SỞ GD – ĐT BÌNH ĐỊNH KỲ THI THỬ ĐẠI HỌC NĂM HỌC 2009-2010 (lần 2) TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Môn: Toán – Khối A, B, V Thời gian làm bài: 180 phút Ngày thi: 03/04/2010 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH: ( 7 điểm) Câu I: (2 điểm) Cho hàm số 2 1 1 x y x − = + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Chứng minh rằng đường thẳng d: y = - x + 1 là truc đối xứng của (C). Câu II: (2 điểm) 1 Giải phương trình: 4cos3xcosx - 2cos4x - 4cosx + tan t anx + 2 2 0 2sinx - 3 x = 2. Giải bất phương trình: 2 2 2 2 3 2.log 3 2.(5 log 2) x x x x x x− + ≤ − + − Câu III: ( 1 điểm). Gọi (H) là hình phẳng giới hạn đồ thi (C) của hàm sô y = x 3 – 2x 2 + x + 4 và tiếp tuyến của (C) tại điểm có hoành độ x 0 = 0. Tính thể tích của vật thể tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox. Câu IV: (1điểm) Cho hình lặng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Biết khoảng cách giữa hai đường thẳng AB và A’C bằng 15 5 a . Tính thể tích của khối lăng trụ Câu V:(1điểm) Tìm m để hệ phương trình sau có nghiệm: 4 (2 1)[ln(x + 1) - lnx] = (2y + 1)[ln(y + 1) - lny] (1) y-1 2 ( 1)( 1) 1 0 (2) x y x m x + − + − + + = II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2 Phần 1: Theo chương trình chuẩn Câu VI.a: ( 2 điểm). 1. Trong mặt phẳng Oxy cho đường tròn (C): x 2 + y 2 = 1; và phương trình: x 2 + y 2 – 2(m + 1)x + 4my – 5 = 0 (1) Chứng minh rằng phương trình (1) là phương trình của đường tròn với mọi m.Gọi các đường tròn tương ứng là (C m ). Tìm m để (C m ) tiếp xúc với (C). 2. Trong không gian Oxyz cho đường thẳng d: 1 2 1 1 1 x y z− + = = và mặt phẳng (P): 2x + y – 2z + 2 = 0. Lập phương trình mặt cầu (S) có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2; - 1;0) Câu VII.b: ( 1 điểm). Cho x; y là các số thực thoả mãn x 2 + y 2 + xy = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = 5xy – 3y 2 Phần 2: Theo chương trình nâng cao: Câu VI.b: ( 2 điểm). 1.Trong không gian Oxyz cho điểm A(3;2;3) và hai đường thẳng 1 2 3 3 : 1 1 2 x y z d − − − = = − và 2 1 4 3 : 1 2 1 x y z d − − − = = − . Chứng minh đường thẳng d 1 ; d 2 và điểm A cùng nằm trong một mặt phẳng. Xác định toạ độ các đỉnh B và C của tam giác ABC biết d 1 chứa đường cao BH và d 2 chứa đường trung tuyến CM của tam giác ABC. 2.Trong mặt phẳng Oxy cho elip (E) có hai tiêu điểm 1 2 ( 3;0); ( 3;0)F F− và đi qua điểm 1 3; 2 A ÷ . Lập phương trình chính tắc của (E) và với mọi điểm M trên elip, hãy tính biểu thức: P = F 1 M 2 + F 2 M 2 – 3OM 2 – F 1 M.F 2 M Câu VII.b:( 1 điểm). Tính giá trị biểu thức: 0 2 2 4 2 1004 2008 1005 2010 2010 2010 2010 2010 2010 2010 3 3 . ( 1) . 3 3 k k S C C C C C C= − + + + − + + − 1 ------------------------------------Hết -------------------------------------- Hướng dẫn giải Câu I: 2. Giao điểm hai tiệm cận I(- 1;2) . Chuyển hệ trục toạ độ Oxy --> IXY: 1 2 x X y Y = − = + Hàm số đã cho trở thành : Y = 3 X − hàm số đồng biến nê (C) đối xứng qua đường thẳng Y = - X Hay y – 2 = - x – 1 ⇔ y = - x + 1 Câu II: 1. Điều kiện: 3 sinx 2 ≠ và os 0 2 x c ≠ và cosx ≠ 0 Biến đổi pt về: 4cos 3 x - 4 cos 2 x – cosx + 1 = 0 osx = 1 1 cosx = 2 c ⇔ ± 2. Điều kiện 0 < x < 1 hoặc x ≥ 2. 2 2 2 2 3 2.log 3 2.(5 log 2) x x x x x x− + ≤ − + − 2 2 2 2 2log 5log 2 0 log x x x − + ⇒ ≤ Nghiệm: 0 < x < 1 hoặc 2 ≤ x ≤ 4 Câu III: Phương trình tiếp tuyến : y = x + 4 Phương trình hoành độ giao điểm: x 3 – 2x 2 = 0 0 2 x x = ⇔ = V = 2 2 2 3 2 2 0 0 ( 4) ( 2 4)x dx x x x dx π π + − − + + ∫ ∫ Câu IV: Gọi M; M’ lần lượt là trung điểm của AB và A’B’. Hạ MH ⊥ M’C AB // (A’B’C) ==> d(AB,A’C) = MH HC = 15 10 a ; M’C = 15 2 a ; MM’ = 3a Vậy V = 3 3 4 a Câu V: Đặt f(x) = (2x + 1)[ln(x + 1) – lnx] TXĐ: D = [0;+∞) = 1 (2 1)ln x x x + + Gọi x 1 ; x 2 ∈ [0;+∞) với x 1 > x 2 Ta có : 1 2 1 2 1 2 1 2 2 1 2 1 0 ( ) ( ) 1 1 ln ln 0 x x f x f x x x x x + > + > ⇒ > + + > > : f(x) là hàm số tăng Từ phương trình (1) ⇒ x = y (2) 4 1 2 ( 1)( 1) 1 0x x x m x⇒ − − − + + + = 4 1 1 2 0 1 1 x x m x x − − ⇔ − + = + + Đặt X = 4 1 1 x x − + ==> 0 ≤ X < 1 Vậy hệ có nghiêm khi phương trình: X 2 – 2X + m = 0 có nghiệm 0 ≤ X < 1 2 Đặt f(X) = X 2 – 2X == > f’(X) = 2X – 2 ==> hệ có nghiêm ⇔ -1 < m ≤ 0 Câu VI.a 1. (C) có tâm O(0;0) bán kính R = 1, (C m ) có tâm I(m +1; -2m) bán kính 2 2 ' ( 1) 4 5R m m= + + + OI 2 2 ( 1) 4m m= + + , ta có OI < R’ Vậy (C) và (C m ) chỉ tiếp xuc trong.==> R’ – R = OI ( vì R’ > R) Giải ra m = - 1; m = 3/5 2. Gọi I là tâm của (S) ==> I(1+t;t – 2;t) Ta có d(I,(P)) = AI == > t = 1; t = 7/13 (S 1 ): (x – 2) 2 + (y + 1) 2 + (z – 1) 2 = 1; (S 2 ): (x – 20/13) 2 + (y + 19/13) 2 + (z – 7/13) 2 = 121/139 Câu VII.a 2 2 2 5 3xy y P x xy y − = + + Với y = 0 ==> P = 0 Với y ≠ 0 đặt x = ty; ta có: 2 2 5 3 ( 5) 3 0 1 t P Pt P t P t t − = ⇔ + − + + = + + (1) + P = 0 thì phương trình ( 1) có nghiệm t = 3/5 + P ≠ 0 thì phương trình ( 1) có nghiệm khi và chỉ khi ∆’ = - P 2 – 22P + 25 ≥ 0 ⇔ - 25/3 ≤ P ≤ 1 Từ đó suy maxP , minP Câu VI.b: 1. d 1 qua M 0 (2;3;3) có vectơ chỉ phương (1;1; 2)a = − r d 2 qua M 1 (1;4;3) có vectơ chỉ phương (1; 2;1)b = − r Ta có 0 1 , 0 , 0a b va a b M M ≠ = urr r r r uuuuuur (d 1 ,d 2 ) : x + y + z – 8 = 0 ==> A ∈ (d 1 ,d 2 ) B(2 + t;3 + t;3 - 2t); 5 5 ; ;3 2 2 t t M t + + − ÷ ∈ d 2 ==> t = - 1 ==> M(2;2;4) C( 1+t;4-2t;;3+t) : AC a⊥ uuur r ==> t = 0 ==> C(1;4;2) 2. (E): 2 2 2 2 2 2 3 1 1 1 4 x y a b a b + = ⇒ + = , a 2 = b 2 + 3 ==> 2 2 1 4 1 x y + = P = (a + ex M ) 2 + (a – ex M ) 2 – 2( 2 2 M M x y+ ) – (a 2 – e 2 2 M x ) = 1 Câu VII.b: Ta có: ( ) ( ) ( ) 2010 2010 0 2 2 4 2 1004 2008 1005 2010 2010 2010 2010 2010 2010 2010 1 3 1 3 2 3 3 . ( 1) 3 . 3 3 k k k i i C C C C C C+ + − = − + + + − + + − Mà ( ) ( ) 2010 2010 2010 2010 2010 2010 -2010 -2010 1 3 1 3 2 ( os in ) 2 os in 3 3 3 3 i i c s c s π π π π + + − = + + + ÷ = ( ) 2010 2010 2.2 os670 2.2c π = Vậy S = 2 2010 ----------------------------------------------------- 3 Sở GD & ĐT Hưng Yên Trường THPT Minh Châu ĐỀ THI THỬ VÀO ĐẠI HỌC LẦN 1 Môn thi: Toán Thời gian làm bài: 180 phút Ngày thi: 10/1/2010 Đề bài Câu I (2.0 điểm) Cho hàm số 4 2 2 1y x mx m= − + − (1) , với m là tham số thực. 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi 1m = . 2.Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 . Câu II : ( 2, 0 điểm) Giải các phương trình 1. 3 3 4sin x.c 3x 4cos x.sin 3x 3 3c 4x 3os os+ + = 2. 2 2 3 3 3 log (x 5x 6) log (x 9x 20) 1 log 8 + + + + + = + Câu III:( 1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng 3 4 a , tính thể tích khối chóp S.ABCD theo a. Câu IV :( 2, 0 điểm). 1. TÝnh tÝch ph©n sau: 2 2 2 0 cos .cos 2 .I x x dx π = ∫ 1. Cho 3 sè d¬ng x, y, z tho¶ m·n : x +3y+5z 3 ≤ .Chøng minh r»ng: 46253 4 + zxy + 415 4 + xyz + 4815 4 + yzx ≥ 45 5 xyz. Câu V :(2,0 điểm) 1. Trong mặt phẳng (Oxy), cho đường tròn (C ): 2 2 2x 2y 7x 2 0+ − − = và hai điểm A(-2; 0), B(4; 3). Viết phương trình các tiếp tuyến của (C ) tại các giao điểm của (C ) với đường thẳng AB. 2. Cho hàm số 2 2x (m 1)x 3 y x m + + − = + . Tìm các giá trị của m sao cho tiệm cận của đồ thị hàm số tiếp xúc với parabol y = x 2 +5 Câu VI :(1,0 điểm) Cho khai triển ( ) x 1 3 x 1 2 2 8 1 log 3 1 log 9 7 5 2 2 − − − + + + ÷ . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 trong khai triển này là 224 ----------------***Hết***---------------- 4 ĐÁP ÁN MÔN TOÁN (Đáp án- Thang điểm gồm 04 trang) Câu Nội dung Điểm I (2điểm) 1.(1 điểm). Khi 1m = hàm số trở thành: 4 2 2y x x= − • TXĐ: D= ¡ • Sự biến thiên: ( ) ' 3 2 0 4 4 0 4 1 0 1 x y x x x x x = = − = ⇔ − = ⇔ = ± 0.25 ( ) ( ) 0 0, 1 1 CD CT y y y y= = = ± = − 0.25 • Bảng biến thiên x - ∞ -1 0 1 + ∞ y ’ − 0 + 0 − 0 + y + ∞ 0 + ∞ -1 -1 0.25 • Đồ thị 0.25 2. (1 điểm) ( ) ' 3 2 2 0 4 4 4 0 x y x mx x x m x m = = − = − = ⇔ = Hàm số đã cho có ba điểm cực trị ⇔ pt ' 0y = có ba nghiệm phân biệt và ' y đổi dấu khi x đi qua các nghiệm đó 0m⇔ > 0.25 • Khi đó ba điểm cực trị của đồ thị hàm số là: ( ) ( ) ( ) 2 2 0; 1 , ; 1 , ; 1A m B m m m C m m m− − − + − − + − 0.25 • 2 1 . 2 ABC B A C B S y y x x m m= − − = V ; 4 , 2AB AC m m BC m= = + = 0.25 • ( ) 4 3 2 1 2 . . 1 1 2 1 0 5 1 4 4 2 ABC m m m m AB AC BC R m m S m m m = + = = ⇔ = ⇔ − + = ⇔ − = V 0.25 Câu II 1. (1,0 điểm) 5 8 6 4 2 -2 -4 -6 -8 -10 -5 5 10 f x ( ) = x 4 -2 ⋅ x 2 (2,0 điểm) Phương trình đã cho tương đương với phương trình : 1. Phương trình : 3 3 4sin x.cos3x 4cos x.sin 3x 3 3 cos4x 3+ + = 2 2 4 (1 cos x)sin x.cos3x (1 sin x)cos x.sin 3x 3 3 cos4x 3[ ] ⇔ − + − + = 4 sin x.cos3x cos x.sin 3x) cos x sin x(cosx.cos3x sin x.sin 3x) 3 3 cos4x 3[( ]⇔ + − + + = 1 1 4 sin 4x sin 2x.cos2x 3 3 cos4x 3 4 sin 4x sin 4x 3 3 co s4x 3 3sin 4x 3 3 cos4x 3 2 4 [ ] ⇔ − + = ⇔ − + = ⇔ + = ÷ 1 3 1 sin 4x 3 cos4x 1 sin 4x cos 4x sin(4x ) sin 2 2 2 3 6 π π ⇔ + = ⇔ + = ⇔ + = 4x k2 4x k2 4x k2 x k 3 6 3 6 6 24 2 (k Z) 5 5 x k 4x k2 4x k2 4x k2 8 23 6 3 6 2 π π π π π π π + = + π + = + π = − + π = − + ⇔ ⇔ ⇔ ⇔ ∈ π ππ π π π π = + + = + π + = + π = + π 0,50 0,50 Đáp án Điểm 2.(1,0 điểm) PT 2 2 3 3 3 log (x 5x 6) log (x 9x 20) 1 log 8 + + + + + = + (*) + Điều kiện : 2 2 x 5 x 5x 6 0 x 3 x 2 4 x 3 x 5 x 4 x 9x 20 0 x 2 <− + + > <− ∨ > − ⇔ ⇔ − < < − <− ∨ > − + + > >− , và có : 3 3 1 log 8 log 24 + = + PT (*) 2 2 2 2 3 3 log (x 5x 6)(x 9x 20) log 24 (x 5x 6)(x 9x 20) 24 (x 5) ( 4 x 3) (x 2) (x 5) ( 4 x 3) (x 2) + + + + = + + + + = ⇔ ⇔ <− ∨ − < <− ∨ > − <− ∨ − < < − ∨ > − (x 2)(x 3)(x 4)(x 5) 24 (*) (x 5) ( 4 x 3) (x 2) (**) + + + + = ⇔ < − ∨ − < < − ∨ >− + Đặt 2 t (x 3)(x 4) x 7x 12 (x 2)(x 5) t 2 = + + = + + ⇒ + + = − , PT (*) trở thành : t(t-2) = 24 2 (t 1) 25 t 6 t 4 ⇔ − = ⇔ = ∨ = − • t = 6 : 2 2 x 1 x 7x 12 6 x 7x 6 0 x 6 =− + + = ⇔ + + = ⇔ =− ( thỏa đkiện (**)) • t = - 4 : 2 2 x 7x 12 4 x 7x 16 0 + + = − ⇔ + + = : vô nghiệm + Kết luận : PT có hai nghiệm là x = -1 và x = - 6 0,25 0,25 0,25 0,25 Tính thể tích khối chóp S.ABCD theo a Câu III (1,0 điểm) Từ giả thiết AC = 2 3a ; BD = 2a và AC ,BD vuông góc với nhau tại trung điểm O của mỗi đường chéo.Ta có tam giác ABO vuông tại O và AO = 3a ; BO = a , do đó · 0 60A DB = Hay tam giác ABD đều. Từ giả thiết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD) nên giao tuyến của chúng là SO ⊥ (ABCD). 0,25 Do tam giác ABD đều nên với H là trung điểm của AB, K là trung điểm của HB ta có DH AB⊥ và DH = 3a ; OK // DH và 1 3 2 2 a OK DH= = ⇒ OK ⊥ AB ⇒ AB ⊥ (SOK) Gọi I là hình chiếu của O lên SK ta có OI ⊥ SK; AB ⊥ OI ⇒ OI ⊥ (SAB) , hay OI là 0,25 6 khong cỏch t O n mt phng (SAB). Tam giỏc SOK vuụng ti O, OI l ng cao 2 2 2 1 1 1 2 a SO OI OK SO = + = Din tớch ỏy 2 4 2. . 2 3 D S ABC ABO S OAOB a = = = ; ng cao ca hỡnh chúp 2 a SO = . Th tớch khi chúp S.ABCD: 3 . 1 3 . 3 3 D DS ABC ABC a V S SO= = 0,25 0,25 IV (1,0 im) Cho 3 số dơng x, y, z thoả mãn : x +3y+5z 3 . Chứng minh rằng: xy3 4625 4 + z + zx5 415481 44 +++ xyzy xyz545 Bất đẳng thức 2 2 4 x x + + 2 2 9 4 9 y y + + 2 2 25 4 25 z z + 45 VT +++++ 22 ) 5 2 3 22 ()53( zyx zyx 3 2 2 3 )5.3.( 36 )5.3.(.9 zyx zyx + . 0,25 Đặt t = 3 2 )5.3.( zyx ta có 1 3 53 )5.3.( 3 3 = ++ zyx zyx do đó t 1 0,25 Điều kiện . 0 < t 1. Xét hàm số f(t)= t9 + t 36 36 36 36 27 2 36 . 27t t t t t = + =45 0,25 Dấu bằng xảy ra khi: t=1 hay x=1; y= 3 1 ; z= 5 1 . 0,25 Cõu V. (2,0 im) 1.(1,0 im) 1/ + ng trũn (C ) : 2 2 2 2 2 2 7 7 65 2x 2y 7x 2 0 x y x 1 0 x y 2 4 16 + = + = + = ữ (C ) cú tõm 7 I ;0 4 ữ v bỏn kớnh 65 R 4 = + ng thng AB vi A(-2; 0) v B(4; 3) cú phng trỡnh x 2 y x 2 y 6 3 2 , hay : + + = = + Giao im ca (C ) vi ng thng AB cú ta l nghim h PT 0,25 0,25 7 S A B K H C O I D 3a a 2 2 2 2 x 2 5x(x 2) 0 2x 2y 7x 2 0 2x 2 7x 2 0 x 0; y 1 2 x 2 x 2 x 2; y 2 x 2 2 2 2 y = y = y = + − = + − − = + − − = ÷ = = ⇔ ⇔ ⇔ + + = = + Vậy có hai giao điểm là M(0; 1) và N(2; 2) + Các tiếp tuyến của (C ) tại M và N lần lượt nhận các vectơ 7 IM ;1 4 = − ÷ uuur và 1 IN ;2 4 = ÷ uur làm các vectơ pháp tuyến , do đó các TT đó có phương trình lần lượt là : • 7 (x 0) 1(y 1) 0 7x 4y 4 0 4 , hay : − − + − = − + = • 1 (x 2) 2(y 2) 0 x 8y 18 0 4 , hay : − + − = + − = 0,50 2/ Cho hàm số 2 2x (m 1)x 3 y x m + + − = + . Tìm các giá trị của m sao cho tiệm cận của đồ thị hàm số tiếp xúc với parabol y = x 2 +5 Điểm Hàm số 2 2x (m 1)x 3 y x m + + − = + xác định với mọi x m≠ − Viết hàm số về dạng 2 m m 3 y 2x 1 m x m − − = + − + + + TH1 : 2 1 13 m m 3 0 m 2 ± − − = ⇔ = : Có hàm số bậc nhất y 2x 1 m= + − ( x m≠ − ) : đồ thị không có tiệm cận + TH2 : 2 1 13 m m 3 0 m 2 ± − − ≠ ⇔ ≠ : Đồ thị hàm số có tiệm cận đứng là đường thẳng (d 1 ) x = -m và tiệm cận xiên là đường thẳng (d 2 ) y = 2x + 1 - m + Đường thẳng (d 1 ) x = - m luôn cắt parabol parabol y = x 2 +5 tại điểm (-m ; m 2 +5) ( với mọi 1 13 m 2 ± ≠ ) và không thể là tiếp tuyến của parabol + Tiệm cận xiên (d 2 ) y = 2x + 1 - m tiếp xúc với parabol y = x 2 +5 ⇔ PT x 2 +5 = 2x + 1 - m , hay PT x 2 – 2x + 4 +m = 0 có nghiệm kép '⇔ ∆ = 1-(4 + m) = 0 m 3 ⇔ = − ( thỏa điều kiện) Kết luận : m = -3 là giá trị cần tìm 0,25 0,25 0,25 0,25 VI. (1,0 điểm) (1,0 điểm) Cho khai triển ( ) x 1 3 x 1 2 2 8 1 log 3 1 log 9 7 5 2 2 − − − + + + ÷ . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 trong khai triển này là 224 ( ) x 1 3 x 1 2 2 8 1 log 3 1 log 9 7 5 2 2 − − − + + + ÷ Ta có : ( ) k 8 8 k 8 k k 8 k 0 a b C a b = − = + = ∑ với ( ) ( ) ( ) x 1 3 x 1 2 2 1 1 1 log 3 1 log 9 7 x 1 x 1 5 3 5 a 2 9 7 b 2 3 1 = ; − − − + − + − − = + = = + + Theo thứ tự trong khai triển trên , số hạng thứ sáu tính theo chiều từ trái sang phải của khai triển là ( ) ( ) ( ) ( ) 3 5 1 1 1 5 x 1 x 1 x 1 x 1 3 5 6 8 T C 9 7 . 3 1 56 9 7 . 3 1 − − − − − − = + + = + + ÷ ÷ 0,25 0,25 8 + Theo giả thiết ta có : ( ) ( ) x 1 1 x 1 x 1 x 1 x 1 x 1 9 7 56 9 7 . 3 1 4 9 7 4(3 1) 3 1 = 224 − − − − − − − + + + ⇔ = ⇔ + = + + ( ) x 1 2 x 1 x 1 x 1 3 1 x 1 3 4(3 ) 3 0 x 2 3 3 − − − − = = ⇔ − + = ⇔ ⇔ = = 0,25 0,25 ----Hết----- 9 . Hưng Yên Trường THPT Minh Châu ĐỀ THI THỬ VÀO ĐẠI HỌC LẦN 1 Môn thi: Toán Thời gian làm bài: 180 phút Ngày thi: 10/1/2010 Đề bài Câu I (2.0 điểm) Cho hàm. BÌNH ĐỊNH KỲ THI THỬ ĐẠI HỌC NĂM HỌC 2009-2010 (lần 2) TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Môn: Toán – Khối A, B, V Thời gian làm bài: 180 phút Ngày thi: 03/04/2010