắn nhóm base Schiff lên hạt nano từ tính amine hố 1N-MNPs, 2NMNPs 3N-MNPs 40 2.2.5 Cố định palladium hạt nano từ tính CoFe2O4 40 2.3 Khảo sát hoạt tính xúc tác 41 2.3.1 Phản ứng Knoevenagel 41 2.3.2 Phản ứng Sonogashira 41 2.3.3 Phản ứng Suzuki 43 v 2.3.4 Phản ứng Heck 44 2.3.5 Xử lý kết phân tích GC 45 CHƯƠNG 3: KẾT QUẢ VÀ BÀN LUẬN 47 3.1 Tổng hợp xúc tác 47 3.2 Kết thực phản ứng Knoevenagel 58 3.2.1 Kết khảo sát ảnh hưởng loại dung môi 59 3.2.2 Kết khảo sát ảnh hưởng hàm lượng xúc tác 60 3.2.3 Kết khảo sát ảnh hưởng nhóm vịng benzene benzaldehyde 61 3.2.4 Kết khảo sát tính dị thể xúc tác 62 3.2.5 Kết khảo sát khả thu hồi tái sử dụng xúc tác 63 3.2.6 Kết khảo sát tính chất đặc trưng xúc tác sau thu hồi tái sử dụng 64 3.3 Kết thực phản ứng Sonogashira 68 3.3.1 Kết khảo sát ảnh hưởng loại base 69 3.3.2 Kết khảo sát ảnh hưởng nhiệt độ cường độ chiếu xạ vi sóng 72 3.3.3 Kết khảo sát ảnh hưởng hàm lượng xúc tác 74 3.3.4 Kết khảo sát ảnh hưởng hàm lượng đồng xúc tác CuI 76 3.3.5 Kết khảo sát tỷ lệ mol phenylacetylene: 4’-bromoacetophenone 78 3.3.6 Kết khảo sát tỷ lệ mol K3PO4:4’-bromoacetophenone 80 3.3.7 Kết khảo sát ảnh hưởng nhóm halogen vòng benzene acetophenone 82 3.3.8 Kết khảo sát ảnh hưởng vị trí nhóm Br- vòng benzene acetophenone 83 3.3.9 Kết khảo sát ảnh hưởng nhóm vịng benzene bromobenzene 85 3.3.10 Kết so sánh hoạt tính xúc tác Pd-1N-MNPs, Pd-2N-MNPs Pd-3NMNPs 87 3.3.11 Kết khảo sát tính dị thể xúc tác 91 3.3.12 Kết khảo sát khả thu hồi tái sử dụng xúc tác 93 3.4 Kết thực phản ứng Suzuki 94 3.4.1 Kết khảo sát ảnh hưởng loại base 95 3.4.2 Kết khảo sát ảnh hưởng nhiệt độ 97 vi 3.4.3 Kết khảo sát ảnh hưởng hàm lượng xúc tác 98 3.4.4 Kết khảo sát ảnh hưởng tỷ lệ mol phenylboronic acid: 4’bromoacetophenone 100 3.4.5 Kết khảo sát ảnh hưởng vị trí nhóm Br- vịng benzene acetophenone 101 3.4.6 Kết khảo sát ảnh hưởng nhóm 103 3.4.7 Kết khảo sát ảnh hưởng nhóm halogen vòng benzene acetophenone 105 3.4.8 Kết so sánh hoạt tính xúc tác Pd-1N-MNPs, Pd-2N-MNPs Pd-3NMNPs 107 3.4.9 Kết khảo sát tính dị thể xúc tác 110 3.4.10 Kết khảo sát khả thu hồi tái sử dụng xúc tác 112 3.5 Kết thực phản ứng Heck 113 3.5.1 Kết khảo sát ảnh hưởng loại base 114 3.5.2 Kết khảo sát ảnh hưởng hàm lượng xúc tác 117 3.5.3 Kết khảo sát ảnh hưởng nhiệt độ 120 3.5.4 Kết khảo sát ảnh hưởng tỷ lệ mol styrene: 4’-bromoacetophenone 121 3.5.5 Kết khảo sát ảnh hưởng tỷ lệ mol base: 4’-bromoacetophenone 122 3.5.6 Kết khảo sát ảnh hưởng nhóm vòng benzene bromobenzene 123 3.5.7 Kết khảo sát ảnh hưởng nhóm halogen vịng benzene acetophenone 125 3.5.8 Kết khảo sát ảnh hưởng vị trí nhóm Br- vòng benzene acetophenone 128 3.5.9 Kết khảo sát tính dị thể xúc tác 129 3.5.10 Kết so sánh hoạt tính xúc tác Pd-1N-MNPs, Pd-2N-MNPs Pd-3NMNPs 130 3.5.11 Kết khảo sát khả thu hồi tái sử dụng xúc tác 133 KẾT LUẬN VÀ KIẾN NGHỊ 135 CÁC TÀI LIỆU CÔNG BỐ CỦA TÁC GIẢ 138 TÀI LIỆU THAM KHẢO 139 vii DANH MỤC CÁC HÌNH ẢNH Hình 1.1 Phản ứng Heck dẫn xuất aryl halide styrene Hình 1.2 Phản ứng Suzuki dẫn xuất aryl halide phenylboronic acid Hình 1.3 Phản ứng Sonogashira dẫn xuất aryl halide phenylacetylene Hình 1.4 Sơ đồ tổng hợp phức Palladium(II) chất mang polysiloxane [37] Hình 1.5 Sơ đồ tổng hợp xúc tác phức palladium chất mang ghép poly(Nvinylpyrrolidone) – silica [39] Hình 1.6 Sơ đồ tổng hợp xúc tác Pd – PHEMA/CMK-1[41] Hình 1.7 Sơ đồ tổng hợp xúc tác Hydrogel – Pd(II) [42] Hình 1.8 Xúc tác palladium chất mang Click ionic copolymer [46] 10 Hình 1.9 Cấu trúc polyamic acid [50] 11 Hình 1.10 Cơ chế phản ứng Sonogashira sử dụng xúc tác [CuIPdIIPA][BF4]3 [50] 12 Hình 1.11 Sơ đồ tổng hợp xúc tác phức Pd(II)–PPh2–PMO(Et) [52] 12 Hình 1.12 Sơ đồ tổng hợp phức Pd–NHC mang Silica [53] 13 Hình 1.13 Sơ đồ tổng hợp phức Pd-NHC ghép hợp chất silica hữu [54] 14 Hình 1.14 Sơ đồ tổng hợp phức palladium-phosphine cố định chất mang silica [55] 15 Hình 1.15 Sơ đồ tổng hợp xúc tác phức palladium chất mang 3-mercaptopropyl ghép silica gel [56] 15 Hình 1.16 Xúc tác phức palladium chất mang silica gel [57] 15 Hình 1.17 Sơ đồ tổng hợp xúc tác nano Pd(0)/SDPP [58] 16 Hình 1.18 Quy trình điều chế xúc tác palladium chất mang silica [59] 16 Hình 1.19 Sơ đồ tổng hợp xúc tác phức Pd(II)-MCM-41 [60] 17 Hình 1.20 Cấu trúc xúc tác MCM-41-Pd [61] 17 Hình 1.21 Sơ đồ tổng hợp xúc tác MCM-41-2N-Pd(II) [62] 18 Hình 1.22 Sơ đồ tổng hợp xúc tác phức SBA-15@DABCO-Pd [64] 18 Hình 1.23 Sơ đồ tổng hợp xúc tác phức [Ph-SBA-15-PPh3-Pd] cố định chất mang SBA-15 [65] 19 Hình 1.24 Hình minh họa domain vật liệu từ ferromagnetic ferrimagnetic [87] 23 Hình 1.25 Mơ tả trạng thái domain vật liệu từ ferromagnetic ferrimagnetic áp đặt từ trường [88] 24 viii tăng làm cho trạng thái Pd(0) bền, mạch amine dài giảm hiệu ứng không gian nên khả tác chất công vào tâm kim loại palladium dễ dàng Bên cạnh hiệu xúc tác, chất tác động lên phản ứng xúc tác chất mang nano từ tính chứng minh dị thể tất dạng ghép đôi carboncarbon khảo sát hoạt tính xúc tác khơng giảm đáng kể sau lần thu hồi, tái sử dụng Điều cho thấy liên kết tâm xúc tác palladium với chất mang hạt nano từ tính CoFe2O4 thơng qua ligand base Schiff bền q trình thực phản ứng ghép đơi Sonogashira, Suzuki, Heck Như vậy, thấy ngồi dễ dàng trình thu hồi sau phản ứng hiệu cao tái sử dụng nhiều lần mà hoạt tính khơng giảm đáng kể, xúc tác chất mang nano từ tính cịn thể độ bền vượt trội cấu trúc lõi hạt nano từ tính sau nhiều tác động mơi trường Điều làm tảng cho nghiên cứu mở rộng ứng dụng hạt nano từ tính làm chất mang xúc tác khác dạng phản ứng khác II Kiến nghị Cần nghiên cứu thêm ảnh hưởng môi trường chiếu xạ vi sóng lên tính chất từ hạt nano từ tính, độ bền liên kết cấu trúc hữu với hạt nano từ tính, khả đứt liên kết tâm palladium với ligand base Schiff Phổ biến quy trình tổng hợp xúc tác palladium chất mang nano từ tính sử dụng xúc tác nghiên cứu tổng hợp vật liệu kỹ thuật cao, loại dược phẩm có giá trị dựa phản ứng ghép đôi Suzuki, Sonogashira, Heck… 137 CÁC TÀI LIỆU CÔNG BỐ CỦA TÁC GIẢ Phan Thanh Son Nam, Bui Tan Nghia, Dinh Tuan Hoang, Le Vu Ha, “Microwaveassisted Sonogashira reaction using a palladium catalyst immobilized on superparamagnetic nanoparticles,” Tạp chí Khoa học Cơng nghệ, tập 50 – số 3B, trang 275-284, 2012 Phan Thanh Son Nam, Le Khac Anh Ky, Duong Van Sy Phu, Bui Tan Nghia, “Ionic liquid-mediated Knoevenagel reaction using amino-functionalized superparamagnetic nanoparticles as catalyst,” Tạp chí Khoa học Cơng nghệ, tập 50 – số 3B, trang 285294, 2012 Phan Thanh Son Nam, Tran Thi Ngoc Chau, Bui Tan Nghia, “Microwave-assisted Suzuki reactions using magnetic nanoparticle-supported palladium catalyst,” Tạp chí Hóa học, tập 50 – số 4A, trang 61-64, 2012 Nghia T BUI, Trung B DANG, Ha V LE, Nam T S PHAN, “Suzuki Reaction of Aryl Bromides Using a Phosphine-Free Magnetic Nanoparticle-Supported Palladium Catalyst,” Chinese Journal of Catalysis, Vol.32, pp 1667–1676, 2011 (ISI, IF=1.30) Phan Thanh Son Nam, Le Khac Anh Ky, Bui Duc Phu, Bui Tan Nghia, “Aminofunctionalized superparamagnetic nanoparticles as catalyst for the knoevenagel reaction in ionic liquid,” Tạp chí Khoa học Cơng nghệ, tập 49 – số 5A, trang 13-21, 2011 Bui Tan Nghia, Nguyen Thuy Hong, Phan Thanh Son Nam, “The Sonogashira reaction of iodoarenes with phenylacetylene using a magnetically recoverable palladium catalyst,” Tạp chí Khoa học Cơng nghệ, tập 49 – số 5A, trang 22-30, 2011 Bui Tan Nghia, Le Vu Ha, Hoang Khanh Van, Phan Thanh Son Nam, “The Heck reaction of aryl bromides using palladium catalyst immobilized on superparamagnetic nanoparticles,” Tạp chí Khoa học Cơng nghệ, tập 49 – số 5A, trang 98-105, 2011 Bui Tan Nghia, Tran Thi Ngoc Thao, Phan Thanh Son Nam, “Heck reactions of aryl bromides using palladium catalyst immobilized on magnetic nanoparticles under microwave irradiation,” Tạp chí Khoa học Công nghệ, tập 49 – số 3A, trang 134143, 2011 138 TÀI LIỆU THAM KHẢO [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] Sankaranarayanapillai Shylesh et al, "Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis," Angew Chem Int Ed., vol 49, pp 3428 – 3459, 2010 Nam T S Phan et al, "On the nature of the active species in palladium catalyzed MizorokiHeck and Suzuki-Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review," Advanced Synthesis & Catalysis, vol 348, pp 609-679, 2006 K C Nicolaou et al, "Palladium-catalyzed cross-coupling reactions in total synthesis," Angewandte Chemie International Edition, vol 44, pp 4442-4489, 2005 David H Brown, "Evaluation of kilogram-scale Sonogashira, Suzuki, and Heck coupling routes to oncology candidate CP-724,714," Organic Process Chemical Research & Development, vol 9, pp 440-450, 2005 Yoshitaka, "Acid-base catalysis of chiral Pd complexes: development of novel catalytic asymmetric reactions and their application to synthesis drug candidate," Chemical Pharmaceutical Bulletin, vol 54, pp 1351-1364, 2006 Msashi Kishida and Hiroyuki Akita, "Synthesis of rosavin and its analogues based on a Mizoroki-Heck type reaction," Tetrahedron: Asymmetry, vol 16, pp 2625-2630, 2005 Merritt B Andrus and Jing Liu, "Synthesis of polyhydroxylated ester analogs of the stilbene resveratrol using decarbonylative Heck couplings," Tetrahedron Letters, vol 47, pp 5817-5814, 2006 Lutz F Tietze et al, "Enantioselective palladium-catalyzed transformations," Chemical Reviews, vol 104, pp 3453-3516, 2004 Deniz S DO˘GRUER et al, "Synthesis of some pyridazine derivatives carrying urea, thiourea, and sulfonamide moieties and their antimicrobial activity," Turk J Chem, vol 34, pp 57 – 65, 2010 Sébastien GUÉRY et al, "A Convenient 3-Step Synthesis of 3-Acetamido-6-arylpyridazines Directed to Novel Y5 Receptor Antagonist," Chem Pharm Bull., vol 50, p 636—639, 2002 Navnath Gavande et al, "Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531)," Org Biomol Chem., vol 8, pp 4131–4136, 2010 Songnian Lin et al, "Total Synthesis of TMC-95A and -B via a New Reaction Leading to ZEnamides Some Preliminary Findings as to SAR," J AM CHEM SOC., vol 126, pp 63476355, 2004 Dai-Shi Su et al, "Total Synthesis of (–)-Epothilone B: An Extension of the Suzuki Coupling Method and Insights into Structure–Activity Relationships of the Epothilones," Angewandte Chemie International, vol 36, pp 757–759, 1997 K C Nicolaou et al, "Total Synthesis of Calicheamicin–Dynemicin Hybrid Molecules," Angewandte Chemie International vol 31, pp 340–342, 1992 Scott S Harried et al, "Total Synthesis of the Potent Microtubule-Stabilizing Agent (+)Discodermolide," J Org Chem , vol 68, pp 6646-6660, 2003 Gary A Molander and Florian Dehmel, "Formal Total Synthesis of Oximidine II via a SuzukiType Cross-Coupling Macrocyclization Employing Potassium Organotrifluoroborates," ChemInform, vol 35, 2004 Garg NK et al, "The total synthesis of (+)-dragmacidin F," Journal of the American Chemical Society, vol 126, pp 9552-9553, 2004 Minoru Ikoma et al, "Synthetic studies on dragmacidin D: synthesis of the left-hand fragment," Tetrahedron Letters, vol 49, pp 7197–7199, 2008 Neil K Garg and Brian M Stoltz, "The formal total synthesis of dragmacidin B, transdragmacidin C, and cis- and trans-dihydrohamacanthins A," Tetrahedron Letters, vol 46, pp 2423–2426, 2005 Toma N Glasnov and C Oliver Kappe, "Toward a Continuous-Flow Synthesis of Boscalid®," Advanced Synthesis & Catalysis, vol 352, pp 3089–3097, 2010 Samir Ghosh et al, "Convenient Synthesis of Valsartan via a Suzuki Reaction," Chem Inform, vol 41, 210 139 [22] John Spencer et al, "Synthesis of a (piperazin-1-ylmethyl)biaryl library via microwave-mediated Suzuki–Miyaura cross-couplings," Tetrahedron Letters, vol 52, pp 3963–3968, 2011 [23] K C Nicolaou et al, "Lipoxins and Related Eicosanoids: Biosynthesis, Biological Properties, and Chemical Synthesis," Angewandte Chemie International vol 30, pp 1100–1116, 1991 [24] K C Nicolaou and S E Webber, "Total synthesis of 5(S),15(S)-dihydroxy-6,13-trans-8,15-ciseicosatetraenoic acid (5,15-diHETE) and 8(S),15(S)-dihydroxy-5,11-cis 9,13-transeicosatetraenoic acid (8,15-DiHETE), two novel metabolites of arachidonic acid," J Am Chem Soc., vol 106, pp 5734–5736, 1984 [25] K C Nicolaou et al, "Stereocontrolled total synthesis of lipoxins A," J Am Chem Soc , vol 107, pp 7515–7518, 1985 [26] Chad D Hopkins et al, "Total Synthesis of (−)-CP2-Disorazole C1," Org Lett., vol 13, pp 4088–4091, 2011 [27] Michael T Crimmins et al, "The Total Synthesis of ()-Ginkgolide B," J Am Chem Soc., vol 122, pp 8453-8463, 2000 [28] Jason W B Cooke et al, "Process Research and Development of a Dihydropyrimidine Dehydrogenase Inactivator: Large-Scale Preparation of Eniluracil Using a Sonogashira Coupling," Org Proc Res Dev., vol 5, pp 383–386, 2001 [29] Masayuki Inoue et al, "Total Synthesis and Determination of the Absolute Configuration of Frondosin B," J Am Chem Soc , vol 123, pp 1878–1889, 2001 [30] K C Nicolaou et al, "Total synthesis of calicheamicin gamma.1I," J Am Chem Soc., , 114 (25), pp vol 114, pp 10082–10084, 1992 [31] J Taunton et al, "Total syntheses of di- and tri-O-methyl dynemicin A methyl esters," J Am Chem Soc., vol 115, pp 10378 – 10379, 1993 [32] J L Wood et al, "Application of the allylic diazene rearrangement: synthesis of the enediynebridged tricyclic core of dynemicin A," J Am Chem Soc., vol 114, pp 5898 – 5900, 1992 [33] H Chikashita et al, "Synthesis of the angular anthraquinone subunit of dynemicin A," J Org Chem , vol 56, pp 1692 –1694, 1991 [34] J A Porco et al, "Transannular Diels-Alder route to systems related to dynemicin A," J Am Chem Soc., vol 112, pp 7410 – 7411, 1990 [35] Irina P Beletskaya and Andrei V Cheprakov, "The Heck Reaction as a Sharpening Stone of Palladium Catalysis," Chemical Reviews, vol 100, pp 3009-3066, 2000 [36] Minfeng Zeng et al, "Highly porous chitosan microspheres supportedpalladium catalyst for coupling reactions in organic and aqueous solutions," Journal of Organometallic Chemistry, vol 704, pp 29–37, 2012 [37] Marek Cypryk et al, "Soluble polysiloxane-supported palladium catalysts for the Mizoroki– Heck reaction," Journal of Molecular Catalysis A: Chemical, vol 319 pp 30–38, 2010 [38] Linjun Shao et al, "Coupling reactions of aromatic halides with palladium catalyst immobilized on poly(vinyl alcohol) nanofiber mats," Applied Catalysis A: General, vol 413–414, pp 267– 272, 2012 [39] Bahman Tamami et al, "Palladium nanoparticles supported on poly (N-vinylpyrrolidone)grafted silica as new recyclable catalyst for Heck cross-coupling reactions," Journal of Organometallic Chemistry vol 696, pp 594-599, 2011 [40] Peipei Zhou et al, "Bacteria Cellulose Nanofibers Supported Palladium(0) Nanocomposite and Its Catalysis Evaluation in Heck Reaction," Ind Eng Chem Res., vol 51, pp 5743–5748, 20212 [41] Roozbeh Javad Kalbasi et al, "A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite," Applied Catalysis A: General, vol 423–424, pp 78–90, 2012 [42] Yaying Zhang et al, "A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media," Reactive & Functional Polymers, vol 72, pp 233–241, 2012 [43] Mélanie Chtchigrovsky et al, "Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction," Chem Mater., vol 24, pp 1505–1510, 2012 140 [44] Roozbeh Javad Kalbasi and Neda Mosaddegh, "Synthesis and characterization of Pd-poly(Nvinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer–inorganic hybrid catalyst for the Suzuki–Miyaura cross-coupling reaction," Journal of Solid State Chemistry, vol 184, pp 3095– 3103, 2011 [45] Roozbeh Javad Kalbasi et al, "Palladium nanoparticles supported on a poly(N-vinyl-2pyrrolidone)-modified mesoporous carbon nanocage as a novel heterogeneous catalyst for the Heck reaction in water," Tetrahedron Letters, vol 53, pp 3763–3766, 2012 [46] Dong Zhang et al, "Palladium nanoparticles immobilized by click ionic copolymers: Efficient and recyclable catalysts for Suzuki–Miyaura cross - couplingreaction in water," Catalysis Communications, vol 22, pp 83–88, 2012 [47] Ehsan Ullah et al, "One-step synthesis of reusable, polymer-supported tri-alkyl phosphine ligands Application in Suzuki–Miyaura and alkoxycarbonylation reactions," Tetrahedron Letters vol 53, pp 3990–3993, 2012 [48] Tatiana V Magdesieva et al, "Polypyrrole–palladium nanoparticles composite as efficient catalyst for Suzuki–Miyaura coupling," Journal of Molecular Catalysis A: Chemical, vol 353– 354, pp 50-57, 2012 [49] E Hariprasad and T P Radhakrishnan, "Palladium Nanoparticle-Embedded Polymer Thin Film “Dip Catalyst” for Suzuki–Miyaura Reaction," ACS Catal , vol 2, pp 1179–1186, 2012 [50] Tatiana V Magdesieva et al, "New heterobimetallic Cu(I)–Pd(II)-containing polymer complexes: Electrochemical synthesis and application in catalysis," Electrochimica Acta, vol 56, pp 3666–3672, 2011 [51] Habib Firouzabadi et al, "Palladium nano-particles supported on agarose as efficient catalyst and bioorganic ligand for C - C bond formation via solventless Mizoroki–Heck reaction and Sonogashira–Hagihara reaction in polyethylene glycol (PEG 400)," Journal of Molecular Catalysis A: Chemical vol 357, pp 154– 161, 2012 [52] Chunmei Kang et al, "Periodic mesoporous silica-immobilized palladium(II) complex as an effective and reusable catalyst for water-medium carbon–carbon coupling reactions," Journal of Organometallic Chemistry, vol 695, pp 120–127, 2010 [53] Elizabeth Tyrrell et al, "The synthesis and characterisation of immobilised palladium carbene complexes and their application to heterogeneous catalysis," Journal of Organometallic Chemistry vol 696, pp 3465 - 347, 2011 [54] Vivek Polshettiwar and Rajender S Varma, "Pd-N-heterocyclic carbene (NHC) organic silica: synthesis and application in carbonecarbon coupling reactions," Tetrahedron vol 64, pp 46374643, 2008 [55] Wei Chen et al, "Silica supported palladium-phosphine complex: recyclable catalyst for SuzukiMiyaura cross-coupling reactions at ambient temperature," Tetrahedron, vol 67, pp 318-325, 2011 [56] H Gruber-Woelfler et al, "Synthesis, catalytic activity, and leaching studies of a heterogeneous Pd-catalyst including an immobilized bis(oxazoline) ligand," Journal of Catalysis vol 286, pp 30–40, 2012 [57] R.K Sharma et al, "Silica-supportedpalladium complex: An efficient, highly selective and reusable organic–inorganic hybrid catalyst for the synthesis of E-stilbenes," Applied Catalysis A: General, vol 431–432, pp 33–41, 2012 [58] Nasser Iranpoor et al, "Palladium nanoparticles supported on silicadiphenyl phosphinite (SDPP) as efficient catalyst for MizorokieHeck and SuzukieMiyaura coupling reactions," Journal of Organometallic Chemistry vol 708-709, pp 118 - 124, 2012 [59] Mehran Ghiaci et al, "Synthesis and characterization of silica-supported Pd nanoparticles and its application in the Heck reaction," Chinese Chemical Letters, vol 23, pp 887–890, 2012 [60] Susmita Bhunia et al, "Anchoring of palladium(II) in chemically modified mesoporous silica: An efficient heterogeneous catalyst for Suzuki cross-coupling reaction," Inorganica Chimica Acta, vol 363, pp 3993–3999, 2010 [61] Bo-Nan Lin et al, "Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex," Molecules vol 15, pp 9157-9173, 2010 141 [62] Hong Zhao et al, "A simple, efficient and recyclable phosphine-free catalytic system for Suzuki–Miyaura reaction of aryl bromides," Journal of Molecular Catalysis A: Chemical, vol 337, pp 56–60, 2011 [63] Subhash Banerjee et al, "Synthesis of substituted acetylenes, aryl-alkyl ethers, 2-alkene-4ynoates and nitriles using heterogeneous mesoporous Pd-MCM-48 as reusable catalyst," Tetrahedron vol 67, pp 5717 - 5724, 2011 [64] Hongling Li et al, "Palladium with spindle-like nitrogen ligand supported on mesoporous silica SBA-15: A tailored catalyst for homocoupling of alkynes and Suzuki coupling," Microporous and Mesoporous Materials vol 148, pp 166–173, 2012 [65] Xiu Juan Feng et al, "Preparation and application of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide," Chinese Chemical Letters, vol 22, pp 643–646, 2011 [66] Peiyu Wang and Xiaoping Zheng, "Pd/SBA-15 nanocomposite: Synthesis, structure and catalytic properties in Heck reactions," Powder Technology, vol 210, pp 115–121, 2011 [67] Wonghil Chang et al, "An efficient microwave-assisted Suzuki reaction using Pd/MCM-41 and Pd/SBA-15 as catalysts in solvent-free condition," Journal of Industrial and Engineering Chemistry, vol 18, pp 581–585, 2012 [68] Guozhong Cao and Ying Wang, "Nanostructures & nanomaterials : synthesis, properties & applications," Imperial College Press, 2007 [69] J S Miller and M Drillon, "Magnetism: Molecules to Materials III," Wiley-VCH Verlag GmbH, 2002 [70] Clemens Burda et al, "Chemistry and Properties of Nanocrystals of Different Shapes," Chem Rev., vol 105, pp 1025-1102, 2005 [71] Sophie Laurent et al, "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications," Chem Rev , vol 108, pp 2064–2110, 2008 [72] Mark T Swihart, "Vapor-phase synthesis of nanoparticles," Current Opinion in Colloid and Interface Science, vol 8, pp 127–133, 2003 [73] Brian L Cushing et al, "Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles," Chem Rev , vol 104, pp 3893-3946, 2004 [74] Moisés Pérez-Lorenzo, "Palladium Nanoparticles as Efficient Catalysts for Suzuki CrossCoupling Reactions," J Phys Chem Lett., vol 3, pp 167–174, 2012 [75] Thomas S.A Heugebaert et al, "Biodeposited Pd/Au bimetallic nanoparticles as novel Suzuki catalysts," Tetrahedron Letters, vol 53, pp 1410–1412, 2012 [76] Gizelda O.D Estrada et al, "Pd/Nb2O5: efficient supported palladium heterogeneous catalyst in the production of key intermediates for the synthesis of ‘sartans’ via the Suzuki reaction," Tetrahedron Letters, vol 53, pp 1089–1093, 2012 [77] S.R SANJAYKUMAR et al, "Ce0·98Pd0·02O2-δ: Recyclable, ligand free palladium(II) catalyst for Heck reaction," J Chem Sci , vol 123, pp 47–54, 2011 [78] Felora Heshmatpour et al, "Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction," Tetrahedron, vol 68, pp 3001-3011, 2012 [79] Wei Wang et al, "Palladium nanoparticles generated from allylpalladium chloride in situ: A simple and highly efficient catalytic system for Mizoroki–Heck reactions," Journal of Organometallic Chemistry vol 697, pp 1–5, 2012 [80] Dingzhong Yuan and Bin Huang, "Macroporous P (GMA–DVB–TRIM) microspheres supported diethylenetriamine palladium complex: An efficient and recyclable catalyst for Heck reactions," Catalysis Communications, vol 18, pp 126–131, 2012 [81] Christy Riann Vestal, "Magnetic couplings and superparamagnetic properties of spinel ferrite nanoparticles," Georgia Institute of Technology, vol A Dissertation of Doctor of Philosophy in Chemistry, 2004 [82] An-Hui Lu et al, "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application," Angew Chem Int Ed , vol 46, pp 1222 – 1244, 2007 [83] B.D.Cullity and C.D.Graham, "Intraduction to Magnetic Materials," John Wiley, vol IEEE Inc, 1972 142 [84] Soshin Chikazum, "Physics of Magnetism," Oxford University Press, vol Second Edition, p 649, 1996 [85] Raul Valenzuela, "Magnetic Ceramics," Chemistry of solid state materials, vol Cambridge University Press, p 289, 1994 [86] D Carta et al, "A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni)," J Phys Chem C, vol 113, pp 8606–8615, 2009 [87] W D Kingery et al, "Introduction to Ceramics," John Wiley & Sons, Inc, vol 2nd edition, 1976 [88] O H.Wyatt and D Dew-Hughes, " Metals, Ceramics and Polymers," Cambridge University Press, 1974 [89] Guozhong Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications," Imperial College Press, p 425, 2004 [90] Ajay Kumar Gupta and Mona Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, vol 26, pp 3995–4021, 2005 [91] Choon Woo Lim and In Su Lee, "Magnetically recyclable nanocatalyst systems for the organic reactions," Nano Today, vol 5, p 412—434, 2010 [92] Vivek Polshettiwar and Rajender S Varma, "Nanoparticle-Supported and Magnetically Recoverable Ruthenium Hydroxide Catalyst: Efficient Hydration of Nitriles to Amides in Aqueous Medium," Chemistry - A European Journal, vol 15, pp 1582–1586, 2009 [93] Vivek Polshettiwar and Rajender S Varma, "Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number " Org Biomol Chem., vol 7, pp 37-40, 2009 [94] Oliver Gleeson et al, "The First Magnetic Nanoparticle-Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability," Chemistry - A European Journal, vol 15, pp 5669–5673, 2009 [95] Debanjan Guin et al, "Pd on Amine-Terminated Ferrite Nanoparticles: A Complete Magnetically Recoverable Facile Catalyst for Hydrogenation Reactions," ORGANIC LETTERS, vol 9, pp 1419-1421, 2007 [96] Hari M R Gardimalla et al, "Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates," Chem Commun., pp 4432-4434, 2005 [97] Philip D Stevens et al, "Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions," Chem Commun., pp 4435-4437 205 [98] Yan Zheng et al, "A Magnetic Biomimetic Nanocatalyst for Cleaving Phosphoester and Carboxylic Ester Bonds under Mild Conditions," Org Lett., vol 8, pp 3215–3217, 2006 [99] Shijie Ding et al, "Magnetic Nanoparticle Supported Catalyst for Atom Transfer Radical Polymerization," Macromolecules, vol 39, pp 6399–6405, 2006 [100] Raed Abu-Reziq et al, "Separable Catalysts in One-Pot Syntheses for Greener Chemistry," Chem Mater., vol 20, pp 2544–2550, 2008 [101] Chao Che et al, "Magnetic nanoparticle-supported Hoveyda–Grubbs catalysts for ring-closing metathesis reactions " Chemical Communications vol 40, pp 5990-5992, 2009 [102] Florian Michalek et al, "Synthesis of functional cobalt nanoparticles for catalytic applications Use in asymmetric transfer hydrogenation of ketones," Journal of Materials Chemistry vol 18, pp 4692-4697, 2008 [103] Tae-Jong Yoon et al, "Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling," New J Chem., vol 27, pp 227-229, 2003 [104] Nam T S Phan et al, "Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst," Angew Chem, Int Ed, vol 45, pp 2209-2212, 2006 [105] M Kawamura and K Sato, "Magnetically separable phase-transfer catalysts," Chem Commun., pp 4718-4719, 2006 [106] Sanzhong Luo et al, "Magnetic Nanoparticle-Supported Morita–Baylis–Hillman Catalysts," Advanced Synthesis & Catalysis, vol 349, pp 2431–2434, 2007 143 [107] Ryosuke Matsuno et al, "Polystyrene- and Poly(3-vinylpyridine)-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxide-Mediated Radical Polymerization," Macromolecules, vol 37, pp 2203–2209, 2004 [108] Aiguo Hu et al, "Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones," J Am Chem Soc., vol 127, pp 12486–12487, 2005 [109] Rafael Luque et al, "Magnetically separable nanoferrite-anchored glutathione: aqueous homocoupling of arylboronic acids under microwave irradiation," Green Chem., vol 12, pp 1540-1543, 2010 [110] Vivek Polshettiwar et al, "Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst," Chem Commun., pp 1837-1839 2009 [111] Vivek Polshettiwar and Rajender S Varma, "Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis," Tetrahedron vol 66, pp 1091–1097, 2010 [112] Vivek Polshettiwar and Rajender S Varma, "Green chemistry by nano-catalysis," Green Chem., vol 12, pp 743-754, 2010 [113] Philip D Stevens et al, "Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki CrossCoupling Reactions," Org Lett., vol 7, pp 2085–2088, 2005 [114] Shouhu Xuan et al, "Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites," Langmuir, vol 25, pp 11835–11843, 2009 [115] Hui Zhang et al, "Fe3O4/Polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure: Synthesis, Characterization, and Their Electrochemical Properties," Langmuir, vol 24, pp 13748-13752, 2008 [116] Daniel Rosario-Amorin et al, "Dendron-Functionalized Core–Shell Superparamagnetic Nanoparticles: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C CrossCoupling Reactions," Chemistry - A European Journal, vol 15, pp 12636–12643, 2009 [117] Yuhong Wang et al, "Recyclablenano-sizePdcatalystgenerated in the multilayerpolyelectrolytefilms on the magneticnanoparticlecore," Journal of Molecular Catalysis A: Chemical, vol 263, pp 163–168, 2007 [118] Kyung Min Yeo et al, "Core–Satellite Heterostruture of Fe3O4–Pd Nanocomposite: Selective and Magnetically Recyclable Catalyst for Decarboxylative Coupling Reaction in Aqueous Media," Chem Lett., vol 37, pp 116-117, 2008 [119] Zhu Yinghuai et al, "Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions," Advanced Synthesis & Catalysis, vol 349, pp 1917–1922, 2007 [120] Zhu Yinghuai et al, "Magnetic Nanoparticle Supported Second Generation Hoveyda–Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters," Advanced Synthesis & Catalysis, vol 351, pp 2650–2656, 2009 [121] Sankaranarayanapillai Shylesh et al, "Nanoparticle Supported, Magnetically Recoverable Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for Selective Epoxidation Reactions," Advanced Synthesis & Catalysis, vol 351, pp 1789–1795, 2009 [122] Mohammadreza M Shokouhimehr et al, "A magnetically recyclable nanocomposite catalyst for olefin epoxidation.," Angew Chem Int Ed., vol 46, pp 7039-7043, 2007 [123] Raed Abu-Reziq et al, "Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts," J Am Chem Soc., vol 128, pp 5279–5282, 2006 [124] Jianping Ge et al, "Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability," Angew Chem Int Ed., vol 47, pp 8924-8928, 2008 [125] Marina V Barmatova et al, "Magnetically separable titanium-silicate mesoporous materials with core–shell morphology: synthesis, characterization and catalytic properties," J Mater Chem., vol 19, pp 7332-7339, 2009 [126] E Maria Claesson et al, "Magnetic silica colloids for catalysis," Journal of Magnetism and Magnetic Materials, vol 311, pp 41–45, 2007 [127] Guan-Ping Jin et al, "Magnetically moveable bimetallic (nickel/silver) nanoparticle/carbon nanotube composites for methanol oxidation," New J Chem., vol 33, pp 107-111, 2009 144 [128] Dong Kee Yi et al, "Synthesis and Applications of Magnetic Nanocomposite Catalysts," Chem Mater., vol 18, pp 2459–2461, 2006 [129] Jinwoo Lee et al, "Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High-Performance Biocatalysts," Small, vol 4, pp 143–152, 2008 [130] Kyung Sig Lee et al, "Synthesis of hybrid Fe3O4–silica–NiO superstructures and their application as magnetically separable high-performance biocatalysts," Chem Commun., pp 3780-3782, 2009 [131] Alexander Schätz et al, "Cu(II)-Azabis(oxazoline)-Complexes Immobilized on Superparamagnetic Magnetite@Silica-Nanoparticles: A Highly Selective and Recyclable Catalyst for the Kinetic Resolution of 1,2-Diols," Advanced Functional Materials, vol 19, pp 2109–2115, 2009 [132] Myung-Jong Jin et al, "A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides," Angewandte Chemie, vol 122, pp 1137–1140, 2010 [133] Ciarán Ó Dálaigh et al, "A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability," Angewandte Chemie International Edition, vol 46, pp 4329–4332, 2007 [134] Chul-Ho Jun et al, "Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dualfunction nanoplatform " Chem Commun., pp 1619-1621, 2006 [135] Alexander Schätz et al, "TEMPO Supported on Magnetic C/Co-Nanoparticles: A Highly Active and Recyclable Organocatalyst," Chemistry - A European Journal, vol 14, pp 8262–8266, 2008 [136] Xin-Bo Zhang et al, "Magnetically Recyclable Fe@Pt Core−Shell Nanoparticles and Their Use as Electrocatalysts for Ammonia Borane Oxidation: The Role of Crystallinity of the Core," J Am Chem Soc., vol 131, pp 2778–2779, 2009 [137] An-Hui Lu et al, "Nanoengineering of a Magnetically Separable Hydrogenation Catalyst," Angewandte Chemie International Edition, vol 43, pp 4303–4306, 2004 [138] Daewon Lee et al, "Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica," Advanced Synthesis & Catalysis, vol 348, pp 41–46, 2006 [139] Arlin Jose Amali and Rohit Kumar Rana "Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions," Green Chem., vol 11, pp 1781-1786, 2009 [140] Jaeyun Kim et al, "Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres," Angewandte Chemie International Edition, vol 45, pp 4789–4793, 2006 [141] Min Serk Kwon et al, "Magnetically Separable Pd Catalyst for Highly Selective Epoxide Hydrogenolysis under Mild Conditions," ORGANIC LETTERS, vol 9, pp 3417-3419, 2007 [142] Sungrok Ko and Jyongsik Jang, "A Highly Efficient Palladium Nanocatalyst Anchored on a Magnetically Functionalized Polymer-Nanotube Support," Angewandte Chemie International Edition, vol 45, pp 7564–7567, 2006 [143] Kohsuke Mori et al, "Catalytically active, magnetically separable, and water-soluble FePt nanoparticles modified with cyclodextrin for aqueous hydrogenation reactions " Green Chem., vol 11, pp 1337-1342, 2009 [144] Hari M R Gardimalla et al, "Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates " Chem Commun., pp 4432-4434, 2005 [145] Wen Wang et al, "Recyclable Nanobiocatalyst for Enantioselective Sulfoxidation: Facile Fabrication and High Performance of Chloroperoxidase-Coated Magnetic Nanoparticles with Iron Oxide Core and Polymer Shell," J Am Chem Soc., vol 131, pp 12892–12893, 2009 [146] Kyung Sig Lee et al, "Synthesis of hybrid Fe3O4–silica–NiO superstructures and their application as magnetically separable high-performance biocatalysts " Chem Commun , pp 3780-3782, 2009 [147] Xin Gao et al, "Colloidal stable silica encapsulated nano-magnetic composite as a novel biocatalyst carrier " Chem Commun., pp 2998-2999, 2003 145 [148] Lizeng Gao et al, "Magnetite Nanoparticle-Linked Immunosorbent Assay," J Phys Chem C, vol 112, pp 7357–17361, 2008 [149] Huang-Hao Yang et al, "Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations," Anal Chem., vol 76, pp 1316–1321, 2004 [150] Liang-Jung Chien and Cheng-Kang Lee, "Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle," Biotechnology and Bioengineering, vol 100, pp 223–230, 2008 [151] Ibrahim Sharifia et al, "Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods," Journal of Magnetism and Magnetic Materials, vol 324, pp 1854–1861, 2012 [152] Qingwei Du et al, "Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high performance catalyst for Suzuki and Heck cross-couplingreactions," Tetrahedron, vol 68, pp 3577–3584, 2012 [153] Xiaodong Jin et al, "Magnetite nanoparticles immobilized Salen Pd (II) as a green catalyst for Suzuki reaction," Catalysis Communications, vol 26, pp 199–203, 2012 [154] Shaozhong Li et al, "One-pot solvothermal synthesis of Pd/Fe3O4 nanocomposite and its magnetically recyclable and efficient catalysis for Suzuki reactions," Journal of Molecular Catalysis A: Chemical vol 359, pp 81–87, 2012 [155] Kula Kamal Senapati et al, "Palladium nanoparticle supported on cobalt ferrite: An efficient magnetically separable catalyst for ligand free Suzuki coupling," Journal of Molecular Catalysis A: Chemical vol 352, pp 128–134, 2012 [156] Rafael Cano et al, "Impregnated palladium on magnetite, a new catalyst for the ligand-free cross-coupling SuzukieMiyaura reaction," Tetrahedron vol 67, pp 5432-5436, 2011 [157] Rafael Cano et al, "Impregnated copper or palladiumecopper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: a straightforward synthesis of benzo[b]furans and indoles," Tetrahedron vol 68, pp 1393-1400, 2012 [158] Yetong Liao et al, "Magnetite Nanoparticle-Supported Coordination Polymer Nanofibers: Synthesis and Catalytic Application in Suzuki-Miyaura Coupling," Applied Materials & Interfaces vol 2, pp 2333–2338, 2010 [159] Babita Baruwati et al, "Pd on Surface-Modified NiFe2O4 Nanoparticles: A Magnetically Recoverable Catalyst for Suzuki and Heck Reactions," ORGANIC LETTERS, vol 9, pp 53775380, 2007 [160] Zhe Gao et al, "Pd-loaded superparamagnetic mesoporous NiFe2O4 as a highly active and magnetically separable catalyst for Suzuki and Heck reactions," Journal of Molecular Catalysis A: Chemical vol 336, pp 51–57, 2011 [161] Fengwei Zhang et al, "Palladium was supported on superparamagnetic nanoparticles: A magnetically recoverable catalyst for Heck reaction," Materials Research Bulletin, vol 47, pp 504–507, 2012 [162] Mingliang Ma et al, "Preparation of high-magnetization Fe3O4–NH2–Pd (0) catalyst for Heck reaction," Catalysis Communications, vol 17, pp 168–172, 2012 [163] Natália J.S Costa et al, "A single-step procedure for the preparation of palladiumnanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-couplingreactions," Journal of Catalysis, vol 276, pp 382–389, 2010 [164] Zhifei Wang et al, "Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol 276 pp 116–121, 2006 [165] Urszula Laska et al, "Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use," Journal of Catalysis vol 268, pp 318–328, 2008 [166] Dingzhong Yuan et al, "Supported nanosized palladium on superparamagnetic composite microspheres as an efficient catalyst for Heck reaction," Catalysis Communications vol 11, pp 606–610, 2010 [167] X Zhang et al, "An Efficient and Recyclable Magnetic-Nanoparticle-Supported Palladium Catalyst for the Suzuki Coupling Reactions of Organoboronic Acids with Alkynyl Bromides," Synthesis, vol 18, pp 2975-2983, 2011 146 [168] Xing-Can Shen et al, "Synthesis and Characterization of 3-AminopropyltriethoxysilaneModified Superparamagnetic Magnetite Nanoparticles," Chemistry Letters, vol 33, pp 14681469 2004 [169] C R Vestal and Z J Zhang, "Normal micelle synthesis and characterization of MgAl2O4 spinel nanoparticles," Journal of Solid State Chemistry, vol 175, pp 59-62, 2003 [170] Monzer Fanun, "Microemulsions: Properties and Applications," Taylor & Francis Group, vol 144, p 564, 2009 [171] T Charinpanitkul et al, "Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion," Science and Technology of Advanced Materials, vol 6, pp 266-271, 2005 [172] Mark J Gronnow et al, "A novel highly active biomaterial supported palladium catalyst," Green Chem., vol 7, pp 552-557, 2005 [173] D C Sherrington and A P Kybett, "Supported Catalysts and Their Applications," The Royal Society of Chemistry, vol 266, p 269, 2001 [174] S Shylesh et al, "Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis," Angewandte Chemie International, vol 49, pp 3428-3459, 2010 [175] R.N Panda et al, "Magnetic properties of nano-crystalline Gd- or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique," Journal of Magnetism and Magnetic Materials vol 257, pp 79–86, 2003 [176] K Park and D Y Bang, "Influence of the Composition and the Sintering Temperature on the Electrical Resistivities of Ni-Mn-Co-(Fe) Oxide NTC Thermistors," Journal of the Korean Physical Society, vol 41, pp 251-256, 2002 [177] Shi-Yong Zhao et al, "Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption," Bull Korean Chem Soc., vol 27, p 237, 2006 [178] Gill C.S et al, "Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts," J Catal, vol 251, pp 145-152, 2007 [179] Ma.M et al, "Preparation and characterization of magnetite nanoparticles coated by amino silane," Colloids Surf A, 2003, 212: 219, vol 212, pp 219-226, 2003 [180] Nam T S Phan and C.W Jones, "Highly accessible catalytic sites on recyclable organosilanefunctionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts," J Mol Catal A, vol 253, pp 123-131, 2006 [181] X Xu-xian et al, "Synthesis and characterization of CoFe2O4 nanoparticles," Trans Nonferrous Met Soc China, vol 15, pp 1072 - 1077, 2005 [182] K Can et al, "Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization," Colloids and Surfaces B: Biointerfaces, vol 71, pp 154159, 2009 [183] Chao Liu et al, "Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties," Pure Appl Chem., vol 72, pp 37–45, 2000 [184] N Moumen and M P Pileni, "New Syntheses of Cobalt Ferrite Particles in the Range 2−5 nm: Comparison of the Magnetic Properties of the Nanosized Particles in Dispersed Fluid or in Powder Form," Chem Mater., vol 8, pp 1128–1134, 1996 [185] An-Hui Lu et al, "Magnetic nanoparticles: synthesis, protection, functionalization, and application," Angew Chem Int Ed Engl , vol 46, pp 1222-1244, 2007 [186] R.H Kodama, "Magnetic nanoparticles," Journal of Magnetism and Magnetic Materials, vol 200 pp 359–372, 1999 [187] Randy De Palma et al, "Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible," Chem Mater., vol 19, pp 1821–1831, 2007 [188] Xiaoli Zhao et al, "Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples," Journal of Chromatography A vol 1188, pp 140–147, 2008 [189] M Yamaura et al, "Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles," Journal of Magnetism and Magnetic Materials, vol 279, pp 210– 217, 2004 147 [190] Xing-Can Shen et al, "Synthesis and Characterization of 3-AminopropyltriethoxysilaneModified Superparamagnetic Magnetite Nanoparticles," Chemistry Letters, vol 33, pp 14681469, 2004 [191] A Durdureanu-Angheluta et al, "SILANE COVERED MAGNETITE PARTICLES PREPARATION AND CHARACTERISATION," Digest Journal of Nanomaterials and Biostructures, vol 3, pp 33 - 40, 2008 [192] Jing Sun et al, "Synthesis and characterization of biocompatible Fe3O4 nanoparticles," Wiley InterScience, pp 333-341, 2006 [193] Wen Hu et al, "Enzyme catalytic promiscuity: The papain-catalyzed Knoevenagel reaction," Biochimie, vol 94, pp 656-661, 2012 [194] Firouz Matloubi Moghaddam et al, "A new domino Knoevenagel-hetero-DielseAlder reaction: an efficient catalyst-free synthesis of novel thiochromone-annulated thiopyranocoumarin derivatives in aqueous medium," Tetrahedron, vol 66, pp 8615-8622, 2010 [195] Zhenjun Du et al, "Alkyl 2-(2-benzothiazolylsulfinyl)acetates as useful synthetic reagents for alkyl 4-hydroxyalk-2-enoates by sulfinyl-Knoevenagel reaction," Tetrahedron, vol 68, pp 2471-2480, 2012 [196] Mehdi Ghandi et al, "Efficient access to novel hexahydro-chromene and tetrahydro-pyrano[2,3d] pyrimidine-annulated benzo-δ-sultones via a domino Knoevenagel-hetero-DielseAlder reaction in water," Tetrahedron, vol 67, pp 8484-8491, 2011 [197] V.S.R Rajasekhar Pullabhotla et al, "Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach," Catalysis Communications, vol 10, pp 365–369, 2009 [198] Yan Zhang et al, "Basic ionic liquids supported on hydroxyapatite-encapsulated -Fe2O3 nanocrystallites: An efficient magnetic and recyclable heterogeneous catalyst for aqueous Knoevenagel condensation," Journal of Molecular Catalysis A: Chemical vol 306, pp 107– 112, 2009 [199] Kula Kamal Senapati et al, "Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium," Journal of Molecular Catalysis A: Chemical vol 339, pp 24–31, 2011 [200] Pedro Verdía et al, "Knoevenagel Reaction in [MMIm][MSO4]: Synthesis of Coumarins," Molecules vol 16, pp 4379-4388, 2011 [201] John Mondal et al, "Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels–Alder reactions," Journal of Molecular Catalysis A: Chemical, vol 335, pp 236–241, 2011 [202] Xiongfu Zhang et al, "An investigation of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst," Applied Catalysis A: General vol 261, pp 109–118, 2004 [203] K.M Parida and Dharitri Rath, "Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction," Journal of Molecular Catalysis A: Chemical, vol 310, pp 93–100, 2009 [204] K C Nicolaou et al, "Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis," Angewandte Chemie International Edition, vol 44, pp 4442–4489, 2005 [205] A O King and N Yasuda, "Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals," Topics in Organometallic Chemistry, vol 6, pp 205-245 2004 [206] Jiro Tsuji, "Palladium Reagents and Catalysts: New Perspectives for the 21st Century," John Wiley & Sons, 2004 [207] Rafael Chinchilla and Carmen Nájera, "Recent advances in Sonogashira reactions," Chemical Society Reviews, vol 40, pp 5084-5121, 2011 [208] Y Hamashima, "Acid-base catalysis of chiral Pd complexes: development of novel catalytic asymmetric reactions and their application to synthesis drug candidate," Chemical Pharmaceutical Bulletin, vol 54, pp 1351-1364, 2006 [209] Rafael Chinchilla and Carmen Nájera, "The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry," Chem Rev., vol 107, pp 874-922, 2007 [210] José Ruiz et al, "A Copper- and Amine-Free Sonogashira Reaction of Aryl Halides Catalyzed by 1,3,5-Triaza-7-phosphaadamantane Palladium Systems," Organometallics, vol 25, pp 5768–5773, 2006 148 [211] Yu Chen et al, "An efficient, microwave-assisted, one-pot synthesis of indoles under Sonogashira conditions," Tetrahedron, vol 65, pp 8908–8915, 2009 [212] David Conreaux et al, "A convenient access to furo[3,2-c]pyridin-6(5H)-ones by the reaction of 5-iodo-4-methoxy-2-pyridones with terminal alkynes under microwave-enhanced Sonogashira conditions," Tetrahedron Letters, vol 50, pp 3299–3301, 2009 [213] S M Islam et al, "Heterogeneous Suzuki and copper-free Sonogashira cross-coupling reactions catalyzed by a reusable palladium(II) complex in water medium," Tetrahedron Letters vol 51, pp 2067–2070, 2010 [214] Ying He and Chun Cai, "Heterogeneous copper-free Sonogashira coupling reaction catalyzed by a reusable palladium Schiff base complex in water," Journal of Organometallic Chemistry, vol 696, pp 2689-2692, 2011 [215] Fan Yang et al, "Cyclopalladated ferrocenylimines: efficient catalysts for homocoupling and Sonogashira reaction of terminal alkynes," Tetrahedron, vol 63, pp 1963–1969, 2007 [216] K Jecen, "An Overview of the Sonogashira Reaction ", CH 609 Literature Review [217] Rina Singh and George Just, "Rates and regioselectivities of the palladium-catalyzed ethynylation of substituted bromo- and dibromobenzenes," J Org Chem., vol 54, pp 4453– 4457, 1989 [218] M Marigo et al, "Polymerization of phenylacetylene catalyzed by organoiridium compounds," Journal of Molecular Catalysis A: Chemical, vol 187, pp 169-177, 2002 [219] Ahmed El Akkaoui et al, "Pd-catalyzed regiocontrolled Sonogashira and Suzuki cross-coupling reaction of 3,6-dihalogenoimidazo[1,2-a]pyridines: one-pot double-coupling approach," Tetrahedron, vol 67, pp 7128-7138, 2011 [220] K Prabakaran et al, "An efficient copper-free Pd(OAc)2/Ruphos-catalyzed Sonogashira coupling of 1-chloroisoquinolines in the formation of 1-alkynyl-3-substituted isoquinolines," Tetrahedron Letters, vol 52, pp 2566–2570, 2011 [221] Alexander N Marziale et al, "An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures," Tetrahedron Letters, vol 52, pp 6355–6358, 2011 [222] Shinji Murai et al, "Activation of Unreactive Bonds and Organic Synthesis," Topics in Organometallic Chemistry, vol 3, 1999 [223] Zhi-Wen Ye and Wen-Bin Yi, "Polymer-supported palladium perfluorooctanesulfonate [Pd(OPf)2]: A recyclable and ligand-free palladium catalyst for copper-free Sonogashira coupling reaction in water under aerobic conditions," Journal of Fluorine Chemistry vol 129, pp 1124–1128, 2008 [224] Nam T S Phan et al, "Solid-supported cross-coupling catalysts derived from homogeneous nickel and palladium coordination complexes," Dalton Trans, pp 1348-1357, 2004 [225] Ting He et al, "Copper and amine free Sonogashira cross-coupling reaction catalyzed by efficient diphosphane–palladium catalyst," Chinese Chemical Letters, vol 22, pp 1175–1178, 2011 [226] Laurent Djakovitch and Patrick Rollet, "Sonogashira cross-coupling reactions catalysed by heterogeneous copper-free Pd-zeolites," Tetrahedron Letters, vol 45, pp 1367–1370, 2004 [227] Vivek Polshettiwar et al, "Silica-supported palladium: Sustainable catalysts for cross-coupling reactions," Coordination Chemistry Reviews, vol 153, pp 2599–2626, 2009 [228] Habib Firouzabadi et al, "Magnetite (Fe3O4) Nanoparticles-Catalyzed Sonogashira–Hagihara Reactions in Ethylene Glycol under Ligand-Free Conditions," Adv Synth Catal., vol 353, pp 125 – 132, 2011 [229] Norio Miyaura and Akira Suzuki, "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds," Chem Rev., vol 95, pp 2457–2483, 1995 [230] Nam T S Phan and Peter Styring, "Supported phosphine-free palladium catalysts for the Suzuki–Miyaura reaction in aqueous media," Green Chem., vol 10, pp 1055-1060, 2008 [231] Chongmin Zhong et al, "Ni ion-containing ionic liquid salt and Ni ion-containing immobilized ionic liquid on silica: Application to Suzuki cross-coupling reactions between chloroarenes and arylboronic acids," Journal of Catalysis, vol 242, pp 357–364, 2006 149 [232] Cristina Sicre et al, "Regioselectivity in alkenyl(aryl)-heteroaryl Suzuki cross-coupling reactions of 2,4-dibromopyridine A synthetic and mechanistic study," Tetrahedron, vol 62, pp 11063–11072, 2006 [233] Fabio Bellina et al, "Efficient and Practical Synthesis of 4(5)-Aryl-1H-imidazoles and 2,4(5)Diaryl-1H-imidazoles via Highly Selective Palladium-Catalyzed Arylation Reactions," J Org Chem., vol 72, pp 8543–8546, 2007 [234] Sven Schröter et al, "Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles," Tetrahedron, vol 61, pp 2245–2267, 2005 [235] Ian J S Fairlamb, "3 Transition metals in organic synthesis," Annu Rep Prog Chem., Sect B: Org Chem., vol 101, pp 69-102, 2005 [236] Renzo Rossi et al, "Highly selective palladium-catalyzed Suzuki-Miyaura monocoupling reactions of ethene and arene derivatives bearing two or more electrophilic sites," Tetrahedron, vol 67, pp 6969-7025, 2011 [237] Pankaj Das et al, "Triphenylphosphine chalcogenides as efficient ligands for room temperature palladium(II)-catalyzed Suzuki–Miyaura reaction," Tetrahedron Letters, vol 51, pp 1479– 1482, 2010 [238] Mengping Guo and Qiaochu Zhang, "An inexpensive and highly stable palladium(II) complex for room temperature Suzuki coupling reactions under ambient atmosphere," Tetrahedron Letters, vol 50, pp 1965–1968, 2009 [239] Renzo Rossi et al, "Highly selective palladium-catalyzed SuzukieMiyaura monocoupling reactions of ethene and arene derivatives bearing two or more electrophilic sites," Tetrahedron, vol 67, pp 6969-7025, 2011 [240] Robin B Bedford et al, "Orthopalladated and -platinated Bulky Triarylphosphite Complexes: Synthesis, Reactivity and Application as High-Activity Catalysts for Suzuki and Stille Coupling Reactions," Chemistry - A European Journal, vol 9, pp 3216–3227, 2003 [241] Jiayi Wang et al, "Reusable Pd nanoparticles immobilized on functional ionic liquid copolymerized with styrene for Suzuki reactions in water–ethanol solution," Tetrahedron Letters vol 52, pp 1477–1480, 2011 [242] Roozbeh Javad Kalbasi and Neda Mosaddegh, "Synthesis and characterization of Pd-poly(Nvinyl-2-pyrrolidone)/ KIT-5 nano composite as a polymer–inorganic hybrid catalyst for the Suzuki–Miyaura cross-coupling reaction," Journal of Solid State Chemistry, vol 184, pp 3095– 3103, 2011 [243] Liang Wang and Chun Cai, "Fluorous silica gel-supported perfluoro-tagged palladium nanoparticles catalyze Suzuki cross-coupling reaction in water," Journal of Molecular Catalysis A: Chemical vol 306, pp 97–101, 2009 [244] Nam T S Phan et al, "Solid-supported cross-coupling catalysts derived from homogeneous nickel and palladium coordination complexes " Dalton Trans., 2004, , pp 1348-1357, 2004 [245] Mengping Guo and Qiaochu Zhang, "An inexpensive and highly stable palladium(II) complex for room temperature Suzuki coupling reactions under ambient atmosphere," Tetrahedron Lett, vol 50, pp 1965-1968, 2009 [246] Christian Torborg et al, "Improved Palladium-Catalyzed Sonogashira Reactions of Aryl Chlorides," Chemistry - A European Journal, vol 15, pp 1329–1336, 2009 [247] Marie Feuerstein et al, "Sonogashira cross-coupling reactions of aryl chlorides with alkynes catalysed by a tetraphosphine–palladium catalyst," Tetrahedron Letters, vol 45, pp 8443–8446, 2004 [248] Takayoshi Hara et al, "Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen " Green Chem., vol 9, pp 1246-1251, 2007 [249] Francisco Alonso et al, "Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling: a critical overview," Tetrahedron, vol 61, pp 11771–11835, 2005 [250] Anna M Trzeciak and Józef J Ziółkowski, "Monomolecular, nanosized and heterogenized palladium catalysts for the Heck reaction," Coordination Chemistry Reviews vol 251, pp 1281– 1293, 2007 150 [251] Gerui Ren et al, "Study on the Heck reaction promoted by carbene adduct of cyclopalladated ferrocenylimine and the related reaction mechanism," Tetrahedron, vol 66, pp 4022-4028, 2010 [252] Jonathan E Wilson, "Diastereoselective synthesis of tetrahydroquinolines via a palladiumcatalyzed Heck–Suzuki cascade reaction," Tetrahedron Letters, vol 53, pp 2308–2311, 2012 [253] Vladimir V Grushin and Howard Alper, "Transformations of Chloroarenes, Catalyzed by Transition-Metal Complexes," Chem Rev., vol 94, pp 1047–1062, 1994 [254] Nam T.S Phan et al, "A polymer-supported salen-type palladium complex as a catalyst for the Suzuki–Miyaura cross-coupling reaction," Tetrahedron Letters, vol 45, pp 7915–7919, 2004 [255] F Diederich and P J Stang, "Metal-catalysed Cross-coupling Reactions," Wiley-VCH, p 540, 1998 [256] Khemais Saïd et al, "HECK COUPLING STYRENE WITH ARYL HALIDES CATALYZED BY PALLADIUM COMPLEXES IN BIPHASIC MEDIA," Journal de la Société Chimique de Tunisie, vol 11, pp 59-67, 2009 [257] Abdol R Hajipour and Fatemeh Rafiee, "Application of dimeric cyclopalladated complex of tribenzylamine as an efficient catalyst in the Heck cross-coupling reaction," Journal of Organometallic Chemistry, vol 696, pp 2669-2675, 2011 [258] Rupesh Narayana Prabhu and Rengan Ramesh, "Catalytic application of dinuclear palladium(II) bis(thiosemicarbazone) complex in the Mizoroki-Heck reaction," Tetrahedron Letters, vol 53, pp 5961–5965, 2012 [259] Sasmita Mohanty et al, "An inexpensive and highly stable ligand 1,4-bis(2-hydroxy-3,5-ditertbutylbenzyl)piperazine for MizorokieHeck and room temperature Suzuki-Miyaura crosscoupling reactions," Tetrahedron, vol 64, pp 240-247, 2008 151 ... xúc tác palladium mang chất mang nano từ tính 22 1.5.1 Vật liệu từ tính 22 1.5.2 Vật liệu nano từ tính 27 1.5.3 Vật liệu nano từ tính ứng dụng làm chất mang xúc. .. sử dụng xúc tác Với mục tiêu trên, luận án bao gồm nội dung nghiên cứu sau: Tổng hợp xúc tác cố định vật liệu nano từ tính Nghiên cứu khả xúc tác cho phản ứng Knoevenagel Nghiên cứu khả xúc tác. .. sánh hoạt tính xúc tác 1, xúc tác 2, xúc tác sử dụng tác chất 4’-bromoacetophenone điều kiện gia nhiệt thông thường 88 Hình 3.50 So sánh hoạt tính xúc tác 1, xúc tác 2, xúc tác sử dụng tác