1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Một số PP timg GTLN - GTNN

2 342 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 128 KB

Nội dung

Th ngy thỏng nm 2010 báo cáo chuyên đề tháng 4 Ng ời báo cáo : Phan Thị Hài Hoa Chuyên đề: Một phơng pháp tìm giá trị nhỏ nhất và giá trị lớn nhất I. Đặt vấn đề: Trong bài viết này, tôi đề cập đến một dạng toán tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của một biểu thức nhiều ẩn, trong đó các ẩn là nghiệm của những phơng trình hoặc bất phơng trình cho trớc. Đối với dạng toán này, ta cần xác định và giải một bất phơng trình một ẩn mà ẩn đó là biểu thức cần tìm GTLN, GTNN. II. Nội dung: Bài toán 1: Tìm GTLNGTNN của xy biết x và y là nghiệm của phơng trình x 4 + y 4 - 3 = xy (1 - 2xy) Lời giải: Ta có: x 4 + y 4 - 3 = xy (1 - 2xy) <=> xy + 3 = x 4 + y 4 + 2x 2 y 2 <=> xy + 3 = (x 2 + y 2 ) 2 (1) Do ( x 2 - y 2 ) 2 0 với mọi x, y, dễ dàng suy ra (x 2 + y 2 ) 2 4(xy) 2 với mọi x, y (2) Từ (1) và (2) ta có: xy + 3 4(xy) 2 <=> 4t 2 - t - 3 0 (với t = xy) <=> (t - 1)(4t + 3) 0 <=> 3 4 t 1 Vậy: t = xy đạt giá trị lớn nhất bằng 1 <=> x 2 = y 2 <=> x = y = 1 xy = 1 t = xy đạt GTNN bằng - 3 4 <=> x 2 = y 2 <=> x = - y = 3 2 xy = 3 4 Bài toán 2: Cho x, y, z là các số dơng thoả mãn xyz x + y + z + 2. Tìm GTNN của x + y + z Lời giải: áp dụng BĐT Cô-si cho ba số dơng x, y, z ta có: x + y + z 3 3 xyz <=> ( x + y + z) 3 (3. 3 xyz ) 3 = 27xyz => ( x + y + z) 3 27 (x + y + z + 2) <=> t 3 - 27t - 54 0 ( với t = x + y + z > 0) <=> (t - 6) (t + 3) 2 0 <=> t 6 Vậy t = x + y + z đạt GTNN bằng 6 <=> x = y = z = 2. Bài toán 3: Cho các số thực x, y, z thoả mãn x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x 2 y 2 z 2 = 9. Tìm GTLNGTNN của A = xyz. Lời giải: x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x 2 y 2 z 2 = 9 <=> (x 2 + y 2 z 2 ) + 2(y 2 + x 2 z 2 ) + 3x 2 y 2 z 2 = 9 (1) áp dụng BĐT m 2 + n 2 2 | mn | với mọi m, n ta có: x 2 + y 2 z 2 2 | xyz | ; y 2 + x 2 z 2 2 | xyz | (2) Từ (1) và (2) suy ra: 2| xyz | + 4 | xyz | + 3 (xyz) 2 9 <=> 3A 2 + 6 | A | - 9 0 <=> A 2 + 2 | A | - 3 0 <=> ( | A | - 1) ( | A | + 3 ) 0 <=> | A | 1 <=> - 1 A 1 Vậy: A đạt GTLN bằng 1 x = yz (x; y; z ) = ( 1; 1 ; 1) <=> y = xz <=> xyz = -1 (x; y; z ) = ( 1; -1; -1) Vậy: A đạt GTLN bằng -1 x = yz (x; y; z ) = ( -1; 1 ; 1) <=> y = xz <=> xyz = -1 (x; y; z ) = ( -1; -1; -1) Bài toán 4: Cho các số thực x, y, z thoả mãn x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ). Tìm GTLNGTNN của x 2 + y 2 . Lời giải: Ta có: x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 - 2(x 2 + y 2 ) - 3 = -3x 2 0 => t 2 - 2t - 3 0 ( với t = x 2 + y 2 0 ). => (t + 1) (t - 3) 0 => t 3 Vậy t = x 2 + y 2 đạt GTLN bằng 3 <=> x = 0 ; y = 3 Ta lại có: x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 + x 2 + y 2 - 3 = 3y 2 0 = > t 2 + t - 3 0 ( Với t = x 2 + y 2 0) <=> (t + 1 13 2 + ) (t + 1 13 2 ) 0 <=> t 13 1 2 Vậy t = x 2 + y 2 Đạt GTNN bằng 13 1 2 <=> y = 0 ; x = 13 1 2 III. K t lun : Trờn õy l mt s bi toỏn cng nh phng phỏp m bn thõn tụi tớch ly c qua quỏ trỡnh ging dy, rt mong c s gúp ý ca cỏc bn ng nghip tụi hon thin hn.Xin chõn thnh cm n. . = -1 (x; y; z ) = ( 1; -1 ; -1 ) Vậy: A đạt GTLN bằng -1 x = yz (x; y; z ) = ( -1 ; 1 ; 1) <=> y = xz <=> xyz = -1 (x; y; z ) = ( -1 ; -1 ; -1 ). ta cần xác định và giải một bất phơng trình một ẩn mà ẩn đó là biểu thức cần tìm GTLN, GTNN. II. Nội dung: Bài toán 1: Tìm GTLN và GTNN của xy biết x và

Ngày đăng: 02/12/2013, 07:11

TỪ KHÓA LIÊN QUAN

w