1. Trang chủ
  2. » Giáo án - Bài giảng

Gián án MTBT CASIO 2

4 201 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 139,5 KB

Nội dung

ĐỀ 3. GIẢI TOÁN TRÊN MÁY TÍNH CASIO KHỐI 9 THCS Thời gian làm bài: 120 phút (Không kể phát đề) Lưu ý: 1/ Thí sinh điền kết quả vào các bài có khung kẻ sẵn trên đề kiểm tra này. 2/ Mỗi câu đúng được 2 điểm Câu 1 : Tính : a/ 3 7 2 2 4 4 8 8 1 1 2.2009 4.2009 8.2009 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 E = + + + + − + + + + b/ 24 20 16 4 26 24 22 2 7,112008 7,112008 7,112008 7,112008 1 7,112008 7,112008 7,112008 7,112008 1 B + + +×××+ + = + + +×××+ + ĐS Câu 2: Cho caùc soá a 1 , a 2 , a 3 ,…………,a 2003 . Bieát a k = ( ) 2 3 2 3k + 3k +1 k + k vôùi k = 1 , 2 , 3 ,………… , 2002, 2003. Tính S = a 1 + a 2 + a 3 + . . . . + a 2003 ĐS Câu 3: Giải phương trình : 1 1 1 1 11 1 2 2 3 3 4 2009 2010 + + +×××+ = + + + + + + + + + + + +x x x x x x x x ĐS Câu 4 : Tìm các số tự nhiên n (2000 ≤ n ≤ 4000) để n1245789 + cũng là số tự nhiên. ĐS Câu 5 : Tìm 9 cặp số tự nhiên nhỏ nhất ( kí hiệu a và b, trong đó a là số lớn, b là số nhỏ) có tổng là bội 2004 và thương của chúng bằng 5. ĐS Câu 6: Tìm các hệ số a, b, c của đa thức P(x) = ax 3 + bx 2 +cx – 2008 biết rằng khi chia P(x) cho nhị thức ( x – 25) thì dư 29542 và khi chia cho tam thức (x 2 – 12x + 25) thì có đa thức dư là: 431x – 2933. ĐS a = ; b = ; c = a/ b/ S = E C MA B D Câu 7 : Tìm bốn chữ số tận cùng của số S, biết rằng: S 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13= + + + + + + + + + + + + ĐS Câu 8: Trong hình sau, ABCD là hình vuông có cạnh 11,2009 cm; M là trung điểm của cạnh AB. Tính diện tích phần tô đậm. ĐS Câu 9: a/ Cho tam giác có độ dài 2 đường cao là 3cm và 7cm. Tìm đường cao thứ ba. (biết nó là số nguyên) b/ Cho tam giác ABC có bán kính đường tròn ngoại tiếp, nội tiếp tam giác ABC là 3,9017cm và 1,8225cm. Tính khoảng cách giữa hai tâm của hai đường tròn này. ĐS Câu 10: Cho tứ giác ABCD, gọi K, L, M, N lần lượt là trung điểm của DC, DA, AB, BC. Gọi giao điểm của AK với BL và DN lần lượt là P và S, CM cắt BL, DN lần lượt tại Q và R. a/ Xác định diện tích tứ giác PQRS nếu biết diện tích tứ giác ABCD, AMQP, CKSR tương ứng là S 0 S 1 , S 2 . b/ Áp dụng tính diện tích PQRS biết S 0 = 142857. 371890923546, S 1 = 6459085826622 và S 2 = 7610204246931 ĐS a/ b/ a/ b/ ĐÁP ÁN Câu Nội dung Điểm từng ý Tổng điểm 1 a/ Đặt a = 2009 ; b = 2008, E = 1,00378467 b/ Đặt x = 7,112008; ta có: 1đ 1đ 2đ 2 * a 1 + a 2 + a 3 + . . . + a 2003 = 3 1 8048096063 . 1 8048096064 1 2 2 3 2003 2004 2004       + + + = − =             3 3 3 3 3 3 1 1 1 1 1 1 - - - 2đ 2đ 3 92 7363 7363,76033 121 x = ≈ 2đ 2đ 4 2125 ; 2395 ; 2671 ; 2953 ; 3241 ; 3535 ; 3835 1đ 2đ 5 a + b = 2004.k (k nguyên dương) và a = 5b. ⇒ b = 334k và a = 1670k. Thay k từ 1 – 9 ta được (1670 ; 334) ; (3340 ; 668) ; (5010 ; 1002) ; (6680 ; 1336) (8350 ; 1670) ; (10020 ; 2004) ; (11690 ; 2338) ; (13360 ; 2672) (15030 ; 3006) 2đ 2đ 6 a = 1 ; b = 25 và c = 12 => P(x) = x 3 + 25x 2 +12x – 2008 1đ 2đ 7 Ta có:. 2 3 4 5 6 7 8 9 10 11 10 1 2 3 4 5 6 7 8 9 10 103627063605= + + + + + + + + + =S ⇒ ( ) 4 10 3605 mod10≡S (1) ( ) ( ) ( ) ( ) 2 6 4 6 2 4 12 4 11 1561 mod10 11 1561 mod10 11 6721 mod10≡ ⇒ ≡ ⇒ ≡ (2) ( ) ( ) ( ) ( ) 2 6 4 6 4 13 4 12 5984 mod10 12 8256 mod10 12 9072 mod10≡ ⇒ ≡ ⇒ ≡ (3) ( ) ( ) ( ) ( ) 2 7 4 7 4 14 4 13 8517 mod10 13 8517 mod10 13 9289 mod10≡ ⇒ ≡ ⇒ ≡ (4) Từ (1), (2), (3) và (4) suy ra: ( ) 12 3 4 4 10 11 12 13 8687 mod10+ + + ≡S Vậy bốn chữ số tận cùng của S là 8687. 2đ 2đ 8 Gọi a là độ dài cạnh của hình vuông ABCD. Ta có: 2 2 2 DECM ABCD ADM DEC 1 a 1 a a S S 2S S a 2 a 2 2 2 4 2   = − − = − × × × − × =  ÷   2đ 2đ ( ) ( ) 24 20 16 4 2 24 20 16 4 24 20 16 4 . 1 . 1 . 1 x x x x B x x x x x x x x x + + + + + = + + + + + + + + + + ( ) ( ) 24 20 16 4 2 24 20 16 4 2 . 1 1 1 . 1 1 x x x x B x x x x x x + + + + + = = + + + + + + + 2 1 0,019387112 7,112008 1 B = = + Áp dúng: với a 11,2009= ; ta tính được : 2 DECM 11,2009 S 31,36504 4 = ≈ (cm 2 ) 9 a/ Gọi 3 đường cao tương ứng với 3 cạnh là h a , h b , h c . ta có 2S = a . h a = b. h b = c. h c ⇒ cba h c h b h a 111 == ⇒ bacba hhhhh 11111 +<<− ⇒ 105 > 20h c > 42. Do h c * N ∈ nên h c là 3cm, 4cm, 5cm. b/ Theo công thức Euler ta có khoảng cách giữa hai bán kính là: d = )2( rRR − = 1,000782889cm 1đ 1đ 2đ 10 S PQRS = S AKCM – S APQM – S SKCR = 2 0 S - S 1 – S 2 S 0 = 53127221665010922 S PQRS = 26549541542431908 2đ 2đ D K C B N Q R \ / / /// /// * A L M / / S P \ *D K /// /// A L M / / S P \ *D K /// /// . tra này. 2/ Mỗi câu đúng được 2 điểm Câu 1 : Tính : a/ 3 7 2 2 4 4 8 8 1 1 2. 2009 4 .20 09 8 .20 09 20 09 20 08 20 09 20 08 20 09 20 08 20 09 20 08 20 09 20 08 E = +. + + + b/ 24 20 16 4 26 24 22 2 7,1 120 08 7,1 120 08 7,1 120 08 7,1 120 08 1 7,1 120 08 7,1 120 08 7,1 120 08 7,1 120 08 1 B + + +×××+ + = + + +×××+ + ĐS Câu 2: Cho caùc

Ngày đăng: 30/11/2013, 00:11

HÌNH ẢNH LIÊN QUAN

8 Gọ ia là độ dài cạnh của hình vuơng ABCD. Ta cĩ:  - Gián án MTBT CASIO 2
8 Gọ ia là độ dài cạnh của hình vuơng ABCD. Ta cĩ: (Trang 3)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w