Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
503,15 KB
Nội dung
Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT CÁC BÀI TỐN HÌNH HỌC LỚP Bài Cho tam giác ABC có ba góc nhọn nội tiếp đường trịn (O) Các đường cao AD, BE, CF cắt H cắt đường tròn (O) M,N,P A N Chứng minh rằng: Tứ giác CEHD, nội tiếp E Bốn điểm B,C,E,F nằm đường tròn P F AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC O H Xác định tâm đường tròn nội tiếp tam giác DEF Lời giải: ( B C D ( Xét tứ giác CEHD ta có: CEH = 90 ( Vì BE đường cao) CDH = 900 ( Vì AD đường cao) M => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEC = 900 CF đường cao => CF AB => BFC = 900 Như E F nhìn BC góc 900 => E F nằm đường trịn đường kính BC Vậy bốn điểm B,C,E,F nằm đường tròn Xét hai tam giác AEH ADC ta có: AEH = ADC = 900 ; Â góc chung AE AH => AEH ADC => => AE.AC = AH.AD AD AC * Xét hai tam giác BEC ADC ta có: BEC = ADC = 900 ; C góc chung BE BC => BEC ADC => => AD.BC = BE.AC AD AC Ta có C1 = A1 ( phụ với góc ABC) C2 = A1 ( hai góc nội tiếp chắn cung BM) => C1 = C2 => CB tia phân giác góc HCM; lại có CB HM => CHM cân C => CB đương trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đường trịn => C1 = E1 ( hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp C1 = E2 ( hai góc nội tiếp chắn cung HD) E1 = E2 => EB tia phân giác góc FED Chứng minh tương tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đường trịn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đường cao AD, BE, cắt H Gọi O tâm đường tròn ngoại tiếp tam giác AHE Chứng minh ED = BC Chứng minh tứ giác CEHD nội tiếp 2 Bốn điểm A, E, D, B nằm đường tròn Chứng minh DE tiếp tuyến đường tròn (O) Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Tính độ dài DE biết DH = Cm, AH = Cm Lời giải: 1.Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE đường cao) A O H B D E C CDH = 900 ( Vì AD đường cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đường cao => BE AC => BEA = 900 AD đường cao => AD BC => BDA = 900 Như E D nhìn AB góc 900 => E D nằm đường trịn đường kính AB Vậy bốn điểm A, E, D, B nằm đường tròn Theo giả thiết tam giác ABC cân A có AD đường cao nên đường trung tuyến => D trung điểm BC Theo ta có BEC = 900 Vậy tam giác BEC vng E có ED trung tuyến => DE = BC Vì O tâm đường trịn ngoại tiếp tam giác AHE nên O trung điểm AH => OA = OE => tam giác AOE cân O => E1 = A1 (1) Theo DE = BC => tam giác DBE cân D => E3 = B1 (2) Mà B1 = A1 ( phụ với góc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mà E1 + E2 = BEA = 900 => E2 + E3 = 900 = OED => DE OE E Vậy DE tiếp tuyến đường tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm Áp dụng định lí Pitago cho tam giác OED vng E ta có ED2 = OD2 – OE2 ED2 = 52 – 32 ED = 4cm Bài Cho nửa đường trịn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By C D Các đường thẳng AD BC cắt N Chứng minh AC + BD = CD y Chứng minh COD = 900 x D AB / I Chứng minh AC BD = M 4 Chứng minh OC // BM / C Chứng minh AB tiếp tuyến đường tròn đường kính CD N Chứng minh MN AB Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ Lời giải: O A B Theo tính chất hai tiếp tuyến cắt ta có: CA = CM; DB = DM => AC + BD = CM + DM Mà CM + DM = CD => AC + BD = CD Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Theo tính chất hai tiếp tuyến cắt ta có: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà AOM BOM hai góc kề bù => COD = 900 Theo COD = 900 nên tam giác COD vng O có OM CD ( OM tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OM2 = CM DM, AB Mà OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = 4 Theo COD = 900 nên OC OD (1) Theo tính chất hai tiếp tuyến cắt ta có: DB = DM; lại có OM = OB =R => OD trung trực BM => BM OD (2) Từ (1) Và (2) => OC // BM ( Vì vng góc với OD) Gọi I trung điểm CD ta có I tâm đường trịn ngoại tiếp tam giác COD đường kính CD có IO bán kính Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đường trung bình hình thang ACDB => IO // AC , mà AC AB => IO AB O => AB tiếp tuyến O đường trịn đường kính CD CN AC CN CM Theo AC // BD => , mà CA = CM; DB = DM nên suy BN BD BN DM => MN // BD mà BD AB => MN AB ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vng góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đường tròn nội tiếp, K tâm đường trịn bàng tiếp góc A , O trung điểm IK A Chứng minh B, C, I, K nằm đường tròn Chứng minh AC tiếp tuyến đường trịn (O) Tính bán kính đường trịn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Lời giải: (HD) Vì I tâm đường trịn nội tiếp, K tâm đường trịn bàng tiếp I góc A nên BI BK hai tia phân giác hai góc kề bù đỉnh B C B Do BI BK hayIBK = 90 H o Tương tự ta có ICK = 900 B C nằm đường tròn đường kính IK B, C, I, K nằm đường trịn Ta có C1 = C2 (1) ( CI phân giác góc ACH K C2 + I1 = 900 (2) ( IHC = 900 ) I1 = ICO (3) ( tam giác OIC cân O) Từ (1), (2) , (3) => C1 + ICO = 900 hay AC OC Vậy AC tiếp tuyến đường tròn (O) Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm AH2 = AC2 – HC2 => AH = 20 12 = 16 ( cm) CH 12 CH2 = AH.OH => OH = = (cm) AH 16 OC = OH HC 12 225 = 15 (cm) Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Bài Cho đường tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đường thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC MB, BD MA, gọi H giao điểm AC BD, I giao điểm OM AB d Chứng minh tứ giác AMBO nội tiếp A Chứng minh năm điểm O, K, A, M, B nằm P đường tròn K D 2 Chứng minh OI.OM = R ; OI IM = IA N Chứng minh OAHB hình thoi H O Chứng minh ba điểm O, H, M thẳng hàng I Tìm quỹ tích điểm H M di chuyển đường thẳng d Lời giải: C (HS tự làm) B Vì K trung điểm NP nên OK NP ( quan hệ đường kính Và dây cung) => OKM = 900 Theo tính chất tiếp tuyến ta có OAM = 900; OBM = 900 K, A, B nhìn OM góc 900 nên nằm đường trịn đường kính OM Vậy năm điểm O, K, A, M, B nằm đường trịn Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM AB I Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vuông A có AI đường cao Áp dụng hệ thức cạnh đường cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA2 Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH => Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH AB; theo OM AB => O, H, M thẳng hàng( Vì qua O có đường thẳng vng góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đường thẳng d nửa đường tròn tâm A bán kính AH = R Bài Cho tam giác ABC vuông A, đường cao AH Vẽ đường trịn tâm A bán kính AH Gọi HD đường kính đường trịn (A; AH) Tiếp tuyến đường tròn D cắt CA E Chứng minh tam giác BEC cân E D Gọi I hình chiếu A BE, Chứng minh AI = AH Chứng minh BE tiếp tuyến đường tròn (A; AH) Chứng minh BE = BH + DE A Lời giải: (HD) I AHC = ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB CE (gt), AB vừa đường cao vừa đường trung B H C tuyến BEC => BEC tam giác cân => B1 = B2 Hai tam giác vng ABI ABH có cạnh huyền AB chung, B1 = B2 => AHB = AIB => AI = AH AI = AH BE AI I => BE tiếp tuyến (A; AH) I DE = IE BI = BH => BE = BI+IE = BH + ED Bài Cho đường trịn (O; R) đường kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M Chứng minh BM // OP Chứng minh tứ giác APMO nội tiếp đường Đường thẳng vng góc tròn với AB O cắt tia BM Lê Trọng Châu – Sưu tầm Giới thiệu M Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: (HS tự làm) Ta có ABM nội tiếp chắn cung AM; AOM góc tâm AOM chắn cung AM => ABM = (1) OP tia phân giác AOM AOM ( t/c hai tiếp tuyến cắt ) => AOP = (2) Từ (1) (2) => ABM = AOP (3) X N P J I M K A ( ( O B Mà ABM AOP hai góc đồng vị nên suy BM // OP (4) Xét hai tam giác AOP OBN ta có : PAO=900 (vì PA tiếp tuyến ); NOB = 900 (gt NOAB) => PAO = NOB = 900; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta có PM OJ ( PM tiếp tuyến ), mà ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO ( t/c đường chéo hình chữ nhật) (6) AONP hình chữ nhật => APO = NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt Ta có PO tia phân giác APM => APO = MPO (8) Từ (7) (8) => IPO cân I có IK trung tuyến đơng thời đường cao => IK PO (9) Từ (6) (9) => I, J, K thẳng hàng Bài Cho nửa đường trịn tâm O đường kính AB điểm M nửa đường trịn ( M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đường trịn E; cắt tia BM F tia BE cắt Ax H, cắt AM K X 1) Chứng minh rằng: EFMK tứ giác nội tiếp I 2) Chứng minh rằng: AI = IM IB 3) Chứng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi F 5) Xác định vị trí M để tứ giác AKFI nội tiếp đường tròn Lời giải: M Ta có : AMB = 900 ( nội tiếp chắn nửa đường trịn ) H E => KMF = 900 (vì hai góc kề bù) AEB = 900 ( nội tiếp chắn nửa đường tròn ) K => KEF = 900 (vì hai góc kề bù) 2 => KMF + KEF = 1800 Mà KMF KEF hai góc đối B A O tứ giác EFMK EFMK tứ giác nội tiếp Ta có IAB = 90 ( AI tiếp tuyến ) => AIB vuông A có AM IB ( theo trên) Áp dụng hệ thức cạnh đường cao => AI2 = IM IB Theo giả thiết AE tia phân giác góc IAM => IAE = MAE => AE = ME (lí ……) Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số toán hình học lớp - Ơn thi vàolớp 10 THPT => ABE =MBE ( hai góc nội tiếp chắn hai cung nhau) => BE tia phân giác góc ABF (1) Theo ta có AEB = 900 => BE AF hay BE đường cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B BAF tam giác cân B có BE đường cao nên đồng thời đương trung tuyến => E trung điểm AF (3) Từ BE AF => AF HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác HAK (5) Từ (4) (5) => HAK tam giác cân A có AE đường cao nên đồng thời đương trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đường chéo vng góc với trung điểm đường) (HD) Theo AKFH hình thoi => HA // FH hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đường trịn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ABM = MAI = 450 (t/c góc nội tiếp ) (7) Tam giác ABI vng A có ABI = 450 => AIB = 450 (8) Từ (7) (8) => IAK = AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đường tròn Bài Cho nửa đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đường tròn Các tia AC AD cắt Bx E, F (F B E) Chứng minh AC AE không đổi Chứng minh ABD = DFB Chứng minh CEFD tứ giác nội tiếp X Lời giải: E C thuộc nửa đường tròn nên ACB = 90 ( nội tiếp chắn nửa đường tròn ) => BC AE ABE = 900 ( Bx tiếp tuyến ) => tam giác ABE vng B có BC đường cao => AC AE = AB2 (hệ thức cạnh đường cao ), mà AB đường kính nên AB = 2R khơng đổi AC AE khơng đổi C F D ADB có ADB = 900 ( nội tiếp chắn nửa đường tròn ) => ABD + BAD = 900 (vì tổng ba góc tam giác 1800)(1) ABF có ABF = 900 ( BF tiếp tuyến ) => AFB + BAF = 900 (vì tổng ba góc tam giác 1800) O A B (2) Từ (1) (2) => ABD = DFB ( phụ với BAD) Tứ giác ACDB nội tiếp (O) => ABD + ACD = 1800 ECD + ACD = 1800 ( Vì hai góc kề bù) => ECD = ABD ( bù với ACD) Theo ABD = DFB => ECD = DFB Mà EFD + DFB = 1800 ( Vì hai góc kề bù) nên suy ECD + EFD = 1800, mặt khác ECD EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Bài 10 Cho đường tròn tâm O đường kính AB điểm M nửa đường tròn cho AM < MB Gọi M’ điểm đối xứng M qua AB S giao điểm hai tia BM, M’A Gọi P chân đương vng góc từ S đến AB Chứng minh bốn điểm A, M, S, P nằm đường tròn Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Gọi S’ giao điểm MA SP Chứng minh tam giác S PS’M cân M Chứng minh PM tiếp tuyến đường tròn Lời giải: 0 Ta có SP AB (gt) => SPA = 90 ; AMB = 90 ( nội tiếp chắn 4( )1 P B nửa đường tròn ) => AMS = 900 Như P M nhìn AS ) H O 3( A góc 90 nên nằm đường trịn đường kính AS Vậy bốn điểm A, M, S, P nằm đường trịn M' Vì M’đối xứng M qua AB mà M nằm đường tròn nên M’ S' nằm đường tròn => hai cung AM AM’ có số đo => AMM’ = AM’M ( Hai góc nội tiếp chắn hai cung nhau) (1) Cũng M’đối xứng M qua AB nên MM’ AB H => MM’// SS’ ( vng góc với AB) => AMM’ = AS’S; AM’M = ASS’ (vì so le trong) (2) => Từ (1) (2) => AS’S = ASS’ Theo bốn điểm A, M, S, P nằm đường tròn => ASP=AMP (nội tiếp chắn AP ) => AS’P = AMP => tam giác PMS’ cân P Tam giác SPB vuông P; tam giác SMS’ vuông M => B1 = S’1 (cùng phụ với S) (3) Tam giác PMS’ cân P => S’1 = M1 (4) Tam giác OBM cân O ( có OM = OB =R) => B1 = M3 (5) Từ (3), (4) (5) => M1 = M3 => M1 + M2 = M3 + M2 mà M3 + M2 = AMB = 900 nên suy M1 + M2 = PMO = 900 => PM OM M => PM tiếp tuyến đường tròn M Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đường tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF có ba góc nhọn BD BM DF // BC Tứ giác BDFC nội tiếp CB CF Lời giải: A (HD) Theo t/c hai tiếp tuyến cắt ta có AD = AF => tam giác ADF cân A => ADF = AFD < 900 => sđ cung DF < 1800 => DEF < 900 ( góc DEF nội tiếp chắn cung DE) Chứng minh tương tự ta có DFE < 900; EDF < 900 Như tam giác D F DEF có ba góc nhọn O AD AF Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC AB AC I DF // BC => BDFC hình thang lại có B = C (vì tam giác ABC M C B E cân) => BDFC hình thang cân BDFC nội tiếp đường trịn Xét hai tam giác BDM CBF Ta có DBM = BCF ( hai góc đáy tam giác cân) BDM = BFD (nội tiếp chắn cung DI); CBF = BFD (vì so le) => BDM = CBF BD BM => BDM CBF => CB CF Bài 12 Cho đường tròn (O) bán kính R có hai đường kính AB CD vng góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đường thẳng vng góc với AB M cắt tiếp tuyến N đường tròn P Chứng minh : Tứ giác OMNP nội tiếp Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Tứ giác CMPO hình bình hành C CM CN khơng phụ thuộc vào vị trí điểm M Khi M di chuyển đoạn thẳng AB P chạy đoạn thẳng cố định Lời giải: M O Ta có OMP = 900 ( PM AB ); ONP = 900 (vì NP tiếp tuyến A B ) Như M N nhìn OP góc 900 => M N N nằm đường tròn đường kính OP => Tứ giác OMNP nội tiếp Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn cung OM) P D B' A' Tam giác ONC cân O có ON = OC = R => ONC = OCN => OPM = OCM Xét hai tam giác OMC MOP ta có MOC = OMP = 900; OPM = OCM => CMO = POM lại có MO cạnh chung => OMC = MOP => OC = MP (1) Theo giả thiết Ta có CD AB; PM AB => CO//PM (2) Từ (1) (2) => Tứ giác CMPO hình bình hành Xét hai tam giác OMC NDC ta có MOC = 900 ( gt CD AB); DNC = 900 (nội tiếp chắn nửa đường tròn ) => MOC =DNC = 900 lại có C góc chung => OMC NDC CM CO => => CM CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN CD CN =2R2 khơng đổi hay tích CM CN khơng phụ thuộc vào vị trí điểm M ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy đường thẳng cố định vng góc với CD D Vì M chạy đoạn thẳng AB nên P chạy doạn thẳng A’ B’ song song AB Bài 13 Cho tam giác ABC vuông A (AB > AC), đường cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đường trịn đường kính BH cắt AB E, Nửa đường trịn đường kính HC cắt AC F Chứng minh AFHE hình chữ nhật BEFC tứ giác nội tiếp AE AB = AF AC Chứng minh EF tiếp tuyến chung hai nửa đường tròn A Lời giải: Ta có : BEH = 90 ( nội tiếp chắn nửc đường tròn ) E => AEH = 900 (vì hai góc kề bù) (1) I 1( F CFH = 900 ( nội tiếp chắn nửc đường trịn ) => AFH = 90 (vì hai góc kề bù).(2) )1 EAF = 900 ( Vì tam giác ABC vng A) (3) O O2 B H C Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Tứ giác AFHE hình chữ nhật nên nội tiếp đường tròn =>F1=H1 (nội tiếp chắn cung AE) Theo giả thiết AH BC nên AH tiếp tuyến chung hai nửa đường trịn (O1) (O2) => B1 = H1 (hai góc nội tiếp chắn cung HE) => B1= F1 => EBC+EFC = AFE + EFC mà AFE + EFC = 1800 (vì hai góc kề bù) => EBC+EFC = 1800 mặt khác EBC EFC hai góc đối tứ giác BEFC BEFC tứ giác nội tiếp Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Xét hai tam giác AEF ACB ta có A = 900 góc chung; AFE = ABC ( theo Chứng AE AF minh trên) => AEF ACB => => AE AB = AF AC AC AB * HD cách 2: Tam giác AHB vng H có HE AB => AH2 = AE.AB (*) Tam giác AHC vuông H có HF AC => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC Tứ giác AFHE hình chữ nhật => IE = EH => IEH cân I => E1 = H1 O1EH cân O1 (vì có O1E vàO1H bán kính) => E2 = H2 => E1 + E2 = H1 + H2 mà H1 + H2 = AHB = 900 => E1 + E2 = O1EF = 900 => O1E EF Chứng minh tương tự ta có O2F EF Vậy EF tiếp tuyến chung hai nửa đường tròn Bài 14 Cho điểm C thuộc đoạn thẳng AB cho AC = 10 Cm, CB = 40 Cm Vẽ phía AB nửa đường trịn có đường kính theo thứ tự AB, AC, CB có tâm theo thứ tự O, I, K Đường vuông góc với AB C cắt nửa đường trịn (O) E Gọi M N theo thứ tự giao điểm EA, EB với nửa đường tròn (I), (K) E Chứng minh EC = MN N Chứng minh MN tiếp tuyến chung nửa đường trịn (I), (K) H Tính MN M Tính diện tích hình giới hạn ba nửa đường tròn I O Lời giải: A C K B Ta có: BNC= 900( nội tiếp chắn nửa đường tròn tâm K) => ENC = 900 (vì hai góc kề bù) (1) AMC = 900 ( nội tiếp chắn nửc đường trịn tâm I) => EMC = 900 (vì hai góc kề bù).(2) AEB = 900 (nội tiếp chắn nửa đường tròn tâm O) hay MEN = 900 (3) Từ (1), (2), (3) => tứ giác CMEN hình chữ nhật => EC = MN (tính chất đường chéo hình chữ nhật ) Theo giả thiết EC AB C nên EC tiếp tuyến chung hai nửa đường tròn (I) (K) => B1 = C1 (hai góc nội tiếp chắn cung CN) Tứ giác CMEN hình chữ nhật nên => C1= N3 => B1 = N3.(4) Lại có KB = KN (cùng bán kính) => tam giác KBN cân K => B1 = N1 (5) Từ (4) (5) => N1 = N3 mà N1 + N2 = CNB = 900 => N3 + N2 = MNK = 900 hay MN KN N => MN tiếp tuyến (K) N Chứng minh tương tự ta có MN tiếp tuyến (I) M, Vậy MN tiếp tuyến chung nửa đường tròn (I), (K) Ta có AEB = 900 (nội tiếp chắn nửc đường trịn tâm O) => AEB vng A có EC AB (gt) => EC2 = AC BC EC2 = 10.40 = 400 => EC = 20 cm Theo EC = MN => MN = 20 cm Theo giả thiết AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta có S(o) = OA2 = 252 = 625 ; S(I) = IA2 = 52 = 25 ; S(k) = KB2 = 202 = 400 Ta có diện tích phần hình giới hạn ba nửa đường tròn S = ( S(o) - S(I) - S(k)) 1 S = ( 625 - 25 - 400 ) = 200 = 100 314 (cm2) 2 Lê Trọng Châu – Sưu tầm Giới thiệu Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Bài 15 Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đường trịn (O) có đường kính MC đường thẳng BM cắt đường tròn (O) D đường thẳng AD cắt đường tròn (O) S Chứng minh ABCD tứ giác nội tiếp Chứng minh CA tia phân giác góc SCB Gọi E giao điểm BC với đường tròn (O) Chứng minh đường thẳng BA, EM, CD đồng quy Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đường tròn nội tiếp tam giác ADE Lời giải: C C 123 O O D S E M A D M B 2 F E S F H×nh a A B H×nh b Ta có CAB = 900 ( tam giác ABC vng A); MDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => CDB = 900 D A nhìn BC góc 900 nên A D nằm đường tròn đường kính BC => ABCD tứ giác nội tiếp ABCD tứ giác nội tiếp => D1= C3( nội tiếp chắn cung AB) D1= C3 => SM EM => C2 = C3 (hai góc nội tiếp đường tròn (O) chắn hai cung nhau) => CA tia phân giác góc SCB Xét CMB Ta có BACM; CD BM; ME BC BA, EM, CD ba đường cao tam giác CMB nên BA, EM, CD đồng quy Theo Ta có SM EM => D1= D2 => DM tia phân giác góc ADE.(1) Ta có MEC = 900 (nội tiếp chắn nửa đường trịn (O)) => MEB = 900 Tứ giác AMEB có MAB = 900 ; MEB = 900 => MAB + MEB = 1800 mà hai góc đối nên tứ giác AMEB nội tiếp đường tròn => A2 = B2 Tứ giác ABCD tứ giác nội tiếp => A1= B2( nội tiếp chắn cung CD) => A1= A2 => AM tia phân giác góc DAE (2) Từ (1) (2) Ta có M tâm đường trịn nội tiếp tam giác ADE TH2 (Hình b) Câu : ABC = CME (cùng phụ ACB); ABC = CDS (cùng bù ADC) => CME = CDS => CE CS SM EM => SCM = ECM => CA tia phân giác góc SCB Bài 16 Cho tam giác ABC vuông A.và điểm D nằm A B Đường tròn đường kính BD cắt BC E Các đường thẳng CD, AE cắt đường tròn F, G Chứng minh : Các đường thẳng AC, Tam giác ABC đồng dạng với tam giác EBD DE, FB đồng quy Tứ giác ADEC AFBC nội tiếp Lời giải: AC // FG Lê Trọng Châu – Sưu tầm Giới thiệu 10 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Bài 20 Cho đường tròn (O; R) (O’; R’) có R > R’ tiếp xúc ngồi C Gọi AC BC hai đường kính qua điểm C (O) (O’) DE dây cung (O) vng góc với AB trung điểm M AB Gọi giao điểm thứ hai DC với (O’) F, BD cắt (O’) G Chứng minh rằng: Tứ giác MDGC nội tiếp D Bốn điểm M, D, B, F nằm đường tròn G Tứ giác ADBE hình thoi B, E, F thẳng hàng M C DF, EG, AB đồng quy B A O' O MF = 1/2 DE MF tiếp tuyến (O’) F Lời giải: BGC = 90 ( nội tiếp chắn nửa đường tròn ) E => CGD = 900 (vì hai góc kề bù) Theo giả thiết DE AB M => CMD = 900 => CGD + CMD = 1800 mà hai góc đối tứ giác MCGD nên MCGD tứ giác nội tiếp BFC = 900 ( nội tiếp chắn nửa đường tròn ) => BFD = 900; BMD = 900 (vì DE AB M) F M nhìn BD góc 900 nên F M nằm đường trịn đường kính BD => M, D, B, F nằm đường tròn Theo giả thiết M trung điểm AB; DE AB M nên M trung điểm DE (quan hệ đường kính dây cung) => Tứ giác ADBE hình thoi có hai đường chéo vng góc với trung điểm đường ADC = 900 ( nội tiếp chắn nửa đường tròn ) => AD DF ; theo tứ giác ADBE hình tho => BE // AD mà AD DF nên suy BE DF Theo BFC = 900 ( nội tiếp chắn nửa đường tròn ) => BF DF mà qua B có đường thẳng vng góc với DF đo B, E, F thẳng hàng Theo DF BE; BM DE mà DF BM cắt C nên C trực tâm tam giác BDE => EC đường cao => ECBD; theo CGBD => E,C,G thẳng hàng Vậy DF, EG, AB đồng quy Theo DF BE => DEF vuông F có FM trung tuyến (vì M trung điểm DE) suy MF = 1/2 DE ( tam giác vuông trung tuyến thuộc cạnh huyền nửa cạnh huyền) (HD) theo MF = 1/2 DE => MD = MF => MDF cân M => D1 = F1 O’BF cân O’ ( O’B O’F bán kính ) => F3 = B1 mà B1 = D1 (Cùng phụ với DEB ) => F1 = F3 => F1 + F2 = F3 + F2 Mà F3 + F2 = BFC = 900 => F1 + F2 = 900 = MFO’ hay MF O’F F => MF tiếp tuyến (O’) Bài 21 Cho đường tròn (O) đường kính AB Gọi I trung điểm OA Vẽ đường tron tâm I qua A, (I) lấy P bất kì, AP cắt (O) Q Q Chứng minh đường tròn (I) (O) tiếp xúc A Chứng minh IP // OQ Chứng minh AP = PQ P Xác định vị trí P để tam giác AQB có diện tích lớn Lời giải: Ta có OI = OA – IA mà OA IA bán kính đường A I B O H tròn (O) đường tròn (I) Vậy đường tròn (O) đường tròn (I) tiếp xúc A OAQ cân O ( OA OQ bán kính ) => A1 = Q1 IAP cân I ( IA IP bán kính ) => A1 = P1 => P1 = Q1 mà hai góc đồng vị nên suy IP // OQ Lê Trọng Châu – Sưu tầm Giới thiệu 13 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT APO = 900 (nội tiếp chắn nửa đường tròn ) => OP AQ => OP đường cao OAQ mà OAQ cân O nên OP đường trung tuyến => AP = PQ (HD) Kẻ QH AB ta có SAQB = AB.QH mà AB đường kính không đổi nên SAQB lớn QH lớn QH lớn Q trùng với trung điểm cung AB Để Q trùng với trung điểm cung AB P phải trung điểm cung AO Thật P trung điểm cung AO => PI AO mà theo PI // QO => QO AB O => Q trung điểm cung AB H trung với O; OQ lớn nên QH lớn Bài 22 Cho hình vng ABCD, điểm E thuộc cạnh BC Qua B kẻ đường thẳng vng góc với DE, đường thẳng cắt đường thẳng DE DC theo thứ tự H K Chứng minh BHCD tứ giác nội tiếp Tính góc CHK B A Chứng minh KC KD = KH.KB Khi E di chuyển cạnh BC H di chuyển đường nào? Lời giải: H O Theo giả thiết ABCD hình vng nên BCD = 900; BH DE E H nên BHD = 90 => H C nhìn BD góc 900 nên H C nằm đường trịn đường kính BD => BHCD tứ giác nội tiếp ) BHCD tứ giác nội tiếp => BDC + BHC = 1800 (1) D C K BHK góc bẹt nên KHC + BHC = 1800 (2) Từ (1) (2) => CHK = BDC mà BDC = 450 (vì ABCD hình vng) => CHK = 450 Xét KHC KDB ta có CHK = BDC = 450 ; K góc chung KC KH => KHC KDB => => KC KD = KH.KB KB KD (HD) Ta ln có BHD = 900 BD cố định nên E chuyển động cạnh BC cố định H chuyển động cung BC (E B H B; E C H C) Bài 23 Cho tam giác ABC vuông A Dựng miền tam giác ABC hình vng ABHK, ACDE E Chứng minh ba điểm H, A, D thẳng hàng Đường thẳng HD cắt đường tròn ngoại tiếp tam giác M ABC F, chứng minh FBC tam giác vuông cân D Cho biết ABC > 450 ; gọi M giao điểm BF K ED, Chứng minh điểm B, K, E, M, C nằm F A đường tròn Chứng minh MC tiếp tuyến đường tròn ngoại tiếp H tam giác ABC Lời giải: O C B Theo giả thiết ABHK hình vng => BAH = 450 0 Tứ giác AEDC hình vng => CAD = 45 ; tam giác ABC vuông A => BAC = 90 => BAH + BAC + CAD = 450 + 900 + 450 = 1800 => ba điểm H, A, D thẳng hàng Ta có BFC = 900 (nội tiếp chắn nửa đường trịn ) nên tam giác BFC vng F (1) FBC = FAC ( nội tiếp chắn cung FC) mà theo CAD = 450 hay FAC = 450 (2) Từ (1) (2) suy FBC tam giác vuông cân F Theo BFC = 900 => CFM = 900 ( hai góc kề bù); CDM = 900 (t/c hình vng) Lê Trọng Châu – Sưu tầm Giới thiệu 14 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT => CFM + CDM = 1800 mà hai góc đối nên tứ giác CDMF nội tiếp đường tròn suy CDF = CMF , mà CDF = 450 (vì AEDC hình vng) => CMF = 450 hay CMB = 450 Ta có CEB = 450 (vì AEDC hình vng); BKC = 450 (vì ABHK hình vng) Như K, E, M nhìn BC góc 450 nên nằm cung chứa góc 450 dựng BC => điểm B, K, E, M, C nằm đường trịn CBM có B = 450 ; M = 450 => BCM =450 hay MC BC C => MC tiếp tuyến đường tròn ngoại tiếp tam giác ABC Bài 24 Cho tam giác nhọn ABC có B = 450 Vẽ đường trịn đường kính AC có tâm O, đường tròn cắt BA BC D E A Chứng minh AE = EB Gọi H giao điểm CD AE, Chứng minh đường D trung trực đoạn HE qua trung điểm I BH F Chứng minh OD tiếp tuyến đường tròn ngoại tiếp tam O H / _ giác BDE Lời giải: _K 1 / I AEC = 90 (nội tiếp chắn nửa đường tròn ) B E C => AEB = 900 ( hai góc kề bù); Theo giả thiết ABE = 450 => AEB tam giác vuông cân E => EA = EB Gọi K trung điểm HE (1) ; I trung điểm HB => IK đường trung bình tam giác HBE => IK // BE mà AEC = 900 nên BE HE E => IK HE K (2) Từ (1) (2) => IK trung trực HE Vậy trung trực đoạn HE qua trung điểm I BH theo I thuộc trung trực HE => IE = IH mà I trung điểm BH => IE = IB ADC = 900 (nội tiếp chắn nửa đường tròn ) => BDH = 900 (kề bù ADC) => tam giác BDH vuông D có DI trung tuyến (do I trung điểm BH) => ID = 1/2 BH hay ID = IB => IE = IB = ID => I tâm đường trịn ngoại tiếp tam giác BDE bán kính ID Ta có ODC cân O (vì OD OC bán kính ) => D1 = C1 (3) IBD cân I (vì ID IB bán kính ) => D2 = B1 (4) Theo ta có CD AE hai đường cao tam giác ABC => H trực tâm tam giác ABC => BH đường cao tam giác ABC => BH AC F => AEB có AFB = 900 Theo ADC có ADC = 900 => B1 = C1 ( phụ BAC) (5) Từ (3), (4), (5) =>D1 = D2 mà D2 +IDH =BDC = 900=> D1 +IDH = 900 = IDO => OD ID D => OD tiếp tuyến đường tròn ngoại tiếp tam giác BDE Bài 25 Cho đường trịn (O), BC dây (BC< 2R) Kẻ tiếp tuyến với đường tròn (O) B C chúng cắt A Trên cung nhỏ BC lấy điểm M kẻ đường vng góc MI, MH, MK xuống cạnh tương ứng BC, AC, AB Gọi giao điểm BM, IK P; giao điểm CM, IH Q Chứng minh tam giác ABC cân Các tứ giác BIMK, CIMH nội tiếp Theo tứ giác BIMK nội Chứng minh MI2 = MH.MK Chứng minh PQ MI tiếp => B1 = I1 ( nội tiếp chắn cung KM); tứ Lời giải: Theo tính chất hai tiếp tuyến cắt ta có AB = AC => ABC cân giác CHMI nội tiếp => H1 A = C1 ( nội tiếp chắn 0 Theo giả thiết MI BC => MIB = 90 ; MK AB => MKB = 90 cung IM) Mà B1 = C1 ( => MIB + MKB = 1800 mà hai góc đối => tứ giác BIMK nội tiếp = 1/2 sđ BM ) => I1 = * ( Chứng minh tứ giác CIMH nội tiếp tương tự tứ giác BIMK ) H1 (2) Theo tứ giác BIMK nội tiếp => KMI + KBI = 1800; tứ giác CHMI nội tiếp => HMI + HCI = 1800 mà KBI = HCI ( tam giác ABC cân A) => KMI = HMI (1) Lê Trọng Châu – Sưu tầm Giới thiệu 15 Tổng hợp số toán hình học lớp - Ơn thi vàolớp 10 THPT Từ (1) (2) => MKI MIH => MI MK => MI2 = MH.MK MH MI A H K M B P Q C I O Theo ta có I1 = C1; chứng minh tương tự ta có I2 = B2 mà C1 + B2 + BMC = 1800 => I1 + I2 + BMC = 1800 hay PIQ + PMQ = 1800 mà hai góc đối => tứ giác PMQI nội tiếp => Q1 = I1 mà I1 = C1 => Q1 = C1 => PQ // BC ( có hai góc đồng vị nhau) Theo giả thiết MI BC nên suy IM PQ Bài 26 Cho đường tròn (O), đường kính AB = 2R Vẽ dây cung CD AB H Gọi M điểm cung CB, I giao điểm CB OM K giao điểm AM CB Chứng minh : J KC AC AM tia phân giác CMD Tứ giác OHCI nội C / KB AB M K tiếp _ I Chứng minh đường vng góc kẻ từ M đến AC tiếp tuyến đường A tròn M B H O Lời giải: Theo giả thiết M trung điểm BC => MB MC => CAM = BAM (hai góc nội tiếp chắn hai cung nhau) => AK tia KC AC D phân giác góc CAB => ( t/c tia phân giác tam giác ) KB AB (HD) Theo giả thiết CD AB => A trung điểm CD => CMA = DMA => MA tia phân giác góc CMD (HD) Theo giả thiết M trung điểm BC => OM BC I => OIC = 900 ; CD AB H => OHC = 900 => OIC + OHC = 1800 mà hai góc đối => tứ giác OHCI nội tiếp Kẻ MJ AC ta có MJ // BC ( vng góc với AC) Theo OM BC => OM MJ J suy MJ tiếp tuyến đường tròn M Bài 27 Cho đường tròn (O) điểm A ngồi đường trịn Các tiếp tuyến với đường tròn (O) kẻ từ A tiếp xúc với đường tròn (O) B C Gọi M điểm tuỳ ý đường tròn ( M khác B, C), từ M kẻ MH BC, MK CA, MI AB Chứng minh : Tứ giác ABOC nội tiếp BAO = BCO MIH MHK MI.MK = MH2 Lời giải: Lê Trọng Châu – Sưu tầm Giới thiệu 16 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT I B I H B M M O A H O A K C C K (HS tự giải) Tứ giác ABOC nội tiếp => BAO = BCO (nội tiếp chắn cung BO) Theo giả thiết MH BC => MHC = 900; MK CA => MKC = 900 => MHC + MKC = 1800 mà hai góc đối => tứ giác MHCK nội tiếp => HCM = HKM (nội tiếp chắn cung HM) Chứng minh tương tự ta có tứ giác MHBI nội tiếp => MHI = MBI (nội tiếp chắn cung IM) Mà HCM = MBI ( = 1/2 sđ BM ) => HKM = MHI (1) Chứng minh tương tự ta có KHM = HIM (2) Từ (1) (2) => HIM KHM MI MH Theo HIM KHM => => MI.MK = MH2 MH MK Bài 28 Cho tam giác ABC nội tiếp (O) Gọi H trực tâm tam giác ABC; E điểm đối xứng H qua BC; F điểm đối xứng H qua trung điểm I BC A Chứng minh tứ giác BHCF hình bình hành E, F nằm đường tròn (O) Chứng minh tứ giác BCFE hình thang cân = B' Gọi G giao điểm AI OH Chứng minh G trọng tâm tam giác ABC O C' Lời giải: H G = Theo giả thiết F điểm đối xứng H qua trung điểm I / BC => I trung điểm BC HE => BHCF hình bình hành có hai / / B C A' I / đường chéo cắt trung điểm đường (HD) Tứ giác AB’HC’ nội tiếp => BAC + B’HC’ = 1800 F E mà BHC = B’HC’ (đối đỉnh) => BAC + BHC = 1800 Theo BHCF hình bình hành => BHC = BFC => BFC + BAC = 1800 => Tứ giác ABFC nội tiếp => F thuộc (O) * H E đối xứng qua BC => BHC = BEC (c.c.c) => BHC = BEC => BEC + BAC = 1800 => ABEC nội tiếp => E thuộc (O) Ta có H E đối xứng qua BC => BC HE (1) IH = IE mà I trung điểm của HF => EI = 1/2 HE => tam giác HEF vuông E hay FE HE (2) Từ (1) (2) => EF // BC => BEFC hình thang (3) Theo E (O) => CBE = CAE ( nội tiếp chắn cung CE) (4) Theo F (O) FEA =900 => AF đường kính (O) => ACF = 900 => BCF = CAE ( phụ ACB) (5) Từ (4) (5) => BCF = CBE (6) Từ (3) (6) => tứ giác BEFC hình thang cân Lê Trọng Châu – Sưu tầm Giới thiệu 17 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Theo AF đường kính (O) => O trung điểm AF; BHCF hình bình hành => I trung điểm HF => OI đường trung bình tam giác AHF => OI = 1/ AH Theo giả thiết I trung điểm BC => OI BC ( Quan hệ đường kính dây cung) => OIG = GI OI HAG (vì so le trong); lại có OGI = HGA (đối đỉnh) => OGI HGA => mà OI = GA HA GI mà AI trung tuyến tam giác ABC (do I trung điểm BC) => G trọng AH => GA tâm tam giác ABC Bài 29 BC dây cung đường tròn (O; R) (BC 2R) Điểm A di động cung lớn BC cho O nằm tam giác ABC Các đường cao AD, BE, CF tam giác ABC đồng quy H A Chứng minh tam giác AEF đồng dạng với tam giác ABC Gọi A’ trung điểm BC, Chứng minh AH = 2OA’ Gọi A1 trung điểm EF, Chứng minh R.AA1 = AA’ OA’ = E Chứng minh R(EF + FD + DE) = 2SABC suy vị trí A để tổng EF + FD + DE đạt giá trị lớn A1 O F Lời giải: (HD) H = Tứ giác BFEC nội tiếp => AEF = ACB (cùng bù BFE) / / / B AEF = ABC (cùng bù CEF) => AEF ABC C D A' / Vẽ đường kính AK => KB // CH ( vng góc AB); KC // BH K (cùng vng góc AC) => BHKC hình bình hành => A’ trung điểm HK => OK đường trung bình AHK => AH = 2OA’ Áp dụng tính chất : hai tam giác đồng dạng tỉ số hia trung tuyến, tỉ số hai bán kính đường trịn ngoại tiếp tỉ số đồng dạng ta có : R AA ' AEF ABC => (1) R bán kính đường trịn ngoại tiếp ABC; R’ bán kính R ' AA1 đường trịn ngoại tiếp AEF; AA’ trung tuyến ABC; AA1 trung tuyến AEF Tứ giác AEHF nội tiếp đường trịn đường kính AH nên đường tròn ngoại tiếp AEF AH A 'O Từ (1) => R.AA1 = AA’ R’ = AA’ = AA’ 2 Vậy R AA1 = AA’ A’O (2) Gọi B’, C’lần lượt trung điểm AC, AB, ta có OB’AC ; OC’AB (bán kính qua trung điểm dây không qua tâm) => OA’, OB’, OC’ đường cao tam giác OBC, OCA, OAB SABC = SOBC+ SOCA + SOAB = ( OA’ BC’ + OB’ AC + OC’ AB ) 2SABC = OA’ BC + OB’ AC’ + OC’ AB (3) AA1 AA1 Theo (2) => OA’ = R mà tỉ số trung tuyến hai tam giác đồng dạng AEF ABC AA ' AA ' AA1 EF FD ED nên = Tương tự ta có : OB’ = R ; OC’ = R Thay vào (3) ta AA ' BC AC AB EF FD ED BC AC AB ) 2SABC = R(EF + FD + DE) 2SABC = R ( BC AC AB * R(EF + FD + DE) = 2SABC mà R khơng đổi nên (EF + FD + DE) đạt gí trị lớn S ABC Lê Trọng Châu – Sưu tầm Giới thiệu 18 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT AD.BC BC không đổi nên SABC lớn AD lớn nhất, mà AD lớn A điểm giỡa cung lớn BC Ta có SABC = Bài 30 Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt (O) M Vẽ đường cao AH bán kính OA Chứng minh AM phân giác góc OAH A D Giả sử B > C Chứng minh OAH = B - C Cho BAC = 600 OAH = 200 Tính: a) B C tam giác ABC b) Diện tích hình viên phân giới hạn dây BC cung nhỏ BC theo O R Lời giải: (HD) AM phân giác BAC => BAM = CAM => BM CM => M B C H trung điểm cung BC => OM BC; Theo giả thiết AH BC => OM // AH => HAM = OMA ( so le) Mà OMA = OAM ( tam M giác OAM cân O có OM = OA = R) => HAM = OAM => AM tia phân giác góc OAH Vẽ dây BD OA => AB AD => ABD = ACB Ta có OAH = DBC ( góc có cạnh tương ứng vng góc nhọn) => OAH = ABC - ABD => OAH = ABC - ACB hay OAH = B - C a) Theo giả thiết BAC = 600 => B + C = 1200 ; theo B C = OAH => B - C = 200 B C 1200 B 700 => 0 B C 20 C 50 R 1202 R R R R (4 3) R = b) Svp = SqBOC - S BOC = 3600 2 12 Bài 31 Cho tam giác ABC có ba góc nhọn nội tiếp (O; R), biết BAC = 600 Tính số đo góc BOC độ dài BC theo R A Vẽ đường kính CD (O; R); gọi H giao điểm ba đường cao tam giác ABC Chứng minh BD // AH AD // BH D Tính AH theo R Lời giải: O H Theo giả thiết BAC = 600 => sđ BC =1200 ( t/c góc nội tiếp ) => BOC = 120 ( t/c góc tâm) B * Theo sđ BC =1200 => BC cạnh tam giác nội tiếp C M (O; R) => BC = R CD đường kính => DBC = 900 hay DB BC; theo giả thiết AH đường cao => AH BC => BD // AH Chứng minh tương tự ta AD // BH Theo DBC = 900 => DBC vuông B có BC = R ; CD = 2R => BD2 = CD2 – BC2 => BD2 = (2R)2 – (R )2 = 4R2 – 3R2 = R2 => BD = R Theo BD // AH; AD // BH => BDAH hình bình hành => AH = BD => AH = R Bài 32 Cho đường tròn (O), đường kính AB = 2R Một cát tuyến MN quay quanh trung điểm H OB Lê Trọng Châu – Sưu tầm Giới thiệu 19 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT N Chứng minh MN di động , trung điểm I MN nằm đường tròn cố định D K Từ A kẻ Ax MN, tia BI cắt Ax C Chứng minh tứ giác CMBN hình bình hành C I Chứng minh C trực tâm tam giác AMN H Khi MN quay quanh H C di động đường A B O Cho AM AN = 3R2 , AN = R Tính diện tích phần hình trịn (O) nằm ngồi tam giác AMN M Lời giải: (HD) I trung điểm MN => OI MN I ( quan hệ đường kính dây cung) = > OIH = 900 OH cố địmh nên MN di động I di động ln nhìn OH cố định góc 900 I di động đường trịn đường kính OH Vậy MN di động , trung điểm I MN nằm đường tròn cố định Theo giả thiết Ax MN; theo OI MN I => OI // Ax hay OI // AC mà O trung điểm AB => I trung điểm BC, lại có I trung điểm MN (gt) => CMBN hình bình hành ( Vì có hai đường chéo cắt trung điểm đường ) CMBN hình bình hành => MC // BN mà BN AN ( ANB = 900 góc nội tiếp chắn nửa đường tròn ) => MC AN; theo AC MN => C trực tâm tam giác AMN Ta có H trung điểm OB; I trung điểm BC => IH đường tung bình OBC => IH // OC Theo giả thiết Ax MN hay IH Ax => OC Ax C => OCA = 900 => C thuộc đường trịn đường kính OA cố định Vậy MN quay quanh H C di động đường trịn đường kính OA cố định Ta có AM AN = 3R2 , AN = R => AM =AN = R => AMN cân A (1) Xét ABN vng N ta có AB = 2R; AN = R => BN = R => ABN = 600 ABN = AMN (nội tiếp chắn cung AN) => AMN = 600 (2) 3R Từ (1) (2) => AMN tam giác => SAMN = 3R R (4 3 => S = S(O) - SAMN = R = 4 Bài 33 M Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt BC I, cắt đường tròn MC MI Chứng minh OM BC => MCI MAC => => MC2 Chứng minh MC2 = MI.MA MA MC Kẻ đường kính MN, tia phân giác góc B C = MI.MA cắt đường thẳng AN P Q Chứng minh bốn điểm P, C , B, Q thuộc đường tròn Lời giải: AM phân giác BAC => BAM = CAM => BM CM => M trung điểm cung BC => OM BC Xét MCI MAC có MCI =MAC (hai góc nội tiếp chắn hai cung nhau); M góc chung Lê Trọng Châu – Sưu tầm Giới thiệu 20 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT ( P N A Q O K 2 B ( C I M (HD) MAN = 900 (nội tiếp chắn nửa đường tròn ) => P1 = 900 – K1 mà K1 góc ngồi tam A B giác AKB nên K1 = A1 + B1 = (t/c phân giác góc ) => P1 = 900 – 2 A B ( ).(1) 2 C A B CQ tia phân giác góc ACB => C1 = = (1800 - A - B) = 900 – ( ) (2) 2 2 Từ (1) (2) => P1 = C1 hay QPB = QCB mà P C nằm nửa mặt phẳng bờ BQ nên A B nằm cung chứa góc 900 – ( ) dựng BQ 2 Vậy bốn điểm P, C, B, Q thuộc đường tròn Bài 34 Cho tam giác ABC cân ( AB = AC), BC = Cm, chiều cao AH = Cm, nội tiếp đường trịn (O) đường kính AA’ A Tính bán kính đường trịn (O) Kẻ đường kính CC’, tứ giác CAC’A’ hình gì? Tại sao? Kẻ AK CC’ tứ giác AKHC hình gì? Tại sao? Tính diện tích phần hình trịn (O) nằm ngồi tam giác ABC C' Lời giải: O K 1 (HD) Vì ABC cân A nên đường kính AA’ đường trịn ngoại tiếp đường cao AH xuất phát từ đỉnh A trùng nhau, tức AA’đi B C H BC = 3cm; qua H => ACA’ vuông C có đường cao CH = 2 CH 32 2,5 => AA’ AH = 4cm => CH2 = AH.A’H => A’H = A' AH 4 => AA’ = AH + HA’ = + 2,5 = 6,5 9cm) => R = AA’ : = 6,5 : = 3,25 (cm) Vì AA’ CC’ hai đường kính nên cắt trung điểm O đường => ACA’C’ hình bình hành Lại có ACA’ = 900 (nội tiếp chắn nửa đường tròn ) nên suy tứ giác ACA’C’ hình chữ nhật Theo giả thiết AH BC; AK CC’ => K H nhìn AC góc 900 nên nằm đường trịn đường kính AC hay tứ giác ACHK nội tiếp (1) => C2 = H1 (nội tiếp cung chắn cung AK) ; AOC cân O ( OA=OC=R) => C2 = A2 => A2 = H1 => HK // AC ( có hai góc so le nhau) => tứ giác ACHK hình thang (2) Lê Trọng Châu – Sưu tầm Giới thiệu 21 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Từ (1) (2) suy tứ giác ACHK hình thang cân Bài 35 Cho đường trịn (O), đường kính AB cố định, điểm I nằm A O cho AI = 2/3 AO Kẻ dây MN vng góc với AB I, gọi C điểm tuỳ ý thuộc cung lớn MN cho C không trùng với M, N B Nối AC cắt MN E M Chứng minh tứ giác IECB nội tiếp Chứng minh tam giác AME đồng dạng với tam giác ACM Chứng minh AM2 = AE.AC O1 C Chứng minh AE AC – AI.IB = AI2 E Hãy xác định vị trí C cho khoảng cách từ N đến tâm A đường tròn ngoại tiếp tam giác CME nhỏ B I O Lời giải: Theo giả thiết MN AB I => EIB = 900; ACB nội tiếp chắn nửa đường tròn nên ACB = 900 hay ECB = 900 => EIB + ECB = 1800 mà hai góc đối tứ giác IECB nên N tứ giác IECB tứ giác nội tiếp Theo giả thiết MN AB => A trung điểm cung MN => AMN = ACM ( hai góc nội tiếp chắn hai cung nhau) hay AME = ACM Lại thấy CAM góc chung hai tam giác AME AMC tam giác AME đồng dạng với tam giác ACM AM AE Theo AME ACM => => AM2 = AE.AC AC AM AMB = 900 (nội tiếp chắn nửa đường trịn ); MN AB I => AMB vng M có MI đường cao => MI2 = AI.BI ( hệ thức cạnh đường cao tam giác vng) Áp dụng định lí Pitago tam giác AIM vng I ta có AI2 = AM2 – MI2 => AI2 = AE.AC - AI.BI Theo AMN = ACM => AM tiếp tuyến đường tròn ngoại tiếp ECM; Nối MB ta có AMB = 900 , tâm O1 đường tròn ngoại tiếp ECM phải nằm BM Ta thấy NO1 nhỏ NO1 khoảng cách từ N đến BM => NO1 BM Gọi O1 chân đường vng góc kẻ từ N đến BM ta O1 tâm đường tròn ngoại tiếp ECM có bán kính O1M Do để khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME nhỏ C phải giao điểm đường trịn tâm O1 bán kính O1M với đường trịn (O) O1 hình chiếu vng góc N BM Bài 36 Cho tam giác nhọn ABC , Kẻ đường cao AD, BE, CF Gọi H trực tâm tam giác Gọi M, N, P, Q hình chiếu vng góc D lên AB, BE, CF, AC Chứng minh : Các tứ giác DMFP, DNEQ hình chữ nhật A Các tứ giác BMND; DNHP; DPQC nội tiếp Hai tam giác HNP HCB đồng dạng E Bốn điểm M, N, P, Q thẳng hàng F Lời giải: & (HS tự làm) H Q Theo chứng minh DNHP nội tiếp => N2 = D4 (nội P 1 tiếp chắn cung HP); HDC có HDC = 90 (do AH đường M 1N cao) HDP có HPD = 900 (do DP HC) => C1= D4 (cùng phụ với DHC)=>C1=N2 (1) chứng minh tương tự ta có 1 D B C B1=P1 (2) Từ (1) (2) => HNP HCB Theo chứng minh DNMB nội tiếp => N1 = D1 (nội tiếp chắn cung BM).(3) DM // CF ( vng góc với AB) => C1= D1 ( hai góc đồng vị).(4) Theo chứng minh C1 = N2 (5) Lê Trọng Châu – Sưu tầm Giới thiệu 22 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Từ (3), (4), (5) => N1 = N2 mà B, N, H thẳng hàng => M, N, P thẳng hàng (6) Chứng minh tương tự ta cung có N, P, Q thẳng hàng (7) Từ (6), (7) => Bốn điểm M, N, P, Q thẳng hàng Bài 37 Cho hai đường trịn (O) (O’) tiếp xúc ngồi A Kẻ tiếp tuyến chung BC, B (O), C (O’) Tiếp tuyến chung A cắt tiếp tuyến chung BC I Chứng minh tứ giác OBIA, AICO’ nội tiếp B I Chứng minh BAC = 900 C Tính số đo góc OIO’ Tính độ dài BC biết OA = 9cm, O’A = 4cm Lời giải: A O O' ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có IB = IA , IA = IC ABC có AI = BC =>ABC vuông A hay BAC =900 Theo tính chất hai tiếp tuyến cắt ta có IO tia phân giác BIA; I0’là tia phân giác CIA mà hai góc BIA CIA hai góc kề bù => I0 I0’=> 0I0’= 900 Theo ta có 0I0’ vng I có IA đường cao (do AI tiếp tuyến chung nên AI OO’) => IA2 = A0.A0’ = = 36 => IA = => BC = IA = = 12(cm) Bài 38 Cho hai đường trịn (O) ; (O’) tiếp xúc ngồi A, BC tiếp tuyến chung ngoài, B(O), C (O’) Tiếp tuyến chung A cắ tiếp tuyến chung BC M Gọi E giao điểm OM AB, F giao điểm O’M AC Chứng minh : Chứng minh tứ giác OBMA, AMCO’ nội tiếp B M Tứ giác AEMF hình chữ nhật C 23 ME.MO = MF.MO’ E F OO’ tiếp tuyến đường trịn đường kính BC BC tiếp tuyến đường trịn đường kính OO’ A O O' Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có MA = MB =>MAB cân M Lại có ME tia phân giác => ME AB (1) Chứng minh tương tự ta có MF AC (2) Theo tính chất hai tiếp tuyến cắt ta có MO MO’ tia phân giác hai góc kề bù BMA CMA => MO MO’ (3) Từ (1), (2) (3) suy tứ giác MEAF hình chữ nhật Theo giả thiết AM tiếp tuyến chung hai đường tròn => MA OO’=> MAO vng A có AE MO ( theo ME AB) MA2 = ME MO (4) Tương tự ta có tam giác vng MAO’ có AFMO’ MA2 = MF.MO’ (5) Từ (4) (5) ME.MO = MF MO’ Đường trịn đường kính BC có tâm M theo MB = MC = MA, đường tròn qua Avà co MA bán kính Theo OO’ MA A OO’ tiếp tuyến A đường tròn đường kính BC (HD) Gọi I trung điểm OO’ ta có IM đường trung bình hình thang BCO’O => IMBC M (*) Ta cung chứng minh OMO’ vng nên M thuộc đường trịn đường kính OO’ => IM bán kính đường trịn đường kính OO’ (**) Từ (*) (**) => BC tiếp tuyến đường trịn đường kính OO’ Lê Trọng Châu – Sưu tầm Giới thiệu 23 Tổng hợp số tốn hình học lớp - Ơn thi vàolớp 10 THPT Bài 39 Cho đường tròn (O) đường kính BC, dấy AD vng góc với BC H Gọi E, F theo thứ tự chân đường vng góc kẻ từ H đến AB, AC Gọi ( I ), (K) theo thứ tự đường tròn ngoại tiếp tam giác HBE, HCF Hãy xác định vị trí tương đối đường trịn (I) (O); (K) (O); (I) (K) Tứ giác AEHF hình gì? Vì sao? A Chứng minh AE AB = AF AC Chứng minh EF tiếp tuyến chung hai đường tròn (I) F G (K) E Xác định vị trí H để EF có độ dài lớn Lời giải: B C H K 1.(HD) OI = OB – IB => (I) tiếp xúc (O) I O OK = OC – KC => (K) tiếp xúc (O) IK = IH + KH => (I) tiếp xúc (K) Ta có : BEH = 900 ( nội tiếp chắn nửa đường tròn ) => AEH = 900 (vì hai góc kề bù) (1) D CFH = 900 ( nội tiếp chắn nửa đường tròn ) => AFH = 900 (vì hai góc kề bù).(2) BAC = 900 ( nội tiếp chắn nửa đường tròn hay EAF = 900 (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vng) Theo giả thiết ADBC H nên AHB vng H có HE AB ( BEH = 900 ) => AH2 = AE.AB (*) Tam giác AHC vng H có HF AC (theo CFH = 900 ) => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC ( = AH2) Theo chứng minh tứ giác AFHE hình chữ nhật, gọi G giao điểm hai đường chéo AH EF ta có GF = GH (tính chất đường chéo hình chữ nhật) => GFH cân G => F1 = H1 KFH cân K (vì có KF KH bán kính) => F2 = H2 => F1 + F2 = H1 + H2 mà H1 + H2 = AHC = 900 => F1 + F2 = KFE = 900 => KF EF Chứng minh tương tự ta có IE EF Vậy EF tiếp tuyến chung hai đường tròn (I) (K) e) Theo chứng minh tứ giác AFHE hình chữ nhật => EF = AH OA (OA bán kính đường trịn (O) có độ dài khơng đổi) nên EF = OA AH = OA H trùng với O Vậy H trùng với O túc dây AD vuông góc với BC O EF có độ dài lớn Bài 40 Cho nửa đường trịn đường kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Trên Ax lấy điểm M kẻ tiếp tuyến MP cắt By N y Chứng minh tam giác MON đồng dạng với tam giác APB x N Chứng minh AM BN = R2 / S R P Tính tỉ số MON AM = S APB / M Tính thể tích hình nửa hình trịn APB quay quanh cạnh AB sinh Lời giải: Theo tính chất hai tiếp tuyến cắt ta có: OM tia O A B phân giác góc AOP ; ON tia phân giác góc BOP, mà AOP BOP hai góc kề bù => MON = 900 hay tam giác MON vuông O APB = 900((nội tiếp chắn nửa đường trịn) hay tam giác APB vng P Theo tính chất tiếp tuyến ta có NB OB => OBN = 900; NP OP => OPN = 900 Lê Trọng Châu – Sưu tầm Giới thiệu 24 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT =>OBN+OPN =1800 mà OBN OPN hai góc đối => tứ giác OBNP nội tiếp =>OBP = PNO Xét hai tam giác vng APB MON có APB = MON = 900; OBP = PNO => APB MON Theo MON vng O có OP MN ( OP tiếp tuyến ) Áp dụng hệ thức cạnh đường cao tam giác vng ta có OP2 = PM PM Mà OP = R; AM = PM; BN = NP (tính chất hai tiếp tuyến cắt ) => AM BN = R2 R R R Theo OP2 = PM PM hay PM PM = R2 mà PM = AM = => PM = => PN = R2: = 2R 2 R 5R => MN = MP + NP = + 2R = 2 MN 5R Theo APB MON => = : 2R = = k (k tỉ số đồng dạng) AB Vì tỉ số diện tich hai tam giác đồng dạng bình phương tỉ số đồng dạng nên ta có: S MON S MON 25 = k => = S APB S APB 16 Bài 41 Cho tam giác ABC , O trung điển BC Trên cạnh AB, AC lấy điểm D, E cho DOE = 600 A Chứng minh tích BD CE khơng đổi Chứng minh hai tam giác BOD; OED đồng dạng Từ suy tia DO tia phân giác góc BDE Vẽ đường tròn tâm O tiếp xúc với AB Chứng minh đường E K trịn ln tiếp xúc với DE D Lời giải: Tam giác ABC => ABC = ACB = 600 (1); H DOE = 600 (gt) =>DOB + EOC = 1200 (2) DBO có DOB = 600 => BDO + BOD = 1200 (3) C B O Từ (2) (3) => BDO = COE (4) BD BO Từ (2) (4) => BOD CEO => => BD.CE = BO.CO mà CO CE OB = OC = R không đổi => BD.CE = R2 không đổi BD OD BD OD BD BO Theo BOD CEO => mà CO = BO => (5) CO OE BO OE OD OE Lại có DBO = DOE = 600 (6) Từ (5) (6) => DBO DOE => BDO = ODE => DO tia phân giác BDE Theo DO tia phân giác BDE => O cách DB DE => O tâm đường tròn tiếp xúc với DB DE Vậy đường tròn tâm O tiếp xúc với AB tiếp xúc với DE Bài 42 Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên, nội tiếp đường tròn (O) Tiếp tuyến B C cắt AC, AB D E Chứng minh : BD2 = AD.CD Xét hai tam giác BCD Tứ giác BCDE nội tiếp ABD ta có CBD = BAD ( BC song song với DE Vì góc nội tiếp góc Lời giải: tiếp tuyến với dây chắn cung), lại có D Lê Trọng Châu – Sưu tầm Giới thiệu 25 ... vuông cân F Theo BFC = 90 0 => CFM = 90 0 ( hai góc kề bù); CDM = 90 0 (t/c hình vng) Lê Trọng Châu – Sưu tầm Giới thi? ??u 14 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT => CFM + CDM =... I3 + I2 = BIC = 90 0 => I1 + I2 = 90 0 = MIO’ hay MI O’I I => MI tiếp tuyến (O’) Lê Trọng Châu – Sưu tầm Giới thi? ??u 12 Tổng hợp số tốn hình học lớp - Ôn thi vàolớp 10 THPT Bài 20 Cho đường... Lê Trọng Châu – Sưu tầm Giới thi? ??u 10 Tổng hợp số toán hình học lớp - Ơn thi vàolớp 10 THPT Xét hai tam giác ABC EDB Ta có BAC = 90 0 ( tam giác ABC vng A); DEB = 90 0 ( góc nội tiếp chắn nửa