Đây là một bài tập dễ, vận dụng nhiều kiến thức và có nhiều cách giải khác nhau. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có [r]
(1)PHƯƠNG PHÁP GIẢI TOÁN THCS DẠNG TỐN KHĨ
-HẰNG ĐẲNG THỨC
Với số thực a, b, c, ta có : (a + b)(a + c) = a2 + (ab + bc + ca)
= a(a + b + c) + bc (*)
Với tôi, (*) đẳng thức thú vị Trước hết, từ (*) ta có :
Hệ : Nếu ab + bc + ca = a2 + = (a + b)(a + c)
Hệ : Nếu a + b + c = a + bc = (a + b)(a + c)
Bây giờ, đến với vài ứng dụng (*) hai hệ
Bài toán : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Hãy tính giá trị biểu thức :
Lời giải : Theo hệ ta có
a2 + = a2 + (ab + bc + ca) = (a + b)(a + c) ;
b2 + = b2 + (ab + bc + ca) = (b + a)(b + c) ;
c2 + = c2 + (ab + bc + ca) = (c + a)(c + b)
Suy
Vì A = a(b + c) + b(c + a) + c(a + b) = 2(ab + bc + ca) =
Vấn đề khó ta hướng tới việc đánh giá biểu thức
Bài toán : Cho ba số dương a, b, c thỏa mãn (a +b)(a +c) = Chứng minh :
(2)1 = (a + b)( a + c) = a(a + b + c) + bc ≥
b) Sử dụng bất đẳng thức Cô-si cho ba số dương a2 ;
(ab + bc + ca)/2 ; (ab + bc + ca)/2
1 = (a + b)( a + c) = a2 + (ab + bc + ca) =
Bài toán : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Chứng minh :
Lời giải : Theo hệ ta có
Sử dụng bất đẳng thức Cơ-si cho hai số dương a2 + ab ; a2 + ac :
Tương tự ta có
Từ kết ta suy :
Bài toán sau nguyên đề thi Châu - Thái Bình Dương năm 2002 viết lại cho đơn giản (thay (1/x ; 1/y ; 1/z) (a ; b ; c))
Bài toán : Cho ba số dương a, b, c thỏa mãn a + b + c = Chứng minh :
(3)Tương tự ta có
Từ kết ta suy :
Để kết thúc, xin bạn làm thêm số tập :
Bài tập : Cho ba số dương a, b, c thỏa mãn a + b + c = Hãy tính giá trị biểu thức :
Bài tập : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = Chứng minh :
Bài tập : Cho ba số dương a, b, c thỏa mãn a + b + c = Chứng minh : (a + bc)(b + ca)(c + ab) ≥ 64/81(ab + bc + ca)2.
BẤT ĐẲNG THỨC TRÊ-BƯ-SEP
Các bạn làm quen với bất đẳng thức Cơ si, Bunhiacơpski khơng bạn cịn chưa biết bất đẳng thức Trê - bư - sép Con đường đến bất đẳng thức thật giản dị, gần gũi với kiến thức bạn bậc THCS
Các bạn thấy : Nếu a1 ≤ a2 b1 ≤ b2 (a2 - a1) (b2 - b1) ≥ Khai triển vế trái bất
đẳng thức ta có :
a1b1 + a2b2 - a1b2 - a2b1 ≥
=> : a1b1 + a2b2 ≥ a1b2 + a2b1
Nếu cộng thêm a1b1 + a2b2 vào hai vế ta :
2 (a1b1 + a2b2) ≥ a1 (b1 + b2) + a2 (b1 + b2)
=> : (a1b1 + a2b2) ≥ (a1 + a2) (b1 + b2) (*)
Bất đẳng thức (*) bất đẳng thức Trê - bư - sép với n = Nếu thay đổi giả thiết, cho a1 ≤
a2 b1 ≥ b2 tất bất đẳng thức đổi chiều ta có :
2 (a1b1 + a2b2) ≤ (a1 + a2) (b1 + b2) (**)
Các bất đẳng thức (*) (**) trở thành đẳng thức a1 = a2 b1 = b2
Làm theo đường tới (*) (**), bạn giải nhiều toán thú vị
Bài toán : Biết x + y = Chứng minh x2003 + y2003 ≤ x2004 + y2004
Lời giải : Do vai trị bình đẳng x y nên giả sử x ≤ y Từ => : x2003 ≤ y2003
Do (y2003 - x2003).(y - x) ≥
=> : x2004 + y2004 ≥ x.y2003 + y.x2003
Cộng thêm x2004 + y2004 vào hai vế ta có : 2.(x2004 + y2004) ≥ (x+y) (x2003 + y2003) = 2.(x2003 + y2003)
=> : x2004 + y2004 ≥ x2003 + y2003 (đpcm)
Để ý : Bất đẳng thức vừa chứng minh trở thành đẳng thức x = y = ; bạn có lời giải tốn sau :
(4)Nếu bạn quan tâm tới yếu tố tam giác vận dụng bất đẳng thức (*) (**) dẫn đến nhiều toán
Bài toán : Cho tam giác ABC có diện tích AH BK đường cao tam giác Chứng minh : (BC + CA).(AH + BK) ≥
Lời giải : Ta có AH x BC = BK x CA = Do vai trị bình đẳng BC CA nên giả sử BC ≤ CA => 2/BC ≥ 2/CA => AH ≥ BK
Do (CA - BC).(BK - AH) ≤
=> : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥
Đẳng thức xảy BC = CA BK = AH tương đương với BC = CA hay tam giác ABC tam giác cân đỉnh C
Bài toán : Cho tam giác ABC với BC = a, CA = b, AB = c đường cao tương ứng cạnh có độ dài ha, hb, hc Chứng minh :
với S diện tích tam giác ABC
Lời giải : Do vai trị bình đẳng cạnh tam giác nên giả sử a ≤ b ≤ c => : 2S/a ≥ 2S/b ≥ 2S/c => ≥ hb ≥ hc
Làm lời giải tốn ta có : (a + b).(ha + hb) ≥ 8S
=> : 1/(ha + hb) ≤ (a + b)/(8S) (1)
Tương tự ta :
1/(hb + hb) ≤ (b + c)/(8S) (2)
1/(hc + ha) ≤ (c + a)/(8S) (3)
Cộng vế (1), (2), (3) dẫn đến :
Bất đẳng thức (4) trở thành đẳng thức bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC tam giác
Bây bạn thử giải tập sau :
1) Biết x2 + y2 = Tìm giá trị lớn F = (x4 + y4) / (x6 + y6) 2) Cho số dương x, y, z thỏa mãn x + y + z = Chứng minh :
3) Cho tam giác ABC có độ dài cạnh a, b, c độ dài đường phân giác thuộc cạnh la, lb, lc Chứng minh :
(5)PHƯƠNG PHÁP TÌM GIÁ TRỊ NHỎ NHẤT VÀ GIÁ TRỊ LỚN NHẤT
Tìm giá trị lớn (GTLN) giá trị nhỏ (GTNN) biểu thức nhiều ẩn, ẩn nghiệm phương trình bất phương trình cho trước
Đối với dạng tốn này, ta cần xác định giải bất phương trình ẩn mà ẩn biểu thức cần tìm GTLN, GTNN
Bài tốn : Tìm GTLN GTNN xy biết x y nghiệm phương trình x4 + y4 - = xy(1 - 2xy)
Lời giải : Ta có x4 + y4 - = xy(1 - 2xy)
<=> xy + = x4 + y4 + 2x2y2
<=> xy + = (x2 + y2)2 (1)
Do (x2 - y2)2 ≥ với x, y, dễ dàng suy (x2 + y2)2 ≥ 4(xy)2 với x, y (2)
Từ (1) (2) ta có :
xy + ≥ 4(xy)2 <=> 4t2 - t - ≤ (với t = xy)
<=> (t - 1)(4t + 3) ≤
Vậy : t = xy đạt GTLN
<=> x = y = ; t = xy đạt GTNN
Bài toán : Cho x, y, z số dương thỏa mãn xyz ≥ x + y + z + Tìm GTNN x + y + z
Lời giải : áp dụng bất đẳng thức Cô-si cho ba số dương x, y, z ta có :
Vậy t = x + y + z đạt GTNN x = y = z =
Bài toán : Cho số thực x, y, z thỏa mãn x2 + 2y2 + 2x2z2 + y2z2 + 3x2y2z2 = Tìm GTLN
GTNN A = xyz Lời giải :
x2 + 2y2 + 2x2z2 + y2z2 + 3x2y2z2 =
<=> (x2 + y2z2) + 2(y2 + x2z2) + 3x2y2z2 = (1)
áp dụng bất đẳng thức m2 + n2 ≥ 2|mn| với m, n ta có :
x2 + y2z2 ≥ 2|xyz| ; y2 + x2z2 ≥ 2|xyz| (2)
Từ (1) (2) suy :
2|xyz| + 4|xyz| + 3(xyz)2 ≤
<=> 3A2 + 6|A| - ≤ <=> A2 + 2|A| - ≤
<=> (|A| - 1)(|A| + 3) ≤ <=> |A| ≤ <=> -1 ≤ A ≤
(6)A đạt GTNN -1
Bài toán : Cho số thực x, y, z thỏa mãn x4 + y4 + x2 - = 2y2(1 - x2)
Tìm GTLN GTNN x2 + y2
Lời giải : Ta có x4 + y4 + x2 - = 2y2(1 - x2)
<=> (x2 + y2)2 - 2(x2 + y2) - = -3x2 ≤
=> t2 - 2t - ≤ (với t = x2 + y2 ≥ 0)
=> (t + 1)(t - 3) ≤ => t ≤
Vậy t = x2 + y2 đạt GTLN x = ;
Ta lại có x4 + y4 + x2 - = 2y2(1 - x2)
<=> (x2 + y2)2 + x2 + y2 - = 3y2 ≥
=> t2 + t - ≥ (với t = x2 + y2 ≥ 0)
Vậy t = x2 + y2 đạt GTNN
khi y = ;
Bài tập tương tự
1) Cho x, y, z thỏa mãn : 2xyz + xy + yz + zx ≤ Tìm GTLN xyz
Đáp số : 1/8(x = y = z = 1/2)
2) Cho ba số dương x, y, z thỏa mãn : (x + y + z)3 + x2 + y2 + z2 + = 29xyz
Tìm GTNN xyz Đáp số : (x = y = z = 2)
3) Tìm GTLN GTNN S = x2 + y2 biết x y nghiệm phương trình :
5x2 + 8xy + 5y2 = 36
Đáp số : GTLN 36 GTNN
4) Cho x y số thực thỏa mãn :
Tìm GTLN x2 + y2
Đáp số : (x = -1 ; y = 0)
(7)x2 + 4y2 + z2 = 4xy + 5x - 10y +2z -
Tìm GTLN GTNN x - 2y Đáp số :
GTLN (x = 2y + ; y Є R ; z = 1) ; GTNN (x = 2y + ; y Є R ; z = 1)
6) Tìm số nguyên không âm x, y, z, t để M = x2 + y2 + 2z2 + t2 đạt GTNN, biết :
Đáp số : x = ; y = ; z = ; t = Khi M đạt giá trị nhỏ 61
PHƯƠNG PHÁP HỐN VỊ VỊNG QUANH
Phương pháp dựa vào số nhận xét sau :
1/ Giả sử phải phân tích biểu thức F(a, b, c) thành nhân tử, a, b, c có vai trị nhau biểu thức Nếu F(a, b, c) = a = b F(a, b, c) chứa nhân tử a - b, b - c c - a
Bài tốn : Phân tích thành nhân tử : F(a, b, c) = a2(b - c) + b2(c - a) + c2(a - b)
Nhận xét : Khi a = b ta có :
F(a, b, c) = a2(a - c) + a2(c - a) = 0, F(a, b, c) có chứa nhân tử a - b
Tương tự F(a, b, c) chứa nhân tử b - c, c - a Vì F(a, b, c) biểu thức bậc ba, F(a, b, c) = k.(a - b)(b - c)(c - a)
Cho a = 1, b = 0, c = -1 ta có : + = k.1.1.(-2) => k = -1
Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)
Bài tốn : Phân tích thành nhân tử : F(a, b, c) = a3(b - c) + b3(c - a) + c3(a - b)
Nhận xét : Tương tự toán 1, ta thấy F(a, b, c) phải chứa nhân tử a - b, b - c, c - a Nhưng F(a, b, c) biểu thức bậc bốn, (a - b)(b - c)(c - a) bậc ba, F(a, b, c) phải có thừa số bậc a, b, c Do vai trò a, b, c nên thừa số có dạng k(a + b + c) Do :
F(a, b, c) = k(a - b)(b - c)(c - a)(a + b + c) Cho a = ; b = ; c = => k = -1
Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)(a + b + c)
2/ Trong số toán, F(a, b, c) biểu thức đối xứng a, b, c F(a, b, c) ≠ khi a = b ta thử xem a = -b, F(a, b, c) có triệt tiêu khơng, thỏa mãn F(a, b, c) chứa nhân tử a + b, từ chứa nhân tử b + c, c + a
Bài toán : Chứng minh :
Nếu : 1/x + 1/y + 1/z = 1/(x + y + z) 1/xn + 1/yn + 1/zn = 1/(xn + yn + zn)
với số nguyên lẻ n
Nhận xét :
(8)Do ta thử phân tích biểu thức
F(x, y, z) = (xy + xz + yz)(x + y + z) - xyz thành nhân tử
Chú ý x = - y F(x, y, z) = - y2z + y2z = nên F(x, y, z) chứa nhân tử x + y Lập luận
tương tự tốn 1, ta có F(x, y, z) = (x + y)(y + z)(x + z) Do (*) trở thành : (x + y)(y + z)(x + z) =
Tương đương với : x + y = y + z = z + x = Nếu x + y = chẳng hạn x = - y n lẻ nên xn = (-y)n = -yn
Vậy : 1/xn + 1/yn + 1/zn = 1/(xn + yn + zn)
Tương tự cho trường hợp lại, ta có đpcm
Có ta phải linh hoạt tình mà hai nguyên tắc khơng thỏa mãn :
Bài tốn :
Phân tích đa thức sau thành nhân tử : F(x, y, z) = x3 + y3 + z3 - 3xyz
Nhận xét : Ta thấy x = y hay x = -y F(x, y, z) ≠ Nhưng thay x = -(y + z) F(x, y, z) = nên F(x, y, z) có nhân tử x + y + z Chia F(x, y, z) cho x + y + z, ta thương x2 + y2 +
z2 - xy - yz - zx dư Do :
F(x, y, z) = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)
Ta thêm bớt vào F(x, y, z) lượng 3x2y + 3xy2 để nhân kết
Các bạn dùng phương pháp kết nêu để giải tập sau
Bài toán :
Tính tổng :
trong k = 1, 2, 3,
Bài toán : Chứng minh (a - b)5 + (b - c)5 + (c - a)5 chia hết cho 5(a - b)(b - c)(c - a)
TS Lê Quốc Hán
(ĐH Vinh)
PHƯƠNG PHÁP TÌM NGHIỆM ĐỘC ĐÁO
Bằng kiến thức hình học lớp ta giải phương trình bậc hai ẩn không ? Câu trả lời trường hợp tổng qt khơng được, nhiều trường hợp ta tìm nghiệm dương
Ví dụ : Tìm nghiệm dương phương trình x2 + 10x = 39 Lời giải :
Ta có : x2 + 10x = 39
tương đương x2 + 2.5.x = 39
Từ biến đổi trên, ta hình dung x cạnh hình vng diện tích hình vng x2
(9)Hình vng to có độ dài cạnh x + có diện tích 64 Do : (x + 5)2 = 64 = 82 tương đương x + = hay x =
Vậy phương trình có nghiệm dương x =
Phương pháp nhà tốn học Italia tiếng Jerơm Cacđanơ (1501 - 1576) sử dụng tìm nghiệm dương phương trình x2 + 6x = 31
Các bạn tìm nghiệm dương phương trình x2 - 8x = 33 phương pháp hình học thử
xem ?
DẠNG TOÁN VỀ ƯCLN VÀ BCNN
Trong chương trình số học lớp 6, sau học khái niệm ước chung lớn (ƯCLN) bội chung nhỏ (BCNN), bạn gặp dạng tốn tìm hai số ngun dương biết số yếu tố có kiện ƯCLN BCNN
Phương pháp chung để giải :
1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với yếu tố cho để tìm hai số
2/ Trong số trường hợp, sử dụng mối quan hệ đặc biệt ƯCLN, BCNN tích hai số nguyên dương a, b, : ab = (a, b).[a, b], (a, b) ƯCLN [a, b] BCNN a b Việc chứng minh hệ thức khơng khó :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] (**)
Chúng ta xét số ví dụ minh họa.
Bài tốn : Tìm hai số ngun dương a, b biết [a, b] = 240 (a, b) = 16 Lời giải : Do vai trò a, b nhau, khơng tính tổng qt, giả sử a ≤ b
Từ (*), (a, b) = 16 nên a = 16m ; b = 16n (m ≤ n a ≤ b) với m, n thuộc Z+ ; (m, n) =
Theo định nghĩa BCNN :
[a, b] = mnd = mn.16 = 240 => mn = 15
=> m = , n = 15 m = 3, n = => a = 16, b = 240 a = 48, b = 80
Chú ý : Ta áp dụng cơng thức (**) để giải toán : ab = (a, b).[a, b] => mn.162 =
240.16 suyy mn = 15
Bài tốn : Tìm hai số ngun dương a, b biết ab = 216 (a, b) =
Lời giải : Lập luận 1, giả sử a ≤ b
(10)Vì : ab = 6m.6n = 36mn => ab = 216 tương đương mn = tương đương m = 1, n = m = 2, n = tương đương với a = 6, b = 36 hoặcc a = 12, b = 18
Bài tốn : Tìm hai số ngun dương a, b biết ab = 180, [a, b] = 60
Lời giải :
Từ (**) => (a, b) = ab/[a, b] = 180/60 =
Tìm (a, b) = 3, toán đưa dạng toán Kết : a = 3, b = 60 a = 12, b = 15
Chú ý : Ta tính (a, b) cách trực tiếp từ định nghĩa ƯCLN, BCNN : Theo (*) ta có ab = mnd2 = 180 ; [a, b] = mnd = 60 => d = (a, b) =
Bài tốn : Tìm hai số nguyên dương a, b biết a/b = 2,6 (a, b) =
Lời giải : Theo (*), (a, b) = => a = 5m ; b = 5n với m, n thuộc Z+ ; (m, n) =
Vì : a/b = m/n = 2,6 => m/n = 13/5 tương đương với m = 13 n = hay a = 65 b = 25
Chú ý : phân số tương ứng với 2,6 phải chọn phân số tối giản (m, n) =
Bài toán :
Tìm a, b biết a/b = 4/5 [a, b] = 140
Lời giải : Đặt (a, b) = d Vì , a/b = 4/5 , mặt khác (4, 5) = nên a = 4d, b = 5d Lưu ý [a, b] = 4.5.d = 20d = 140 => d = => a = 28 ; b = 35
Bài tốn : Tìm hai số nguyên dương a, b biết a + b = 128 (a, b) = 16
Lời giải : Lập luận 1, giả sử a ≤ b
Ta có : a = 16m ; b = 16n với m, n thuộc Z+ ; (m, n) = ; m ≤ n
Vì : a + b = 128 tương đương 16(m + n) = 128 tương đương m + n =
Tương đương với m = 1, n = m = 3, n = hay a = 16, b = 112 a = 48, b = 80
Bài tốn : Tìm a, b biết a + b = 42 [a, b] = 72
Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) =
Không tính tổng quát, giả sử a ≤ b => m ≤ n Do : a + b = d(m + n) = 42 (1)
[a, b] = mnd = 72 (2)
=> d ước chung 42 72 => d thuộc {1 ; ; ; 6}
Lần lượt thay giá trị d vào (1) (2) để tính m, n ta thấy có trường hợp d = => m + n = mn = 12 => m = n = (thỏa mãn điều kiện m, n) Vậy d = a = 3.6 = 18 , b = 4.6 = 24
Bài tốn : Tìm a, b biết a - b = 7, [a, b] = 140
Lời giải : Gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) =
Do : a - b = d(m - n) = (1’) [a, b] = mnd = 140 (2’)
=> d ước chung 140 => d thuộc {1 ; 7}
Thay giá trị d vào (1’) (2’) để tính m, n ta kết : d = => m - n = mn = 20 => m = 5, n =
Vậy d = a = 5.7 = 35 ; b = 4.7 = 28
Bài tập tự giải :
1/ Tìm hai số a, b biết 7a = 11b (a, b) = 45
2/ Tìm hai số biết tổng chúng 448, ƯCLN chúng 16 chúng có chữ số hàng đơn vị giống
(11)MỘT SỐ DẠNG TOÁN SỬ DỤNG PHÉP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
1 Rút gọn biểu thức đại số Bài toán : Rút gọn :
với ab ≠
Lời giải :
Bài toán : Rút gọn :
Lời giải :
2 Chứng minh bất đẳng thức
Bài toán : Cho ΔABC với góc A ≥ góc B ≥ góc C Chứng minh :
Lời giải : Hạ AH vng góc với BC ; BI vng góc với AC Ta có AH = ha, BI = hb Dễ thấy
tam giác vuông AHC BIC đồng dạng chung góc C => ha/hb = AH/BI = b/a
(12)Vì góc A ≥ góc B ≥ góc C tương đương với a ≥ b ≥ c nên (**) đúng, tức (*) chứng minh
3 Giải phương trình bất phương trình
Bài tốn : Giải phương trình : 4x3 - 10x2 + 6x - = (1) Lời giải :
(1) 4x3 - 2x2 - 8x2 + 4x + 2x - = tương đương 2x2(2x - 1) - 4x(2x - 1) + (2x - 1) = 0
hay (2x - 1)(2x2 - 4x + 1) =
Bài toán : Giải phương trình :
Lời giải : Ta có :
Vậy phương trình (2) có nghiệm x =
Bài toán : Giải bất phương trình : 7x3 - 12x2 - < (3) Lời giải : (3) 7x3 - 14x2 + 2x2 - <
tương đương với 7x2(x - 2) + 2(x2 - 4) < hay (x - 2)(7x2 + 2x + 4) <
tương đương với (x - 2)[6x2 + + (x + 1)2] < hay x - < => x <
(13)4 Một số toán khác Bài toán : CMR :
với a, b ≠ ; a ≠ b ; a, b ≠ 1/2 a + b + 3/2 = 1/a + 1/b
Lời giải : (*) tương đương : a2b - 2a3b - 2b2 + 4ab2 = b2a - 2ab3 - 2a2 + 4a2b hay :
3ab2 - 3a2b - 2a3b + 2b3a - 2b2 + 2a2 =
3ab(b - a) + 2ab(b2 - a2) - 2(b2 - a2) =
(b - a)[3ab + 2ab(b + a) - 2(a + b)] =
Vì a ≠ b => b - a ≠ nên hệ thức tương đương với : 3ab + 2ab(b + a) - 2(a + b) = Do a.b ≠ => 3/2 + a + b - (a + b)/ab =
=> : a + b + 3/2 = 1/a + 1/b (đpcm)
Bài toán : Chứng minh : n2 + 11n + 39 không chia hết cho 49 với "n thuộc N Lời giải : Xét M = n2 + 11n + 39 = n2 + 2n + 9n + 18 + 21 = (n + 2)(n + 9) + 21
Có (n + 9) - (n + 2) = => n + n + chia hết cho không chia hết cho - Nếu n + n + chia hết cho (n + 9)(n + 2) chia hết cho 49 mà 21 không chia hết cho 49 nên M không chia hết cho 49
- Nếu n + n + không chia hết cho (n + 9)(n + 2) khơng chia hết cho mà 21 chia hết M không chia hết cho 49
Vậy n22 + 11n + 39 không chia hết cho 49
Sau số tập để bạn thử vận dụng :
1. Tìm nghiệm tự nhiên phương trình : x6 - x4 + 2x3 + 2x2 = y2 2. Cho ab ≥
Chứng minh : 1/(1 + a2) + 1/(1 + b2) ≥ 2/(1 + ab)
3. Chứng minh với số nguyên lẻ n (n86 - n4 + n2) chia hết cho 1152 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp : Đưa dạng tích
Biến đổi phương trình dạng : vế trái tích đa thức chứa ẩn, vế phải tích số nguyên.
Thí dụ : Tìm nghiệm nguyên phương trình : y3 - x3 = 91 (1) Lời giải : (1) tương đương với (y - x)(x2 + xy + y2) = 91 (*)
Vì x2 + xy + y2 > với x, y nên từ (*) => y - x >
Mặt khác, 91 = x 91 = x 13 y - x ; x2 + xy + y2 nguyên dương nên ta có bốn khả
sau :
y - x = 91 x2 + xy + y2 = ; (I)
y - x = x2 + xy + y2 = 91 ; (II)
y - x = x2 + xy + y2 = ; (III)
y - x = x2 + xy + y2 = 13 ; (IV)
Đến đây, toán coi giải
Phương pháp : Sắp thứ tự ẩn
Nếu ẩn x, y, z, có vai trị bình đẳng, ta giả sử x ≤ y ≤ z ≤ để tìm nghiệm thỏa mãn điều kiện Từ đó, dùng phép hốn vị để => nghiệm phương trình cho.
(14)Lời giải :
Do vai trị bình đẳng x, y, z phương trình, trước hết ta xét x ≤ y ≤ z
Vì x, y, z nguyên dương nên xyz ≠ 0, x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ => xy thuộc {1 ; ; 3}
Nếu xy = => x = y = 1, thay vào (2) ta có : + z = z, vơ lí Nếu xy = 2, x ≤ y nên x = y = 2, thay vào (2), => z = Nếu xy = 3, x ≤ y nên x = y = 3, thay vào (2), => z =
Vậy nghiệm ngun dương phương trình (2) hốn vị (1 ; ; 3)
Thí dụ : Tìm nghiệm nguyên dương phương trình : 1/x + 1/y + 1/z = (3)
Lời giải : Do vai trị bình đẳng x, y, z, trước hết ta xét x ≤ y ≤ z Ta có : = 1/x + 1/y + 1/z ≤ 3.1/x => x ≤ 3/2 => x =
Thay x = vào (3) ta có :
1/y + 1/z + = => = 1/y + 1/z ≤ 2/y => y ≤ => y = => 1/z = (vơ lí)
hoặc y = => 1/z = => z =
Vậy nghiệm nguyên dương phương trình (3) hốn vị (1 ; ; 2)
Phương pháp : Sử dụng tính chất chia hết
Phương pháp sử dụng tính chất chia hết để chứng minh phương trình vơ nghiệm tìm nghiệm phương trình.
Thí dụ : Tìm nghiệm nguyên phương trình :
x2 - 2y2 = (4)
Lời giải : Từ phương trình (4) ta => x phải số lẻ Thay x = 2k + (k thuộc Z) vào (4), ta : 4k2 +4k + - 2y2 =
tương đương 2(k2 + k - 1) = y2
=> y2 số chẵn => y số chẵn
Đặt y = 2t (t thuộc Z), ta có : 2(k2 + k - 1) = 4t2
tương đương k(k + 1) = 2t2 + (**)
Nhận xét : k(k + 1) số chẵn, 2t2 + số lẻ => phương trình (**) vơ nghiệm
Vậy phương trình (4) khơng có nghiệm ngun
Thí dụ : Chứng minh khơng tồn số nguyên x, y, z thỏa mãn : x3 + y3 + z3 = x + y + z + 2000 (5)
Lời giải : Ta có x3 - x = (x - 1).x.(x + 1) tích số nguyên liên tiếp (với x số nguyên) Do
đó : x3 - x chia hết cho
Tương tự y3 - y z3 - z chia hết cho Từ ta có : x3 + y3 + z3 - x - y - z chia hết cho
Vì 2000 khơng chia hết x3 + y3 + z3 - x - y - z ≠ 2000 với số nguyên x, y, z tức
phương trình (5) khơng có nghiệm ngun
Thí dụ : Tìm nghiệm ngun phương trình :
xy + x - 2y = (6)
Lời giải : Ta có (6) tương đương y(x - 2) = - x + Vì x = khơng thỏa mãn phương trình nên (6) tương đương với:
y = (-x + 3)/(x - 2) tương đương y = -1 + 1/(x - 2)
Ta thấy : y số nguyên tương đương với x - ước hay x - = x - = -1 tương đương với x = x = Từ ta có nghiệm (x ; y) (1 ; -2) (3 ; 0)
Chú ý : Có thể dùng phương pháp để giải toán này, nhờ đưa phương trình (6) dạng : x(y + 1) - 2(y + 1) = tương đương (x - 2)(y + 1) =
(15)Dùng bất đẳng thức để đánh giá ẩn từ đánh giá => giá trị nguyên ẩn này.
Thí dụ : Tìm nghiệm nguyên phương trình :
x2 - xy + y2 = (7) Lời giải :
(7) tương đương với (x - y/2)2 = - 3y2/4
Vì (x - y/2)2 ≥ => - 4y2/4 ≥
=> -2 ≤ y ≤
Lần lượt thay y = -2 ; ; -1 ; ; vào phương trình để tính x Ta có nghiệm nguyên phương trình :
(x ; y) thuộc {(-1 ; -2) ; (1 ; 2) ; (-2 ; -1) ; (2 ; 1) ; (-1 ; 1) ; (1 ; -1)}
Chắc chắn nhiều phương pháp để giải phương trình nghiệm nguyên cịn nhiều thí dụ hấp dẫn khác Mong bạn tiếp tục trao đổi vấn đề Các bạn thử giải số phương trình nghiệm nguyên sau :
Bài : Giải phương trình nghiệm nguyên : a) x2 - xy = 23 ;
b) 3x - 3y + = ; c) 19x2 + 28y2 =729 ;
d) 3x2 + 10xy + 8y2 = 96
Bài : Tìm x, y nguyên dương thỏa mãn : a) 4xy - 3(x + y) = 59 ;
b) 5(xy + yz + zx) = 4xyz ; c) xy/z + yz/x + zx/y = ; d) 1/x + 1/y + 1/z = 1/1995
GIẢI HỆ PHƯƠNG TRÌNH BẰNG CÁCH ĐÁNH GIÁ CÁC ẨN
Hệ phương trình dạng tốn thường gặp kì thi học sinh lớp Có nhiều hệ phương trình giải trực tiếp phức tạp, chí khơng giải Trong số trường hợp vậy, ta tìm cách đánh giá ẩn ẩn với số, từ xác định nghiệm hệ Phương pháp gọi “phương pháp đánh giá ẩn”
1 Đánh giá ẩn
Ví dụ (đề thi vào khối chuyên Toán Tin, ĐHQG Hà Nội năm 1996) : Giải hệ phương trình
(16)Vậy nghiệm hệ phương trình (thỏa mãn điều kiện) : x = y =
Ví dụ 2 (đề thi vào khối chuyên, ĐHSPHN năm 2004) : Tìm nghiệm dương hệ
Lời giải : Ta chứng minh x = y = z Do x, y, z có vai trị nên khơng tổng quát, giả sử x y x z (4)
Vì x > 0, y > 0, z > nên :
Từ (1), (2), (4) => 2x2004 = y6 + z6 ≤ x6 + z6 = 2y2004 => 2x2004 ≤ 2y2004 => x ≤ y (5)
Từ (1), (3), (4) => 2x2004 = y6 + z6 ≤ y6 + x6 = 2z2004 => 2x2004 ≤ 2z2004 => x ≤ z (6)
Từ (4), (5), (6) suy x = y = z
Thay vào (1) ta có 2x2004 = x6 + x6 = 2x6 suy x = (do x > 0)
Vậy hệ có nghiệm dương : x = y = z =
Ví dụ : Tìm a, b, c biết
4a - b2 = 4b - c2 = 4c - a2 = (*)
Lời giải : Ta thấy a > 0, b > 0, c > Giả sử a > b, từ (*) ta có :
4a - 4b = b2 - c2 > => b > c (>0) ; 4b - 4c = c2 - a2 > => c > a (>0)
=> b > c > a trái với giả thiết a > b => a ≤ b
Tương tự trên, a < b dẫn đến điều vơ lí Vậy a = b, suy : 4a - 4b = b2 - c2 = => b = c => a = b = c
Thay vào (*) ta có :
4a - b2 = <=> 4a - a2 = <=> a2 - 4a + =
Giải phương trình bậc hai ẩn a ta hai nghiệm ++++++++ Vậy hệ phương trình (*) có hai nghiệm :
(17)Ví dụ 4 (đề thi vào lớp 10 chuyên, ĐHQG Hà Nội 2004) : Biết a > 0, b > a100 + b100 = a101 +
b101 = a102 + b102 (1)
Tính giá trị biểu thức P = a2004 + b2004
Lời giải : Ta chứng minh a = 1, b = 1, từ tính P Thật vậy, từ (1) ta có : a100.(1 - a) = b100.(b - 1) (2)
a101.(1 - a) = b101.(b - 1) (3)
Trừ (2) cho (3) theo vế ta có :
(a100 - a101)(1 - a) = (b100 - b101)(b - 1) <=> a100.(1 - a)2 = b100.(1 - b)(b - 1)
<=> a100.(1 - a)2 = - b100.(1 - b)2 (4)
Nếu a ≠ 1, a > suy :
a100.(1 - a)2 > ≥ - b100.(1 - b)2 trái với (4) => a = => b = (thay vào (2), b >0)
Vậy P = 12004 + 12004 = Ví dụ : Giải hệ phương trình
Lời giải : Ta chứng minh x = Nhận xét : x, y, z khác Giả sử x > (4)
Tương tự, x < dẫn đến điều vơ lí Suy x = 1, thay vào (1) (2) ta có :
Vậy hệ có nghiệm : x = y = z =
(18)SỬ DỤNG DIỆN TÍCH
TRONG CHỨNG MINH HÌNH HỌC
Có nhiều tốn hình học tưởng khơng liên quan đến diện tích, ta sử dụng diện tích lại dễ dàng tìm lời giải tốn
Bài tốn : Tam giác ABC có AC = AB Tia phân giác góc A cắt BC D Chứng minh DC = DB
Phân tích tốn (h.1)
Để so sánh DC DB, so sánh diện tích hai tam giác ADC ADB có chung đường cao kẻ từ A Ta so sánh diện tích hai tam giác chúng có đường cao kẻ từ D nhau, AC = AB theo đề cho
(19)Vẫn xét hai tam giác có chung đường cao kẻ từ A đến BC, SADC = SADB nên DC = DB
Giải tương tự trên, ta chứng minh toán tổng quát : Nếu AD phân giác ΔABC DB/DC = AB/AC
Bài tốn : Cho hình thang ABCD (AB // CD), đường chéo cắt O Qua O, kẻ đường thẳng song song với hai đáy, cắt cạnh bên AC BC theo thứ tự E F
Chứng minh OE = OF
Giải :
Cách : (h.2) Kẻ AH, BK, CM, DN vuông góc với EF Đặt AH = BK = h1, CM = DN = h2
Ta có :
Từ (1), (2), (3) => : Do OE = OF
Cách : (h.3) Kí hiệu hình vẽ Ta có SADC = SBDC
Cùng trừ S5 :
S1 + S2 = S3 + S4 (1)
Giả sử OE > OF S1 > S3 S2 > S4 nên S1 + S2 > S3 + S4, trái với (1)
(20)Vậy OE = OF
Bài toán : Cho hình bình hành ABCD Các điểm M, N theo thứ tự thuộc cạnh AB, BC cho AN = CM Gọi K giao điểm AN CM Chứng minh KD tia phân giác góc AKC
Giải : (h.4) Kẻ DH vng góc với KA, DI vng góc với KC Ta có :
DH AN = SADN (1)
DI CM = SCDM (2)
Ta lại có SADN = 1/2.SABCD (tam giác hình bình hành có chung đáy AD, đường cao tương ứng
bằng nhau), SCDM = 1/2.SABCD nên SADN = SCDM (3)
Từ (1), (2), (3) => DH AN = DI CM
Do AN = CM nên DH = DI Do KI tia phân giác góc AKC
Như xét quan hệ độ dài đoạn thẳng, ta nên xét quan hệ diện tích tam giác mà cạnh đoạn thẳng Điều nhiều giúp đến lời giải toán Bạn sử dụng diện tích để giải tốn sau :
1. Cho tam giác ABC cân A Gọi M điểm thuộc cạnh đáy BC Gọi MH, MK theo thứ tự đường vng góc kẻ từ M đến AB, AC Gọi BI đường cao tam giác ABC Chứng minh MH + MK = BI
Hướng dẫn : Hãy ý đến
SAMB + SAMC = SABC
2. Chứng minh tổng khoảng cách từ điểm M tam giác ABC đến ba cạnh tam giác khơng phụ thuộc vị trí M
Hướng dẫn : Hãy ý đến
SMBC + SMAC + SMAB = SABC
3. Cho tam giác ABC cân A Điểm M thuộc tia đối tia BC Chứng minh hiệu khoảng cách từ điểm M đến đường thẳng AC AB đường cao ứng với cạnh bên tam giác ABC
Hướng dẫn : Hãy ý đến
SMAC - SMAB = SABC
4. Cho hình thang ABCD (AB // CD, AB < CD) Các đường thẳng AD BC cắt O Gọi F trung điểm CD, E giao điểm OF AB Chứng minh AE = EB
(21)PHƯƠNG PHÁP VẼ ĐƯỜNG PHỤ
Bài toán : Cho góc xOy Trên Ox lấy hai điểm A, B Oy lấy hai điểm C, D cho AB = CD Gọi M N trung điểm AC BD Chứng minh đường thẳng MN song song với phân giác góc xOy
Suy luận : Vị trí đặc biệt CD CD đối xứng với AB qua Oz, phân giác góc xOy Gọi C1 D1 điểm đối xứng A B qua Oz ; E F giao điểm AC1 BD1
với Oz Khi E F trung điểm AC1 BD1, vị trí MN EF Vì ta
chỉ cần chứng minh MN // EF đủ (xem hình 1)
Thật vậy, AB = CD (gt), AB = C1D1 (tính chất đối xứng) nên CD = C1D1 Mặt khác ME
NF đường trung bình tam giác ACC1 BDD1 nên NF // DD1, NF = 1/2DD1 , ME //
CC1 , ME = 1/2 CC1 => ME // NF NE = 1/2 NF => tứ giác MEFN hình bình hành =>
MN // EF => đpcm
Bài toán có nhiều biến dạng” thú vị, sau vài biến dạng nó, đề nghị bạn giải xem tập nhỏ ; sau đề xuất “biến dạng” tương tự
Bài toán : Cho tam giác ABC Trên AB CD có hai điểm D E chuyển động cho BD = CE Đường thẳng qua trung điểm BC DE cắt AB AC I J Chứng minh ΔAIJ cân
Bài toán : Cho tam giác ABC, AB ≠ AC AD AE phân giác trung tuyến tam giác ABC Đường tròn ngoại tiếp tam giác ADE cắt AB AC M N Gọi F trung điểm MN Chứng minh AD // EF
Trong việc giải toán chứa điểm di động, việc xét vị trí đặc biệt tỏ hữu ích, đặc biệt tốn “tìm tập hợp điểm”
Bài tốn : Cho nửa đường trịn đường kính AB cố định điểm C chuyển động nửa đường trịn Dựng hình vng BCDE Tìm tập hợp C, D tâm hình vng
Ta xét trường hợp hình vng BCDE “nằm ngồi” nửa đường trịn cho (trường hợp hình vng BCDE nằm đường trịn cho xét tương tự, đề nghị bạn tự làm lấy xem tập)
(22)Xét trường hợp C trùng với A Dựng hình vng BAD1E1 D trùng với D1, E trùng với E1
và I trùng với I1 (trung điểm cung AB ) Trước hết, ta tìm tập hợp E Vì B E1 thuộc tập
hợp cần tìm nên ta nghĩ đến việc thử chứng minh Đ BEE1 không đổi Điều khơng khó
vì Đ ACB = 90o (góc nội tiếp chắn nửa đường trịn) ΔBEE1 = ΔBCA (c g c) => Đ BEE1 = Đ
BCA = 90o => E nằm nửa đường tròn đường kính BE
1 (1/2 đường trịn 1/2 đường
tròn cho nằm hai nửa mặt phẳng khác với “bờ” đường thằng BE1)
Vì Đ DEB = Đ E1EB = 90o nên D nằm EE1 (xem hình 2)
=> Đ ADE1 = 90o = Đ ABE1 => D nằm đường trịn đường kính AE1, ABE1D1 hình
vng nên đường trịn đường kính AE1 đường trịn đường kính BD1 Chú ý B D1
là vị trí giới hạn tập hợp cần tìm, ta => tập hợp D nửa đường trịn đường kính BD1
(nửa đường trịn điểm A hai nửa mặt phẳng khác với bờ đường thẳng BD1)
Cuối cùng, để tìm tập hợp I, ta cần ý II1 đường trung bình ΔBDD1 nên II1 // DD1 => Đ
BII1 = 90 => tập hợp I nửa đường trịn đường kính BI1 (đường trịn A hai nửa mặt
phẳng khác với bờ BD1)
Để kết thúc, xin mời bạn giải toán sau :
(23)VẬN DỤNG BỔ ĐỀ HÌNH THANG VÀO GIẢI TỐN
Bài toán : Cho DABC M, N, P điểm cạnh BC, CA, AB Nối AM, BN, CP cắt I, J, K (hình 1) Kí hiệu S diện tích, chứng minh :
Nếu SΔAIN = SΔBJP = SΔCKM = SΔIJK SAPJI = SBMKJ = SCNIK
Lời giải : Gọi L giao điểm CI NK
Từ SΔANI = SΔIJK => SΔANI + SΔAIJ = = SΔIJK + SΔAIJ => SΔNAJ = SΔKAJ
Ta nhận thấy ΔNAJ ΔKAJ có chung cạnh AJ nên khoảng cách từ N K tới AJ nhau, dẫn đến NK // AJ
Xét hình thang KNAJ, có hai cạnh bên AN x JK = C ; có hai đường chéo AK x JN = I, theo bổ đề “Hình thang”, CI cắt NK trung điểm NK Vậy L trung điểm NK (*)
Từ (*) ta chứng minh SΔCIN = S ΔCIK, mà SΔAIN = S ΔCKM => SΔCIM = SΔCIA => IA = IM (**)
( ΔCIM ΔCIA có chung đường cao hạ từ C tới AM)
Từ (**) => S ΔBIA = S ΔBIM ( ΔBIM ΔBIA có chung đường cao hạ từ B tới AM)
Tương đương với S ΔBPJ + SAPJI = S ΔIJK + SBJKM hay SAPJI = SBJKM (do S ΔBPJ = SIJK)
Hoàn toàn tương tự, ta chứng minh cặp ba tứ giác APJI, BMKJ, CNIK có diện tích diện tích ba tứ giác
* Xét toán đảo toán dựng hình thước kẻ TTT2(4) nói
Bài toán : Cho trước đoạn thẳng AB trung điểm M Chỉ thước thẳng, dựng qua điểm C nằm AB, đường thẳng song song với AB
Lời giải :
(24)Trên phần kéo dài tia BC, lấy điểm S Gọi giao điểm SA (d) D, AC cắt BD O Theo bổ đề Hình thang, đường thẳng SO qua điểm M, từ ta có cách dựng
Cách dựng : Lấy điểm S Lần lượt nối AC, SM, đường thẳng cắt O Nối SA, BO, cắt D Đường thẳng (d) qua C, D đường thẳng cần dựng : (d) qua C, (d) // AB
* Kết toán vận dụng nhiều tốn dựng hình thước thẳng
Bài tốn : Cho hình bình hành ABCD với O tâm Chỉ dùng thước thẳng, qua O, dựng đường thẳng song song với cạnh hình bình hành ABCD
Lời giải : Theo toán, O trung điểm AC, BD (hình 3)
áp dụng tốn cho đoạn thẳng AC với O trung điểm AC B điểm nằm AC, ta hoàn toàn dựng đường thẳng Bx // AC
Tương tự, ta dựng đường thẳng Cy // BD
Gọi E giao điểm Bx, Cy, ta thấy OBEC hình bình hành
Do đó, gọi I giao điểm BC OE I trung điểm BC, mặt khác O trung điểm BD nên OI đường trung bình DBCD, OI // CD
=> OE đường thẳng cần dựng
Bài toán : Trong mặt phẳng cho trước đường tròn (S) tâm O ; điểm M đường thẳng (d) Chỉ thước thẳng, dựng đường thẳng qua M song song với (d)
Lời giải : Để áp dụng toán trường hợp này, ta cần xác định (d) hai điểm P, Q khác điểm N trung điểm PQ
Ta thực sau :
(25)Theo tính chất đường tròn, ta chứng minh tứ giác ABCD hình bình hành có tâm điểm O Theo toán 3, qua O ta dựng đường thẳng song song với AB dễ thấy đường thẳng cắt PQ N trung điểm PQ Đến đây, ta => cách dựng đường thẳng qua M song song với (d) dựa vào toán
Bài tập tự giải :
Bài toán : Cho trước đường tròn (S) tâm O nó, M điểm Chỉ dùng thước thẳng, dựng qua M đường thẳng vng góc với đường thẳng (d) cho trước
Bài toán : Cho tứ giác ABCD, AD cắt BC S, AC cắt BD O Chứng minh SO qua trung điểm M AB SO qua trung điểm N CD tứ giác ABCD hình thang
CHỨNG MINH MỘT SỐ KHƠNG PHẢI LÀ SỐ CHÍNH PHƯƠNG
Trong chương trình Toán lớp 6, em học toán liên quan tới phép chia hết số tự nhiên cho số tự nhiên khác đặc biệt giới thiệu số phương, số tự nhiên bình phương số tự nhiên (chẳng hạn : ; ; ; ;16 ; 25 ; 121 ; 144 ; …)
Kết hợp kiến thức trên, em giải tốn : Chứng minh số khơng phải số phương Đây cách củng cố kiến thức mà em học Những toán làm tăng thêm lịng say mê mơn tốn cho em
1 Nhìn chữ số tận cùng
Vì số phương bình phương số tự nhiên nên thấy số phương phải có chữ số tận chữ số ; ; ; ; ; 9. Từ em giải toán kiểu sau :
Bài toán : Chứng minh số : n = 20042 + 20032 + 20022 - 20012
không phải số phương
Lời giải : Dễ dàng thấy chữ số tận số 20042 ; 20032 ; 20022 ; 20012 ; ; ; Do số n có chữ số tận nên n số phương
Chú ý : Nhiều số cho có chữ số tận số ; ; ; ; ; khơng phải số phương Khi bạn phải lưu ý thêm chút :
Nếu số phương chia hết cho số nguyên tố p phải chia hết cho p2.
Bài tốn : Chứng minh số 1234567890 khơng phải số phương
Lời giải : Thấy số 1234567890 chia hết cho (vì chữ số tận 0) không chia hết cho 25 (vì hai chữ số tận 90) Do số 1234567890 khơng phải số phương
Chú ý : Có thể lý luận 1234567890 chia hết cho (vì chữ số tận 0), khơng chia hết cho (vì hai chữ số tận 90) nên 1234567890 khơng số phương
Bài toán : Chứng minh số có tổng chữ số 2004 số khơng phải số phương
Lời giải : Ta thấy tổng chữ số số 2004 nên 2004 chia hết cho mà không chia hết nên số có tổng chữ số 2004 chia hết cho mà không chia hết cho 9, số khơng phải số phương
2 Dùng tính chất số dư
Chẳng hạn em gặp toán sau :
(26)lại khơng gặp điều “kì diệu” tốn Thế ta nói điều số ? Chắc chắn số chia cho phải dư Từ ta có lời giải
Lời giải : Vì số phương chia cho có số dư 1 mà (coi tập để em tự chứng minh !) Do tổng chữ số số 2006 nên số chia cho dư Chứng tỏ số cho số phương
Tương tự em tự giải toán :
Bài toán : Chứng minh tổng số tự nhiên liên tiếp từ đến 2005 số phương
Bài tốn : Chứng minh số :
n = 20044 + 20043 + 20042 + 23 khơng số phương
Bây em theo dõi toán sau để nghĩ tới “tình huống”
Bài tốn : Chứng minh số :
n = 44 + 4444 + 444444 + 44444444 + 15 khơng số phương
Nhận xét : Nếu xét n chia cho 3, em thấy số dư phép chia 1, không “bắt chước” cách giải toán ; ; ; Nếu xét chữ số tận em thấy chữ số tận n nên không làm “tương tự” toán ; Số dư phép chia n cho dễ thấy nhất, Một số phương chia cho cho số dư như ? Các em tự chứng minh kết : số dư là 1 Như em giải xong tốn
3 “Kẹp” số hai số phương “liên tiếp”
Các em thấy : Nếu n số tự nhiên số tự nhiên k thỏa mãn n2 < k < (n + 1)2 k
khơng số phương Từ em xét toán sau :
Bài toán : Chứng minh số 4014025 khơng số phương
Nhận xét : Số có hai chữ số tận 25, chia cho dư 1, chia cho dư Thế tất cách làm trước khơng vận dụng Các em thấy lời giải theo hướng khác
Lời giải : Ta có 20032 = 4012009 ; 20042 = 4016016 nên 20032 < 4014025 < 20042 Chứng tỏ
4014025 khơng số phương
Bài tốn : Chứng minh A = n(n + 1)(n + 2)(n + 3) khơng số phương với số tự nhiên n khác
Nhận xét : Đối với em làm quen với dạng biểu thức nhận A + số phương (đây tốn quen thuộc với lớp 8) Các em lớp 6, lớp chịu khó đọc lời giải
Lời giải : Ta có : A + = n(n + 1)(n + 2)(n + 3) + = (n2 + 3n)(n2 + 3n + 2) + = (n2 + 3n)2 +
2(n2 + 3n) +1 = (n2 + 3n +1)2
Mặt khác :
(n2 + 3n)2 < (n2 + 3n)2 + 2(n2 + 3n) = A
Điều hiển nhiên n ≥ Chứng tỏ : (n2 + 3n)2 < A < A + = (n2 + 3n +1)2 => A
khơng số phương
Các em rèn luyện cách thử giải tốn sau :
Bài tốn 10 : Hãy tìm số tự nhiên n cho A = n4 - 2n3 + 3n2 - 2n số phương
Gợi ý : Nghĩ đến (n2 - n + 1)2
Bài toán 11 : Chứng minh số 235 + 2312 + 232003 khơng số phương
Gợi ý : Nghĩ đến phép chia cho phép chia cho
Bài toán 12 : Có 1000 mảnh bìa hình chữ nhật, mảnh bìa ghi số số từ đến 1001 cho khơng có hai mảnh ghi số giống Chứng minh : Không thể ghép tất mảnh bìa liền để số phương
(27)Gợi ý : Nghĩ tới phép chia cho
Bài toán 14 : Chứng minh số 333333 + 555555 + 777777 khơng số phương
Gợi ý : Nghĩ đến phép chia cho … chục (?)
Bài tốn 15 : Lúc đầu có hai mảnh bìa, cậu bé tinh nghịch cầm mảnh bìa lên lại xé làm bốn mảnh Cậu ta mong làm đến lúc số mảnh bìa số phương Cậu ta có thực mong muốn khơng ?
CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG
Phương pháp : Dựa vào định nghĩa
Ta biết rằng, số phương bình phương số tự nhiên Dựa vào định nghĩa này, ta định hướng giải toán
Bài toán : Chứng minh : Với số tự nhiên n an = n(n + 1)(n + 2)(n + 3) + số phương Lời giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) +
= (n2 + 3n) (n2 + 3n + 2) +
= (n2 + 3n)2 + 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n số tự nhiên n2 + 3n + số tự nhiên, theo định nghĩa, a
n số phương Bài toán : Chứng minh số :
là số phương
Lời giải :
Ta có :
Vậy : số phương
(28)Ta chứng minh tính chất đặc biệt : “Nếu a, b hai số tự nhiên nguyên tố a.b số phương a b số phương”
Bài tốn : Chứng minh : Nếu m, n số tự nhiên thỏa mãn 3m2 + m = 4n2 + n m -
n 4m + 4n + số phương
Lời giải :
Ta có : 3m2 + m = 4n2 + n
tương đương với 4(m2 - n2) + (m - n) = m2
hay (m - n)(4m + 4n + 1) = m2 (*)
Gọi d ước chung lớn m - n 4m + 4n + (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + chí hết cho d
Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d
Từ 8m + chia hết cho d m chia hết cho d ta có chia hết cho d => d =
Vậy m - n 4m + 4n + số tự nhiên nguyên tố nhau, thỏa mãn (*) nên chúng số phương Cuối xin gửi tới bạn số toán thú vị số phương :
1) Chứng minh số sau số phương :
2) Cho số nguyên dương a, b, c đôi nguyên tố nhau, thỏa mãn : 1/a + 1/b = 1/c Hãy cho biết a + b có số phương hay khơng ?
3) Chứng minh rằng, với số tự nhiên n 3n + khơng số phương
4) Tìm số tự nhiên n để n2 + 2n + 2004 số phương.
5) Chứng minh : Nếu : n hai số tự nhiên a số phương
CHỦ ĐỘNG SÁNG TẠO KHI GIẢI TỐN HÌNH HỌC
Thí dụ : Bài tập kích thích mạnh mẽ tư học sinh loại tập tình Ta xét tập sau (lớp 7).
Cho điểm M trang giấy hai đường thẳng d, d’ cắt nhau trang giấy Hãy vẽ đường thẳng d’’ qua điểm M giao điểm d, d’ Nói cách vẽ giải thích vẽ
Tình tập : Học sinh phải vẽ đường thẳng qua hai điểm, điểm cho trước, cịn điểm thứ hai chưa xác định
Hướng giải toán vẽ giao điểm hai đường thẳng d d’ mà tìm quan hệ đường thẳng phải vẽ (đường thẳng d’’ qua điểm M) với đường thẳng khác vẽ trang giấy
Q trình mị mẫm dẫn đến cấu hình ba đường cao đồng quy tam giác, từ => cách vẽ
Lời giải (tóm tắt) mong đợi sau :
(29)qua M vng góc với d, b cắt d’ B Vẽ đường thẳng d’’ qua M vuông góc với AB, d’’ đường thẳng phải vẽ, qua giao điểm d d’ (giao điểm nằm ngồi trang giấy) ba đường cao d, d’, d’’ tam giác MAB đồng quy
Cũng giải thích sau :
Giả sử giao điểm d d’ C (nằm trang giấy) Trong tam giác ABC, hai đường cao a b cắt M Thế đường thẳng d’’ qua M (trực tâm tam giác ABC) vng góc với AB phải đường cao thứ ba, d’’ qua C
Thí dụ : Ta xét tập sau (lớp 8).
Cho hình vng ABCD, I trung điểm AB, J trung điểm BC K trung điểm IB Gọi H chân đường vng góc hạ từ B xuống IC Chứng minh hai đường thẳng HJ HK vng góc với
Tình đặt học sinh tập : Với kiến thức học, nên chọn phương pháp để chứng minh hai đường thẳng HJ HK vng góc với Học sinh nghĩ tới hướng chứng minh sau :
Đ HKJ = 90o (?)
HK HJ hai tia phân giác hai góc kề bù (khơng thể !) Δ KHJ = Δ KBJ (?)
Định lí Py-ta-go thuận đảo (?) v.v
Học sinh loại dần hướng chứng minh sai, thử hướng chứng minh có triển vọng
Lời giải (tóm tắt) mong đợi sau :
Tính HJ2 : Trong tam giác vuông BHC, HJ trung tuyến ứng với cạnh huyền BC
Gọi cạnh hình vng a, ta có : HJ = BC/2 = a / 2, từ HJ2 = a2 /
HK = IB/2 = a / , từ HK2 = a2 / 16
Tính HK 2 : Trong tam giác vuông BHI :
Tính JK2 : Trong tam giác vng BJK :
JK2 = BJ2 + BK<SUP.2< sup> , từ JK2 = a2/4 + a2
Từ kết => JK2 = HJ2 + HK2 theo định lí Py-ta-go đảo tam giácJHK vng góc
tại H, tức HJ vng góc với HK
Cũng chứng minh theo hướng : Δ KHJ = Δ KBJ (vì HK = HB, HJ = BJ, KJ chung) => Đ H
= Đ B 90o, tức HJ vng góc với HK
Chú ý rằng, theo chương trình mới, học sinh lớp chưa học định lí : Trong tam giác vng, đường trung tuyến ứng với cạnh huyền nửa cạnh huyền.
Thí dụ : Ta xét tập sau (lớp 7).
Trên hình vẽ, người ta cho biết : AE = CE, BE // CD, Đ ABC = 88o, Đ BCE = 31o
a) Tính Đ ECD
(30)c) Trong tam giác CDE cạnh lớn ?
Đây tập dễ, vận dụng nhiều kiến thức có nhiều cách giải khác Nếu đề kiểm tra cuối năm phần hình học lớp theo kiểu chắn học sinh bộc lộ rõ ràng mức độ nắm vững kiến thức bản, kĩ học sinh trung bình, yếu hi vọng giải hầu hết câu hỏi toán
Lời giải (tóm tắt) :
a) Đ BCD = Đ ABE = 88o (hai góc đồng vị) Đ ECD = Đ BCD - Đ BCE = 88o - 31o = 57o
b) Vì tam giác EAC cân nên Đ EAB = Đ ECB = 31o Trong tam giác ABE : Đ AEB = 180o - 88o + 31o = 61o
Đ EDC = Đ AEB - 61o (hai góc đồng vị)
c) Trong tam giác CDE : Đ DEC = 180o - (57o + 61o) = 62
Vậy cạnh CD lớn Cách giải khác :
a) Vì tam giác EAC cân nên Đ EAB = Đ ECB = 31o Trong tam giác AEB : Đ ABE = 61o
Với tam giác BEC : góc ABE = 88o góc ngồi đỉnh B nên góc BEC = 88o - 31o = 57o
Vì BE // CD nên Đ ECD = Đ BEC = 57o (hai góc so le trong)
b) Vì BE // CD nên Đ EDC = Đ AEB = 61o (hai góc đồng vị)
c) Trong tam giác CDE : Đ DEC = 180o - (57o + 61o) = 62o
Vậy cạnh CD lớn
TÌM CHỮ SỐ TẬN CÙNG
Tìm chữ số tận số tự nhiên dạng toán hay Đa số tài liệu dạng toán sử dụng khái niệm đồng dư, khái niệm trừu tượng khơng có chương trình Vì có khơng học sinh, đặc biệt bạn lớp lớp khó hiểu tiếp thu Qua viết này, tơi xin trình bày với bạn số tính chất phương pháp giải tốn “tìm chữ số tận cùng”, sử dụng kiến thức THCS
Chúng ta xuất phát từ tính chất sau :
Tính chất :
a) Các số có chữ số tận 0, 1, 5, nâng lên lũy thừa bậc chữ số tận vẫn khơng thay đổi
b) Các số có chữ số tận 4, nâng lên lũy thừa bậc lẻ chữ số tận khơng thay đổi
c) Các số có chữ số tận 3, 7, nâng lên lũy thừa bậc 4n (n thuộc N) chữ số tận cùng
d) Các số có chữ số tận 2, 4, nâng lên lũy thừa bậc 4n (n thuộc N) chữ số tận cùng 6.
Việc chứng minh tính chất khơng khó, xin dành cho bạn đọc Như vậy, muốn tìm chữ số tận số tự nhiên x = am, trước hết ta xác định chữ số tận a
- Nếu chữ số tận a 0, 1, 5, x có chữ số tận 0, 1, 5,
- Nếu chữ số tận a 3, 7, 9, am = a4n + r = a4n.ar với r = 0, 1, 2, nên từ tính chất 1c
(31)- Nếu chữ số tận a 2, 4, 8, trường hợp trên, từ tính chất 1d => chữ số tận x chữ số tận 6.ar
Bài tốn : Tìm chữ số tận số : a) 799 b) 141414 c) 4567
Lời giải :
a) Trước hết, ta tìm số dư phép chia 99 cho : 99 - = (9 - 1)(98 + 97 + … + + 1) chia hết cho
=> 99 = 4k + (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận (theo tính chất 1c) => 799 có chữ số tận 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d 141414 = 144k có chữ số tận
c) Ta có 567 - chia hết cho => 567 = 4k + (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận nên 4567 có chữ số tận
là
Tính chất sau => từ tính chất
Tính chất : Một số tự nhiên bất kì, nâng lên lũy thừa bậc 4n + (n thuộc N) chữ số tận cùng không thay đổi.
Chữ số tận tổng lũy thừa xác định cách tính tổng chữ số tận lũy thừa tổng
Bài tốn : Tìm chữ số tận tổng S = 21 + 35 + 49 + … + 20048009 Lời giải :
Nhận xét : Mọi lũy thừa S có số mũ chia cho dư (các lũy thừa có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004})
Theo tính chất 2, lũy thừa S số tương ứng có chữ số tận giống nhau, chữ số tận tổng :
(2 + + … + 9) + 199.(1 + + … + 9) + + + + = 200(1 + + … + 9) + = 9009 Vậy chữ số tận tổng S
Từ tính chất tiếp tục => tính chất
Tính chất :
a) Số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận ; số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận
b) Số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận ; số có chữ số tận nâng lên lũy thừa bậc 4n + có chữ số tận
c) Các số có chữ số tận 0, 1, 4, 5, 6, 9, nâng lên lũy thừa bậc 4n + không thay đổi chữ số tận
Bài toán : Tìm chữ số tận tổng T = 23 + 37 + 411 + … + 20048011 Lời giải :
Nhận xét : Mọi lũy thừa T có số mũ chia cho dư (các lũy thừa có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004})
Theo tính chất 23 có chữ số tận ; 37 có chữ số tận ; 411 có chữ số tận
cùng ; …
Như vậy, tổng T có chữ số tận chữ số tận tổng : (8 + + + + + + + 9) + 199.(1 + + + + + + + + 9) + + + + = 200(1 + + + + + + + + 9) + + + = 9019
Vậy chữ số tận tổng T
* Trong số toán khác, việc tìm chữ số tận dẫn đến lời giải độc đáo
Bài toán : Tồn hay không số tự nhiên n cho n2 + n + chia hết cho 19952000
Lời giải : 19952000 tận chữ số nên chia hết cho Vì vậy, ta đặt vấn đề liệu n2 + n +
(32)Ta có n2 + n = n(n + 1), tích hai số tự nhiên liên tiếp nên chữ số tận n2 + n có
thể ; ; => n2 + n + tận ; ; => n2 + n + không chia hết cho
Vậy không tồn số tự nhiên n cho n2 + n + chia hết cho 19952000
Sử dụng tính chất “một số phương tận chữ số ; ; ; ; ; 9”, ta giải toán sau :
Bài toán : Chứng minh tổng sau số phương : a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Sử dụng tính chất “một số nguyên tố lớn tận chữ số ; ; ; 9”, ta tiếp tục giải toán :
Bài toán : Cho p số nguyên tố lớn Chứng minh : p8n +3.p4n - chia hết cho
* Các bạn giải tập sau :
Bài : Tìm số dư phép chia : a) 21 + 35 + 49 + … + 20038005 cho
b) 23 + 37 + 411 + … + 20038007 cho Bài : Tìm chữ số tận X, Y : X = 22 + 36 + 410 + … + 20048010
Y = 28 + 312 + 416 + … + 20048016
Bài : Chứng minh chữ số tận hai tổng sau giống : U = 21 + 35 + 49 + … + 20058013
V = 23 + 37 + 411 + … + 20058015
Bài : Chứng minh không tồn số tự nhiên x, y, z thỏa mãn : 19x + 5y + 1980z = 1975430 + 2004
CÁC PHƯƠNG PHÁP
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp : Đưa dạng tổng
Biến đổi phương trình dạng : vế trái tổng bình phương, vế phải tổng số chính phương.
Thí dụ : Tìm nghiệm ngun phương trình x2 + y2 - x - y = (8) Lời giải : (8) <=> 4x2 + 4y2 - 4x - 4y = 32
<=> (4x2 - 4x + 1) + (4y2 - 4y + 1) = 34
<=> |2x - 1|2 + |2y - 1|2 = 32 + 52
Bằng phương pháp thử chọn ta thấy 34 có dạng phân tích thành tổng hai số phương 32 52
Do phương trình thỏa mãn hai khả :
Giải hệ => phương trình (8) có bốn nghiệm nguyên (x ; y) Є {2 ; 3) ; (3 ; 2) ; (-1 ; -2) ; (-2 ; -1)}
Phương pháp : lùi vô hạn
Thí dụ : Tìm nghiệm ngun phương trình x2 - 5y2 = (9) Lời giải :
Giả sử (x0 ; y0) nghiệm (9) : x02 - 5y02 = => x0 chia hết cho 5, đặt x0 = 5x1 ; (x1 Є Z),
ta có : 25x12 - 5y02 = <=> 5x12 - y02 =
(33)Từ ta có : 5x12 - 25y12 = <=> x12 - 5y12 =
Vậy (x0 ; y0) nghiệm nguyên (9) (x0/5 ; y0/5) nghiệm nguyên (9)
Tiếp tục lập luận tương tự, ta có với k nguyên dương bất kì, nghiệm nguyên (9) hay x0 y0 chia hết cho 5k với k số nguyên dương tùy ý Điều xảy x0 = y0
=
Vậy phương trình (9) có nghiệm x = y =
Phương pháp : xét chữ số tận
Thí dụ 10 : Tìm nghiệm nguyên dương phương trình 1! + 2! + + x! = y2 (10) Lời giải : Cho x ; ; ; 4, ta có nghiệm nguyên dương (x ; y) phương trình (10) (1 ; 1) (3 ; 3)
Nếu x > dễ thấy k! với k > có chữ số tận ị 1! + 2! + ! + 4! + 5! + + x! = 33 + 5! + + x! có chữ số tận
Mặt khác vế phải số phương nên khơng thể có chữ số tận
Vậy phương trình (10) có hai nghiệm ngun dương (x ; y) Є {(1 ; 1) ; (3 ; 3)}
Thí dụ 11 : Tìm x, y ngun dương thỏa mãn phương trình : x2 + x - = 32y + 1 (11)
Lời giải : Cho x giá trị từ đến 9, dễ dàng xác định chữ số tận x2 + x -
nhận giá trị ; ; Mặt khác, ta thấy 32y + 1 lũy thừa bậc lẻ nên chữ số tận
nó 7, khác với ; ;
Vậy (11) khơng thể xảy Nói cách khác, phương trình (11) khơng có nghiệm ngun dương Bài tốn giải phương pháp sử dụng tính chất chia hết
Phương pháp : Sử dụng tính chất nghiệm phương trình bậc hai
Biến đổi phương trình dạng phương trình bậc hai ẩn, coi ẩn khác tham số, sử dụng tính chất nghiệm phương trình bậc để xác định giá trị tham số.
Thí dụ 12 :
Giải phương trình nghiệm nguyên : 3x2 + y2 + 4xy + 4x + 2y + = (12) Lời giải :
(12) y2 + (4x + 2)y + 3x2 + 4x + =
Ta thấy phương trình có nghiệm y nguyên => - 4x - nguyên, mà x nguyên nên nguyên
=> ∆'y = x2 - = n2 với n Є Z, dùng phương pháp (đưa dạng tích) => (x + n)(x - n) = 4, ta
xác định x = x = -2
Vậy phương trình (12) có hai nghiệm nguyên (x ; y) Є {(2 ;-5); (-2 ; 3)}
Thí dụ 13 : Tìm nghiệm nguyên phương trình x2 - (y + 5)x + 5y + = (13) Lời giải : Giả sử phương trình ẩn x có nghiệm ngun x1, x2 theo định lí Vi-ét ta có :
=> (x1 - 5)(x2 - 5) = = 1.2 = (-1)(-2)
=> x1 + x2 = 13 x1 + x2 =
=> y = y = 2, thay vào (13), phương trình có nghiệm : (x ; y) Є {(7 ; 8) ; (6 ; 8) ; (4 ; 2) ; (3 ; 2)}
(34)đặt điều kiện ∆x ≥ để có miền giá trị y, phương pháp thực trình bày thí dụ
7, khơng viết biệt thức ∆’x Các bạn làm thêm số tập : Bài : Tìm x, y nguyên thỏa mãn phương trình :
a) 5x2 - 4xy + y2 = 169
b) 3x = 4y +
Bài : Tìm nghiệm nguyên phương trình : a) 5x + 12x = 13x
b) y4 = x6 + 3x3 +
Bài : Chứng minh phương trình 25t = 2t5 + 1997 khơng có nghiệm ngun
<B.BàI b :< 4>Tìm nghiệm nguyên phương trình x3 - 3y3 - 9z3 =
Bài : Tìm nghiệm nguyên phương trình 2x2 + 2y2 - 2xy + x + y - 10 =
TÌM CÁC CHỮ SỐ
* Tìm hai chữ số tận
Nhận xét : Nếu x Є N x = 100k + y, k ; y Є N hai chữ số tận x hai chữ số tận y
Hiển nhiên y ≤ x Như vậy, để đơn giản việc tìm hai chữ số tận số tự nhiên x thay vào ta tìm hai chữ số tận số tự nhiên y (nhỏ hơn)
Rõ ràng số y nhỏ việc tìm chữ số tận y đơn giản
Từ nhận xét trên, ta đề xuất phương pháp tìm hai chữ số tận số tự nhiên x = am
sau :
Trường hợp : Nếu a chẵn x = am 2∶ m Gọi n số tự nhiên cho an - 1 25 ∶
Viết m = pn + q (p ; q Є N), q số nhỏ để aq ta có :∶
x = am = aq(apn - 1) + aq
Vì an - 1 25 => a∶ pn - 25 Mặt khác, (4, 25) = nên a∶ q(apn - 1) 100 ∶
Vậy hai chữ số tận am hai chữ số tận aq Tiếp theo, ta tìm hai chữ số tận aq
Trường hợp : Nếu a lẻ , gọi n số tự nhiên cho an - 1 100 ∶
Viết m = un + v (u ; v Є N, ≤ v < n) ta có :
x = am = av(aun - 1) + av
Vì an - 100 => a∶ un - 100 ∶
Vậy hai chữ số tận am hai chữ số tận av Tiếp theo, ta tìm hai
chữ số tận av
Trong hai trường hợp trên, chìa khóa để giải tốn phải tìm số tự nhiên n Nếu n nhỏ q v nhỏ nên dễ dàng tìm hai chữ số tận aq av Bài toán :
Tìm hai chữ số tận số : a) a2003 b) 799
Lời giải : a) Do 22003 số chẵn, theo trường hợp 1, ta tìm số tự nhiên n nhỏ cho 2n - ∶
25
Ta có 210 = 1024 => 210 + = 1025 25 => 2∶ 20 - = (210 + 1)(210 - 1) 25 => 2∶ 3(220 - 1) 100 ∶
Mặt khác :
22003 = 23(22000 - 1) + 23 = 23((220)100 - 1) + 23 = 100k + (k Є N)
Vậy hai chữ số tận 22003 08
b) Do 799 số lẻ, theo trường hợp 2, ta tìm số tự nhiên n bé cho 7n - 100 ∶
Ta có 74 = 2401 => 74 - 100 ∶
Mặt khác : 99 - => 9∶ 9 = 4k + (k Є N)
(35)Bài toán :
Tìm số dư phép chia 3517 cho 25
Lời giải : Trước hết ta tìm hai chữ số tận 3517 Do số lẻ nên theo trường hợp 2, ta
phải tìm số tự nhiên n nhỏ cho 3n - 100 ∶
Ta có 310 = 95 = 59049 => 310 + 50 => 3∶ 20 - = (310 + 1) (310 - 1) 100 ∶
Mặt khác : 516 - => 5(5∶ 16 - 1) 20 ∶
=> 517 = 5(516 - 1) + = 20k + =>3517 = 320k + 5 = 35(320k - 1) + 35 = 35(320k - 1) + 243, có hai chữ
số tận 43
Vậy số dư phép chia 3517 cho 25 18
Trong trường hợp số cho chia hết cho ta tìm theo cách gián tiếp
Trước tiên, ta tìm số dư phép chia số cho 25, từ suy khả hai chữ số tận Cuối cùng, dựa vào giả thiết chia hết cho để chọn giá trị
Các thí dụ cho thấy rằng, a = a = n = 20 ; a = n =
Một câu hỏi đặt : Nếu a n nhỏ ? Ta có tính chất sau (bạn đọc tự chứng minh)
Tính chất : Nếu a Є N (a, 5) = a20 - 25 ∶ Bài tốn : Tìm hai chữ số tận tổng : a) S1 = 12002 + 22002 + 32002 + + 20042002
b) S2 = 12003 + 22003 + 32003 + + 20042003 Lời giải :
a) Dễ thấy, a chẵn a2 chia hết cho ; a lẻ a100 - chia hết cho ; a chia hết
cho a2 chia hết cho 25
Mặt khác, từ tính chất ta suy với a Є N (a, 5) = ta có a100 - 25 ∶ Vậy với a Є N ta có a2(a100 - 1) 100 ∶
Do S1 = 12002 + 22(22000 - 1) + + 20042(20042000 - 1) + 22 + 32 + + 20042
Vì hai chữ số tận tổng S1 hai chữ số tận tổng 12 + 22 + 32
+ + 20042 áp dụng công thức :
12 + 22 + 32 + + n2 = n(n + 1)(2n + 1)/6
=>12 + 22 + + 20042 = 2005 x 4009 x 334 = 2684707030, tận 30
Vậy hai chữ số tận tổng S1 30
b) Hoàn toàn tương tự câu a, S2 = 12003 + 23(22000 - 1) + + 20043(20042000 - 1) + 23 + 33 +
20043 Vì thế, hai chữ số tận tổng S
2 hai chữ số tận 13 + 23 + 33
+ + 20043
áp dụng công thức :
=> 13 + 23 + + 20043 = (2005 x 1002)2 = 4036121180100, tận 00
Vậy hai chữ số tận tổng S2 00
Trở lại toán (TTT2 số 15), ta thấy sử dụng việc tìm chữ số tận để nhận biết số khơng phải số phương Ta nhận biết điều thơng qua việc tìm hai chữ số tận
Ta có tính chất sau (bạn đọc tự chứng minh)
Tính chất : Số tự nhiên A số phương : + A có chữ số tận 2, 3, 7, ;
(36)Bài toán 10 : Cho n Є N n - không chia hết cho Chứng minh 7n + số
chính phương
Lời giải : Do n - không chia hết n = 4k + r (r Є {0, 2, 3}) Ta có 74 - = 2400 100.∶
Ta viết 7n + = 74k + r + = 7r(74k - 1) + 7r +
Vậy hai chữ số tận 7n + hai chữ số tận 7r + (r = 0, 2, 3) nên
chỉ 03, 51, 45 Theo tính chất rõ ràng 7n + khơng thể số phương n
không chia hết cho
TIM CÁC CHỮ SỐ
(tiếp theo kì trước) * Tìm ba chữ số tận cùng
Nhận xét : Tương tự trường hợp tìm hai chữ số tận cùng, việc tìm ba chữ số tận số tự nhiên x việc tìm số dư phép chia x cho 1000
Nếu x = 1000k + y, k ; y Є N ba chữ số tận x ba chữ số tận y (y ≤ x)
Do 1000 = x 125 mà (8, 125) = nên ta đề xuất phương pháp tìm ba chữ số tận số tự nhiên x = am sau :
Trường hợp : Nếu a chẵn x = am chia hết cho 2m Gọi n số tự nhiên cho an - chia
hết cho 125
Viết m = pn + q (p ; q Є N), q số nhỏ để aq chia hết cho ta có :
x = am = aq(apn - 1) + aq
Vì an - chia hết cho 125 => apn - chia hết cho 125 Mặt khác, (8, 125) = nên aq(apn - 1)
chia hết cho 1000
Vậy ba chữ số tận am ba chữ số tận aq Tiếp theo, ta tìm ba chữ
số tận aq
Trường hợp : Nếu a lẻ , gọi n số tự nhiên cho an - chia hết cho 1000
Viết m = un + v (u ; v Є N, ≤ v < n) ta có :
x = am = av(aun - 1) + av
Vì an - chia hết cho 1000 => aun - chia hết cho 1000
Vậy ba chữ số tận am ba chữ số tận av Tiếp theo, ta tìm ba chữ
số tận av
Tính chất sau suy từ tính chất
Tính chất :
Nếu a Є N (a, 5) = a100 - chia hết cho 125
Chứng minh : Do a20 - chia hết cho 25 nên a20, a40, a60, a80 chia cho 25 có số dư
=> a20 + a40 + a60 + a80 + chia hết cho Vậy a100 - = (a20 - 1)( a80 + a60 + a40 + a20 + 1) chia hết
cho 125
Bài toán 11 :
Tìm ba chữ số tận 123101
Lời giải : Theo tính chất 6, (123, 5) = => 123100 - chia hết cho 125 (1)
Mặt khác :
123100 - = (12325 - 1)(12325 + 1)(12350 + 1) => 123100 - chia hết cho (2)
Vì (8, 125) = 1, từ (1) (2) suy : 123100 - chi hết cho 1000
=> 123101 = 123(123100 - 1) + 123 = 1000k + 123 (k ∩ N)
Vậy 123101 có ba chữ số tận 123 Bài tốn 12 :
Tìm ba chữ số tận 3399 98
(37)Tương tự 11, ta có 9100 - chia hết cho (2)
Vì (8, 125) = 1, từ (1) (2) suy : 9100 - chia hết cho 1000 => 3399 98 = 9199 9 = 9100p + 99 =
999(9100p - 1) + 999 = 1000q + 999 (p, q Є N)
Vậy ba chữ số tận 3399 98 ba chữ số tận 999
Lại 9100 - chia hết cho 1000 => ba chữ số tận 9100 001 mà 999 = 9100 : => ba chữ
số tận 999 889 (dễ kiểm tra chữ số tận 999 9, sau dựa vào phép nhân
để xác định )
Vậy ba chữ số tận 3399 98 889
Nếu số cho chia hết cho ta tìm ba chữ số tận cách gián bước : Tìm dư phép chia số cho 125, từ suy khả ba chữ số tận cùng, cuối kiểm tra điều kiện chia hết cho để chọn giá trị
Bài tốn 13 :
Tìm ba chữ số tận 2004200 Lời giải : (2004, 5) = (tính chất 6) => 2004100 chia cho 125 dư
=> 2004200 = (2004100)2 chia cho 125 dư
=> 2004200 tận 126, 251, 376, 501, 626, 751, 876 Do 2004200 chia hết cho
nên tận 376
Từ phương pháp tìm hai ba chữ số tận trình bày, mở rộng để tìm nhiều ba chữ số tận số tự nhiên
Sau số tập vận dụng :
Bài : Chứng minh 1n + 2n + 3n + 4n chia hết cho n không chia hết cho Bài : Chứng minh 920002003, 720002003 có chữ số tận giống
Bài : Tìm hai chữ số tận : a) 3999 b) 111213
Bài : Tìm hai chữ số tận : S = 23 + 223 + + 240023
Bài : Tìm ba chữ số tận : S = 12004 + 22004 + + 20032004
Bài : Cho (a, 10) = Chứng minh ba chữ số tận a101 ba chữ số tận
cùng a
Bài : Cho A số chẵn không chia hết cho 10 Hãy tìm ba chữ số tận A200 Bài : Tìm ba chữ số tận số :
199319941995 2000
Bài : Tìm sáu chữ số tận 521.
PHƯƠNG PHÁP GIẢI BÀI TỐN TÍNH GĨC
Các tốn tính số đo góc đa dạng, xuất nhiều kì thi Để giải tốt dạng tốn có phải vẽ hình phụ Trong viết này, xin giới thiệu với em phương pháp vẽ thêm hình phụ tam giác tốn tính số đo góc
Bài tốn : Cho tam giác ABC cân A, A = 200 Trên AB lấy điểm D cho AD = BC
Tính BDC Lời giải :
Cách : Trên nửa mặt phẳng có bờ đường thẳng BC, chứa điểm A, dựng tam giác BCE
(38)Vì tam giác ABC cân A, A = 200 nên ABC = ACB = 800 Vậy E thuộc miền
tam giác ABC, suy ACE = 200 (1)
Dễ thấy ∆ABE = ∆ACE (c.c.c) nên BAE = CAE = A / = 100 (2)
Từ (1) suy A = ACE = 200 suy ∆DAC = ∆ECA (c.g.c), kết hợp với (2) suy ta ACD
= CAE = 1010
Ta có BDC góc ∆DAC nên BDC = DAC + DCA = 200 + 100 = 300 Cách : Trên nửa mặt phẳng có bờ đường thẳng AB, chứa điểm C, dựng tam giác ABI
(hình 2).
Vì ∆ABC cân A, A = 200 nên AI = AB = AC ; CAI = 400 ; IBC = 200 suy ACI =
700(∆ACI cân A) suy
BCI = 1500
Lại có ∆ADC = ∆BCI (c.g.c)
Suy ADC = BCI = 1500 suy BDC = 300
Bài tốn 2 (đề thi vơ định tốn Nam Tư năm 1983) : Cho tam giác ABC cân A, A = 800 Ở
miền tam giác lấy điểm I cho IBC = 100 ; ICB = 300 Tính AIB
Lời giải : Trên nửa mặt phẳng có bờ đường thẳng BC, chứa điểm A, dựng tam giác BCE
(hình 3)
Vì ∆ABC cân A, nên A = 800 nên ABC = ACB = 500 suy ABE = ACE = 100 ;
điểm A thuộc miền tam giác BCE
Dễ dàng chứng minh ∆AEB = ∆ICB (g.c.g) suy BA = BI suy ∆ ABI cân B, có
ABI = 500 - 100 = 400 suy
AIB = 700
Bài toán : Cho tam giác ABC cân A, A = 1000 Trên cạnh AB kéo dài phía B, lấy
điểm E cho AE = BC Tính AEC
Lời giải : Trên nửa mặt phẳng có bờ đường thẳng AE, chứa điểm C, dựng tam giác AEF
(39)Vì ∆ABC cân A, A = 1000 nên ABC = 400 ; tia AF nằm hai tia AE, AC
Suy CAF = 400 suy ∆ABC = ∆CAF (c.g.c)
Suy AC = FC suy ∆AEC = ∆FEC (c.c.c)
Suy AEC = FEC = / AEF = 600 / = 300
Qua số tốn nêu thấy, việc vẽ thêm hình phụ tam giác tỏ hiệu tốn tính số đo góc tạo góc 60o ; tạo nhiều mối quan hệ cạnh, góc, tam giác,
Các bạn làm thêm toán sau :
Bài toán : Cho tam giác ABC cân A, A = 800 Trên AC lấy điểm E, BC lấy điểm F
sao cho ABE = CAF = 300 Tính BEF
BÀI TỐN DẠNG ĐỊNH LÍ PY - TA - GO
Định lí Py-ta-go bậc hai sách giáo khoa Tốn giúp ta có thêm nhiều khả tiếp cận toán thú vị
1 Bài tốn tính độ dài đoạn thẳng Ví dụ : Tính độ dài x, y hình 1
Lời giải : áp dụng định lí Py-ta-go vào tam giác vng AHC, AHB ta có : x2 = 162 + AH2 ; y2 = 92 + AH2 Do : x2 - y2 = (162+ AH2) - (92 + AH2) = 175 (1)
Áp dụng định lí Py-ta-go vào tam giác vng BAC : x2 + y2 = (9 + 16)2 = 625 (2)
Từ (1) (2) suy x2 = 400 ; y2 = 225
Do : x = 20 ; y = 15
Ví dụ : Một tam giác có độ dài hai cạnh 8, góc xen 60o Tính độ dài cạnh
cịn lại
Lời giải : (hình 2) Xét tam giác ABC có AB = ; AC = Kẻ đường cao AH Tam giác vng AHB có ĐA = 60o nên AH = AB : = : =
(40)Áp dụng định lí Py-ta-go vào tam giác vng CHB, AHB ta có : BC2 = BH2 + CH2 = (AB2 -
AH2 ) + CH2 = 82 - 42 + 12 = 49
Vậy BC =
Ví dụ : Tính chu vi đường gấp khúc ABCDEA hình
Hướng dẫn : Hãy kéo dài AB ED cho cắt I.Ááp dụng định lí Py-ta-go vào tam giác vng AIE, ta tính AE = 5, chu vi đường gấp khúc ABCDEA 12
2 Bài tốn tính diện tích tam giác
Ví dụ : Cho tam giác ABC có cạnh 1dm Số số sau cho giá trị sát với diện tích tam giác ABC : 0,4 dm2 ; 0,5 dm2 ; 0,6 dm2 ?
Lời giải : (hình 4) Kẻ đường cao AH Áp dụng định lí Py-ta-go vào tam giác vng AHC ta có : AH2 = AC2 - HC2 = 12 - 0,52 = 0,75
(41)Hướng dẫn : Chú ý 10 = 32 + 12 ; 20 = 22 + 42 ; 50 = (3 + 2)2 + (1 + 4)2
Lời giải : Vẽ thêm điểm D, H, E hình 5 Ta tính SADB = 1,5 ; SBHC = ; SBDEH
= ; SAEC = 12,5 Do : SABC = 12,5 - 1,5 - - = Mời bạn tự giải tập sau :
Bài : Một tam giác vuông cân có cạnh góc vng Cạnh huyền tam giác có giá trị sát với số số sau : 2,6 ; 2,7 ; 2,8 ;
Bài : Một tam giác có độ dài hai cạnh 5, góc xen 60o Tính độ dài cạnh
thứ ba
Bài : Một tam giác có độ dài hai cạnh 6, góc xen 120o Tính độ dài cạnh
thứ ba
(42)Bảng quảng cáo khơng nói rõ diện tích hồ làm nhiều người thắc mắc khơng rõ diện tích lớn hay nhỏ Bạn tìm diện tích hồ
Hướng dẫn : 74 = 72 + 52 ; 116 = 102 + 42.
THAY ĐỔI KẾT LUẬN CỦA BÀI TỐN HÌNH HỌC
Trong chứng minh hình học, việc phát kết tương đương với kết luận toán đưa ta đến chứng minh quen thuộc, đơn giản phép chứng minh độc đáo Đây công việc thường xuyên người làm toán Các bạn theo dõi số toán sau
Bài toán : Cho tam giác ABC có BC < BA, đường phân giác BE đường trung tuyến BD (E, D thuộc AC) Đường thẳng vng góc với BE qua C cắt BE, BD F, G Chứng minh đường thẳng DF chia đôi đoạn thẳng GE
Lời giải : Gọi giao điểm CG với AB K DF với BC M
Dễ thấy ∆ BKC cân B, BF trung trực KC suy F trung điểm KC Theo giả thiết, D trung điểm AC
=> DF đường trung bình DCKA => DF // KA hay DM // AB
=> DM đường trung bình DABC => M trung điểm BC
Xét ∆ DBC, F thuộc trung tuyến DM nên DF chia đôi đoạn thẳng GE <=> GE // BC.
Ta chứng minh GE // BC, :
Cách : Ta có AE = AD + DE = CD + DE = CE + 2DE hay CE = AE - 2DE, suy
Mặt khác, DF // AB, K thuộc AB AK = 2DF nên
Vậy BG/GD = BK/DF hay GE // BC
(43)Vậy DE/EC = DG/GB hay GE // BC
Cách : áp dụng định lí Xê-va ta có Mặt khác MB = MC nên
Bài toán : Trên cạnh AB, BC, CA tam giác ABC lấy điểm C1, A1, B1
cho đường thẳng AA1, BB1, CC1 đồng quy O Đường thẳng qua O song song với AC cắt
A1B1 B1C1 K M Chứng minh OK = OM
Lời giải : Qua B vẽ đường thẳng song song với AC cắt A1B1 B1C1 K1 M1
Xét ∆ B1K1M1, dễ thấy MK // M1K1 nên OM = OK <=> BM1 = BK1. Ta chứng minh BM1 =
BK1, :
∆ AB1C1 đồng dạng với ∆ BM1C1 suy
∆ CB1A>sub>1 ∆ đồng dạng với BK1A1 suy
Vậy : (áp dụng định lí Xê-va), suy BM1 = BK1
Bài toán : Xét 5(20) trang 15
(44)Do OX = OY nên :
XZ = YT <=> OZ = OT
Ta chứng minh OZ = OT Trước hết, ta chứng minh IO1OO2 hình bình hành cách xét
3 trường hợp : IBA < 90o ; IBA > 90o ; IBA = 90 o
Gọi M giao điểm O1I CD
Với IBA < 90o, ∆ IBA nội tiếp (O1), ta chứng minh : AIO1 + IBA = 90 o => CIM + ICM = 90 o =>O1I CD ; Mà OO2CD => OO2 // O1I
Tương tự OO1 // O2I, suy IO1OO2 hình bình hành (bạn đọc tự chứng minh hai trường hợp
cịn lại)
Từ đó, ta có (xem phần hình màu) : OO1 = O2I = O2T ; OO2 = O1I = O1Z ;
OO1Z = (180o - 2O1IZ) + OO1I = 360o - OO2I - (180o - 2(OO2</SUB Đ O1IZ)) = 360o - OO2MI - (180o - 2O,sub>2IT) = OO2T
=> ∆ OO1Z = ∆ TO2O (c.g.c) => OZ = OT.(Chứng minh không cần dùng tới kiến thức
tam giác đồng dạng) l Bài tập áp dụng :
1) Từ điểm C ngồi đường trịn (O) vẽ hai tiếp tuyến CA, CB với đường tròn (A, B tiếp điểm) Đường tròn (O1) qua C tiếp xúc với AB B cắt (O) M Chứng minh AM chia đoạn thẳng BC thành hai phần
2) Cho tam giác ABC nội tiếp đường tròn (O) Tiếp tuyến với (O) B cắt tiếp tuyến với (O) A C M N Qua B vẽ đường thẳng vng góc với AC P Chứng minh rằng BP phân giác MPN
3) Cho hình thang ABCD có đáy lớn CD ; AC cắt BD O, AD cắt BC I OI cắt AB E Đường thẳng qua A song song với BC cắt BD M đường thẳng qua B song song với AD cắt AC N Chứng minh : a) MN // AB ; b) AB2 = MN.CD ; c) d)