Phần 1 Tài liệu Thiết kế bài giảng Đại số 10 nâng cao (Tập 1) do NXB ĐH Sư phạm ấn hành cung cấp cho người đọc cách thiết kế bài giảng Đại số 10 nâng cao về các chủ đề: Mệnh đề - Tập hợp, hàm số bậc nhất và bậc hai. Mời các bạn cùng tham khảo.
TRAN VINH -2 -1 O NHA XUAT BAN DAI HOG SU PHAM TRAN VINH THIET KE BAI GIANG NANG CAO TAP MOT ~' -> NHA XUAT BAN DAI HOC SU PHAM Ma sd'; 02.02.80/158.PT 2006 Ldl NOI DAU Chiiong trinh thay sach gan lien vert viec doi m6i phUdng phap day hoc, d6 c6 viec thifc hien ddi mcS phUdng phap day hoc mon Toan Bo sach Thiet kebai gidng Dqi sd nang 10 ndng cao va Thiet kebai gidng Hinh hpc 10 cao dcfi de phuc vu viec ddi mdi Bo sach dtfdc bien soan dua tren cac chifdng, muc cua bo sach giao khoa (SGK), bam sat noi dung SGK, txl hinh nen cau true mot bai giang theo chtfdng trinh mcft dUOc viet theo quan diem boat dong va muc tieu giang day la: L.ay hpc sinh lam trung tam va tich cUc s\i dung cac phifdng tien day hpc hien dai Phan Dai so gom tap Tap 1: gom cac chUdng I, chUdng II va chifdng III Tap : gom cac chifdng IV, chifdng V va chifdng VI Phan Hinh hpc gom tap: Tap 1: gom chifdng 1, va bai va bai (chifdng II) Tap Phan lai Trong moi bai soan, tac gia co difa cac cau hoi va tinh huong thu vi Ve hoat dpng day va hpc, chung toi co gang chia lam phan: Phan boat dpng cua giao vien (GV) va phan boat dpng cua hpc sinh (HS), d m6i phan c6 cac cau hoi chi tiet va hifdng dan tra Icfi Thifc hien xong moi boat dpng, la da thifc hien xong mot ddn v: kien thifc hoac cung co ddn vi kien thCfc Sau moi bai hpc chung toi co dite vao phan cau hoi trac nghiem khach quan nham giup hpc sinh tif danh gia difdc mifc dp nhan thifc va mifc dp tiep thu kien thufc cua minh Dong thdi, sau m6i bai hpc, chung toi CO gang co nhiing phan bd sung kien thifc danh cho GV va HS kha gioi Phan phu luc la phan danh cho giao vien, nham sif dung cac phan mem cua toan hpc lam chu kien thifc, lam chu cac so can tinh toan tif neu len difdc each day mdi chu dpng va sang tao Day la bp sach hay, difdc tap the tac gia bien soan cong phu, ifng dung mot so' tifu khoa hpc nha't dinh tinh toan va day hpc Chung toi hy vpng dap ifrig difdc nhu cau cua giao vien toan viec ddi mdi phifdng phap day hpc Trong qua trinh bien soan, khong the tranh khoi nhOftng sai sot, mong ban doc cam thong va chia se Chung toi chan cam dn sif gop y cua cac ban Tac gia Chi/dNq I MENH DE - TAP HCfP Ph^n i^imrlirG VAN D £ CUA cm/diiifG I Npl DUNG Noi dung chinh cua chuong : Menh de : Menh de, phu dinh ciia menh de, menh de keo theo, menh de tuong duong, dinh If va chiing minh dinh li Tap hop : Khai niem cua tap hop, cac phep toan tren tap hop Sai so va so g^n diing Menli die Menh de la mdt khai niem co ban ciia logic toan Logic toan ciing If thuyet tap hop la co sd ciia moi nganh toan hoc So gan diing va sai so la nhiing khai niem co ban ciia cac nganh toan irng dung Cuon sach duoc trinh bay thong nha't theo ngon ngCr mSnh dt va tap hop Nhu vay, cac noi dung ciia chuong I la ra't co ban va c^n thi6't de hoc sinh (HS) hoc tap tie'p cac chuong sau cua chuong trinh Dai so 10 noi rieng, de hoc tap va ling dung Toan noi chung Sau day la nhirng ndi dung cu the : Khdi niem menh de N6u len khai niem cua de : La cau phai hoac diing hoac sai Tfnh cha't CO ban cua menh de : M6i menh de chi hoac diing, ki hi6u la 1, hoac sai, kf hieu la SGK khong trinh bay theo gia tri chan If nhung dua tren cac luat CO ban : - Luat bai trung : M6i menh de phai hoac diing, hoac sai, - Luat phi mau thuSn : Mot m6nh d6 khong the vira diing, vura sai Cdc phep todn ve logic Chiing ta chi trinh bay cac va'n de co ban sau : Phep phii dinh : Menh de phii dinh ciia menh de P la menh deF Hai menh de co tfnh chat trai ngugfc ve gia tri chan If : P diing thi P sai va nguoc lai Phep keo theo : Menh de P keo theo menh de Q, kf hieu la P => Q, chi sai P diing Q sai, va diing cac trudng hop lai Cac each phat biiu menh de keo theo : Neu P thi Q; P la dieu kien du de CO Q; Q la dieu kien can de co P Phep tuang duang : Menh de P tUdng duong vdi Q, kf kieu P Q, la menh d6 chi sai P va Q co gia tri chan If nguoc Cac each phat bieu menh de tuong duong : P va chi Q; P la dieu kien cSn va du de co Q Menh de chiia bie'n Menh de chiia bien chi la menh d6 tiing bien cu the hoac ta gSn vao no nhirng ludng tii vdi moi (V) hoac ton tai ( 3) Tap hop / Khdi niem Tap hop la khai niem khong duoc dinh nghia ma duoc xay dung bang each mo ta thong qua cac phSn tii cua nd De bieu diin phan tu a thuoc tap hgfp A kf hieu la a e A, phan tii b khong thuoc tap hop A kf hieu b ^ A Tap hop khong cd phan tu nao goi la tap rdng, kf hieu Cd hai each cho tap hop : Liet ke cac phan tu cua tap hop hoac rnd ta bang tfnh chat cac phan tu Tap : Tap A la tap ciia tap B, kf hieu A c B, ne'u VxeA thi xeB Cdc phep todn Chiing ta se hoc cac phep toan sau : xeA Phep hop : x e A u B c^ Phep giao : \x&A x e A n B - } ; (b) {x e R; x > 1}; (c)]R; (d) {x G R ; x > } Hay chgn ka't qua diing Tap xac dinh cua ham sd y = Vx + ^ Vx-1 (a) {x G R : x > 1} (b) {x G R : X > 0} (c) {x G R : x > 1} (d) (x G R:x:^Ovax^l} Hay chgn ket qua diing Cho ham so f(x) = Vx ne'u x>0 \x\ ne'u X 0 neu X (c) Ham sd dong bie'n Vx; (d) Ham sd nghich bien Vx Hay chgn ka't qua diing Hay ndi mdi muc d cdt bdn trai vdi mdi muc d cdt ben phai di dugc ka't luan diing (a) Ham sd'y = |x] (1) la ham sd'le (b) Ham sd y = x + x (2) la ham so chin (c) Ham sd y = |x| + x (3) khdng la ham sd chan (4) la ham so hing Dd thi cua ham so y = 2x + 1 (a) song song vdi dudng thang y = x H— (b) vudng gdc vdi dudng thang y = — x + 12 (c) cit dudng thing y = x + (d) triing vdi dudng thing 4x - 2y + = Hay chgn ket luan sai Dudng thing y = x + cit true tao tam giac cd dian tfch la (a) 5; (b)-l; 221 Hay chgn ka't qua diing Cho parabol y = 3x + x + l T a c (a) true dd'i xiing cua parabol la dudng thang : x = — (b) true dd'i xiing ciia parabol la dudng thing : x = — (c) true dd'i xiing ciia parabol la dudng thing : x = — (d) true dd'i xiing ciia parabol la dudng thing : x = — Hay chgn ket qua diing 10 Parabol y = x + 2x - (a) khdng cit true hoanh; (b) tia'p xiic vdi true hoanh; (c) cit true hoanh tai diem phan biet; (d) ca ba ket M n tran diu sai Hay chgn ka't qua diing 11 Ggi nhanh ban trai true dd'i xiing va nhanh bdn phai true dd'i xiing ciia parabol (p) la nhanh trai va nhanh phai cua nd Xet parabol (p) y = 2x^ + (43+ l)x - 2V3 - (a) Diem ed hoanh - thudc nhanh trai DDiing | |Sai (b) Diem cd hoanh thudc nhanh phai DDiing | |Sai (c) Diem cd hoanh d o - thudc nhanh trai DDiing DSai (d) Diem ed hoanh thudc nhanh phai DDiing DSai Hay chgn diing - sai 222 Ddp dn: L (c) (c) (a) Diing (b) Sai; (c) Diing; (d) Diing (a) Sai (b) Diing (c) S^i (d) Diing (b)va(l); (c) va (3) (a) Ndi (a) va (2); (a) (c) (d) 10 (c) 11 (a) Sai; (b) Diing; (c) Diing; (d) Diing BAI TAP TRAC NGHI$M TU GIAI Hay chgn ket qua dung ede bdi tap sau 12 13 Ham so y = —;=— cd miln xac dinh la Vx + (a) X > 0; (b) X > 0; (c)x>-l; (d)x>-l; Ham so y = Vx + + |x +1| cd tap xac dinh la (a)R\{-l}; (b)R; (c)R\{-5}; (d) ca ba cau trdn deu sai 14 Tap xac dinh ciia ham sd y = V x - + Vx + la (a)-l U006 (d) ca ba cau trdn diu sai Hay chgn ka't luan diing cau Hay chgn diing - sai cac cau sau (a) Ham sd y = |x| cd tap xac dinh la R DDiing DSai (b) Ham so y = Vx cd tap xac dinh la R * DDiing DSai (c) Ham sd y = x"* + 1- cd tap xac dinh la {R\{ 0} D Diing (d) Ham sd y = -7= cd tap xac dinh la R* DDiing D Sai DSai Vx / I I Cau Ham so f(x) = x + x cd dd thi la d6 thi cua ham so (a) f(x) = X + x; ' ,2 (c) f(x) = X +x vdi x>0 X -X vdi Hay chgn ka't qua diing 226 (b) f(x) = x ' - x; x h = h2 4 ^ ao Tacd AB = 2VrO TCr dd ta cd S = (dvdt) 234 ... chia he't cho 11 " - Xet tfnh diing sai ciia P vaP Ggi y tra Idi cau hdi P : "2 - khdng chia he't cho 11 " Menh de P la menh de diing Cd the dimg may tfnh de tfnh ' " - = - = 10 2 3 = 11 .93 P la menh... ddi mcS phUdng phap day hoc mon Toan Bo sach Thiet kebai gidng Dqi sd nang 10 ndng cao va Thiet kebai gidng Hinh hpc 10 cao dcfi de phuc vu viec ddi mdi Bo sach dtfdc bien soan dua tren cac chifdng,... (5k + l)(5k + 1) = 25k^ + 10 k + (d) Budc Do 25k ; 10 k chia het cho 5; khdng chia ha't cho nan n khdng chia het cho Trai vdi gia thiet Xet dinh If: "Trong mdt tam giac can, hai dudng cao tuong iing