1. Trang chủ
  2. » Cao đẳng - Đại học

Bộ 5 đề thi chọn HSG môn Toán lớp 8 Trường THCS Nghĩa Hồ

17 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 660,64 KB

Nội dung

b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh tứ giác BCDE là hình thang cân.. Vậy HKDC là hình thang cân khi và chỉ khi  ABC là tam giác cân tại C. Hãy tìm bốn s[r]

(1)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | TRƯỜNG THCS NGHĨA HỒ ĐỀ THI HSG LỚP

MƠN: TỐN

(Thời gian làm bài: 150 phút)

Đề số

Bài (4 điểm) Phân tích đa thức sau thành nhân tử: 1)

2014 2013

x + x+

2)

( 2)( 2)

x x+ x + x+ +

Bài (4 điểm)

1) Tìm a b, biết

15 23 20

a b a

a

+ = = −

+

2) Tìm giá trị nhỏ biểu thức A=x2+2y2+2xy+2x−4y+2013

Bài (4 điểm)

1) Cho a a1, 2, a2013 số tự nhiên có tổng

2014 2013 Chứng minh rằng: B=a13+a23+ + a20133 chia hết cho

2) Cho a b số tự nhiên thoả mãn 2a2+ =a 3b2 +b Chứng minh rằng: a b− 3a+ +3b số phương Bài (6 điểm)

Cho tam giác ABC Gọi I điểm di chuyển cạnh BC Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB M Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC N

1) Gọi O trung điểm AI Chứng minh ba điểm M, O, N thẳng hàng 2) Kẻ MH, NK, AD vng góc với BC H, K, D

Chứng minh MH + NK = AD

3) Tìm vị trí điểm I để MN song song với BC

ĐÁP ÁN Bài

1)

2014 2013

x + x+ =

2013 2013

x + x+ +x

( 2013) ( 2013)

x x x

= + + +

(x 1)(x 2013)

= + +

2

( 2)( 2)

x x+ x + x+ + =(x2+2 )(x x2+2x+ +2)

2) =(x2+2 )x 2+2(x2+2 ) 1x +

2

(x 2x 1)

= + +

(2)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

1) Từ

15 20

a a

+ = −

có20(1 )+ a =15(7 )− a

1

a

 =

Thay a=1 vào tỉ lệ thức

15 23

a b

a

+ =

+ ta

1 2.1 15 23 7.1

b

+ =

+ Suy b=2

Vậy a=1, b=2

2) Ta có A=x2+2y2+2xy+2x−4y+2013=x2+2 (x y+ +1) y2+2y+ +1 y2−6y+ +9 2003

2

(x y 1) (y 3) 2003

= + + + − +

Nhận thấy với x,y ta có (x+ +y 1)2 0;(y−3)20 Suy raA2003

Dấu “=” xảy x= −4,y=3

Vậy Giá trị nhỏ A 2003 đạt x= −4,y=3 Bài

1) Dễ thấy a3− =a a a( +1)(a−1) tích ba số tự nhiên liên tiếp nên chia hết cho Xét hiệu B−(a1+a2+ + a2013)=(a13+a23+ + a20133 ) (− a1+a2+ + a2013)

3 3

1 2 2013 2013 (a a) (a a ) (a a )

= − + − + + − chia hết cho

a a1, 2, a2013 số tự nhiên có tổng 20132014 Do B chia hết cho

2) Từ 2a2+ =a 3b2 +b có(a b− )(3a+3b+ =1) a2

Cũng có

(a b− )(2a+2b+ =1) b Suy (a b− ) (22 a+2b+1)(3a+3b+ =1) (ab)2

Gọi (2a+2b+1, 3a+3b+ =1) d Chứng minh d=1

3a+ +3b số phương a b− số phương (đpcm)

(3)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

1) Ta có IM//AC, IN//AB AMIN hình bình hành

 MN cắt AI trung điểm đường Mà O trung điểm AI

 M, O, N thẳng hàng (đpcm)

2) Kẻ OE vng góc với BC Chứng minh MHKN hình thang vng

Ta có O trung điểm MN mà OE//MH//NK Suy OE đường trung bình hình thang vng MNKH nên MH + NK = 2OE (1)

Xét ΔADI có O trung điểm AI OE//AD Suy OE đường trung bình ΔADI nên AD = 2OE (2)

Từ (1) (2) ta có MH + NK = AD (đpcm)

3) Ta có MN // BC MN đường trung bình củaABC(Do O trung điểm AI)

I trung điểm BC (Vì MI // AC, MA=MB)

Vậy để MN song song với BC I trung điểm BC

Xét hiệu x− =y (a+b c)( +d) (− a+c b)( +d)=(da b c)( − )

da b, c nên (da b c)( − ) Suy xy(1) Xét hiệu y− =z (a+c b)( +d) (− a+d b)( +c)=(a b d− )( −c)

ba c, d nên (aa d)( − c) Suy yz(2) Từ (1) (2) ta xếp theo thứ tự giảm dần z y x

Đề số

D

H E K

O M

N A

(4)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

Câu Cho phân thức ( )( ) ( )

( ) ( )

2

2 2

2

5 5

5 5 25 25 25

x y z x y z xy yz xz

A

x y z xy yz xz

+ + + + + + +

=

+ + − + +

a) Tìm giá trị x, y, z để phân thức xác định b) Rút gọn A

Câu (2 điểm)

a) Phân tích đa thức sau thành nhân tử 10 a +a +

b) Cho x+ =y xy0 Chứng minh ( )

3 2

2

0

1

x y

x y

y x x y

− + =

− − +

Câu (2 điểm)

Cho hình thang ABCD (AB // CD) Gọi O giao điểm hai đường chéo Qua O kẻ đường thẳng song song với hai đáy cắt BC I, cắt AD J Chứng minh:

a) 1

OI = AB+CD

b) 1

IJ = AB+CD

Câu Cho tam giác ABC nhọn, trực tâm H Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia

BxAB, CyCA chúng cắt D a) Tứ giác BHCD hình gì? Vì sao?

b) Gọi E điểm cho BC đường trung trực EH Chứng minh tứ giác BCDE hình thang cân c) BD cắt EH K Tam giác ABC phải có thêm điều kiện để tứ giác HCDK hình thang cân

ĐÁP ÁN

Câu (2 điểm)

a) Ta có (5x+5y+5z) (2− 25xy+25yz+25xz)=25(x+ +y z) (2− xy+yz+xz)

Xét (x+ +y z) (2− xy+yz+xz)=0

( ) ( ) ( )

2 2

2 2

0 0

0

x y z xy yz xz

x y y z z x

x y y z z x

x y z

 + + + + + =

 + + + + + =

 + = + = + =  = = =

Để phân thức xác định x, y, z khơng đồng thời

b) Đặt 2

x +y +z =a xy+yz+xz=b (x+ +y z)2 = +a 2b

Khi ( )

( ) ( ) (( ))

2

2 2

2

5 5

a a b b a ab b a b a b

A

a b b a b a b

+ + + + + +

= = = =

+ − + +

Vậy

2 2

x y z xy yz xz

(5)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

Câu (2 điểm)

a) Phân tích đa thức sau thành nhân tử 10 a +a +

b) Cho x+ =y xy0 Chứng minh 3 3 2(2 2 )

1

x y

x y

y x x y

− + =

− − +

Hướng dẫn a) a10+a5+1

( 10 8) ( 7) ( 5)

1

a a a a a a a a a a

= + + − + + + + + − −

( ) ( ) ( ) ( )( )

8 3

1 1 1

a a a a a a a a a a a

= + + − + + + + + − − +

( ) ( ) ( ) ( )( )( )

8 2

1 1 1

a a a a a a a a a a a a a

= + + − + + + + + − − + + +

( )( )

1

a a a a a a a a

= + + − + − + − +

b) Ta có:

3

1

x y

y − − x

( )( )

4

3

1

x x y y

y x − − + = − − ( ) ( ) ( )( ) 4 3 1

x y x y

y x − − − = − − ( )( )( ) ( ) ( )( )( )( ) 2 2

1 1

x y x y x y x y

y y y x x x

− + + − −

=

− + + − + +

x+ =y 1 − = −y x x− = −1 y, ta có:

( )( )( ) ( )

( )( )

2

2

1

x y x y x y x y

xy y y x x

− + + − − = + + + + ( )( ) ( ) ( ) 2

2 2 2

1

x y x y x y

xy x y y x y yx xy y x x

− + − −

=

+ + + + + + + + (vì x+ =y 1)

( )( )

( )

2

2 2

1

2

x y x y

xy x y xy x y x y xy

− + − =  + + + + + +    ( )( ) ( ) 2 2 2

x y x x y y

xy x y x y

− − + − =  + + +    ( ) ( ) ( ) 2 1

x y x x y y

xy x y

−  − + −  =  +    ( ) ( ) ( ) 2

x y x y y x

xy x y

−  − + −  =  +    ( )( ) ( ) 2 2 2 3

x y xy x y

x y xy x y

− − − −

= =

+

 + 

 

Do 3 3 2(2 2 )

1

x y

x y

y x x y

− + =

− − +

(6)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

a) Ta có:

OI // AB, xét tam giác OIC ta có: OI CI

AB =CB (1)

OI // CD, xét tam giác BDC ta có: OI BI

CD = BC (2)

Cộng vế với vế (1) (2) ta có:

1

OI OI CI BI BC

AB+CD = BC+ BC = BC = 

1 1

OI = AB+CD (3)

b) Chứng minh tương tự ta có 1

OJ = AB+CD (4)

Cộng vế với vế (3) (4) ta có: 1 1

OI OJ AB CD

 

+ =  + 

 

Lại có OJ DO OI OJ OI

AB= DB = AB = , ta có:

2 1

IJ = AB+CD

Câu

a) HS tự làm

b) Gọi I giao điểm AE BC, K giao điểm EH BD Ta có IM/ /DE nên BC/ /DE, tứ giác BCDE hình thang

Lại có CE=CHCH =BD nên BD=CE, tứ giác BDCE hình thang cân c) BH cắt AC F, ta có F=900

I J

O

D C

B A

F

K I

M

E

y x

D H

C B

(7)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

Hình thang HKDC hình thang cân

KHC =HCDKHC=CHF (vì CHF =HCD (so le trong))

HIC HFC HCI HCF

 =   =

CH phân giác góc ACB

ABC

  cân C

Vậy HKDC hình thang cân ABC tam giác cân C Câu

Từ 0x y z, , 1 suy xxz; yyz zzx nên x+ + −y z xyyzxz0 (1) Xét (1−x)(1−y)(1− =z) (x+ + −y z xyyz− − −xz xyz)0

1

x y z xy yz xz xyz

 + + − − −  −  (2) Từ (1) (2) suy 0 + + −x y z xyyzxz1

Đề số

Câu 1: Phân tích đa thức sau thành nhân tử: (x2+y2+z2)(x+ +y z) (2+ xy+yz+xz)2

Câu (2 điểm)

a) Một số điện thoại có 10 chữ số 098716abcd Hãy tìm bốn số cuối bốn số điện thoại đó, biết bốn số tạo thành số phương ta thêm vào chữ số đơn vị số phương

Câu (3 điểm)

1) Cho tam giác vuông ABC có độ dài cạnh góc vng AB=6cm, AC=8cm M điểm di chuyển cạnh huyền BC Gọi D E chân đường vng góc kẻ từ M đến AB AC Khi tứ giác ADME đạt diện tích lớn bao nhiêu?

2) Cho hình vng ABCD tứ giác MNPQ có bốn đỉnh thuộc bốn cạnh hình vng Chứng minh rằng:

a) ( )

4 ABCD

AC

S = MN+NP+PQ QM+

b) Xác định vị trí M, N, P, Q để chu vi tứ giác MNPQ nhỏ c) Xác định vị trí M, N, P, Q để diện tích tứ giác MNPQ nhỏ Câu (2 điểm)

a) Tìm số nguyên x, y, z biết x2+y2+z2 xy+3y+2z−3

b) Phân tích đa thức

2015.2016 x − −x

ĐÁP ÁN

Câu (2 điểm)

b) Đặt 2

x +y +z =a; xy+yz+zx=b, ta có B=a a( +2b)+b2 =(a+b)2

(8)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

a) Theo đề ta có:

( )( )( )( )

2

2

1 1

abcd n

a b c d m

 =

 

+ + + + =

 (31m n, 100)

2 11 56

1111 11.101 1111.1

101 45

m n m

m n

m n n

− = =

 

 − = = =  

+ = =

 

Vậy số điện thoại cần tìm 0987162025 b) Ta có

( )2 ( )

2

1 1 1

2 2

1 n n n n n n

n n

 

=  =  − 

+ + +  + 

+ +

2

1 1 1

13 2

 

=   − 

+  

2

1 1 1

25 4

 

=   − 

+  

………

( )2

2

1 1 1

2 2

1 n n n n

n n

 

=   − 

+ +  + 

+ +

( )2

2

1 1 1 1 1 1 1

5 13 25 n n 2 3 n n 20

 

+ + + +  +  − + − + + −  + =

+

 

+ + Câu (2 điểm)

a) Giải phương trình 2x(8x−1) (2 4x− =1)

b) Với nn5 n ln có chữ số tận cùng giống Hướng dân

a) 2x(8x−1) (2 4x− =1)

( ) ( )

( )( )

2 2

2

8

16 16 64 16 72

x x x

x x x x

 − − =

 − + − =

Đặt

64x −16x=t, ta có:

( )1 72

t t+ = ,

9 t t

=   = − 

Từ tìm giá trị x b) Xét hiệu:

5 nn

( )

1 n n

(9)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang |

( )( )

1

n n n

= − +

( ) ( )( )

1

n n n n

= − + − +

Vậy (n−1) (n n+1)(n2− +4 2) (1)

( ) ( )( ) ( ) ( )

1 1

n n n n n n n

= − + − − − +

(n 2)(n 1) (n n 1)(n 2) (5 n 1) (n n 1)

= − − + + − − +

Vì (n−2)(n−1) (n n+1)(n+2) chia hết cho 5, 5(n−1) (n n+1) chia hết cho Vậy (n−2)(n−1) (n n+1)(n+ −2) (5 n−1) (n n+1 5) (2)

Từ (1) (2) suy n5−n chia hết cho 2, mà ( )2,5 = 1

10 nn

Vậy

n n ln có chữ số tận cùng giống Câu 1)

Đặt AE=x (0 x 6)

Ta có 4(6 )

6

BE EM x EM

EM x

AB AC

=  =  = −

( ) ( 2) ( 2 ) ( )2 ( )2

4 4 4

6 9

3 3 3

ADME

S =AE AD=xx = xx = − x + x = −  x+ −  − x+ Vậy

12

ADME

minS =  = x M trung điểm BC 2)

a) Gọi I, J, K trung điểm QN, MN, PQ ta có

x E

D

M C

B

A

Q

P K

I

N J

D

M

(10)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 10

2

BJ = MN;

2

IJ = QM ;

2

KI = PN;

2

DK = PQ

( ) ( )

4 2 ABCD

AC AC AC BD

MN NP PQ QM BJ JI IK KD S

 + + + = + + +  =

b) Theo phần a) chu vi tứ giác MNPQ đạt giá trị nhỏ đường gấp khúc BJIKD trùng với đoạn BD, tức MN/ /AC/ /PQ MQ/ /BD/ /NP lúc tứ giác MNPQ hình chữ nhật

Vậy với hình chữ nhật nội tiếp hình vng cho có chu vi chu vi nhỏ so với chu vi tất tứ giác nội tiếp hình vng

c)

Từ đỉnh M, N, P, Q ta dựng đường thẳng song song với cạnh hình vng Các đường thẳng trùng song song

Nếu chúng song song đơi giao điểm chúng tạo thành hình chữ nhật Ta có

MNPQ MHQ QGP PFN MEN EFGH

S =S +S +S +S +S

( )

1 1

2 2

MNPQ AMHQ QGPD PFNC EFGH MEBN ABCD EFGH ABCD

S = S +S +S +S +S = S + SS

Do SMNPQ đạt giá trị nhỏ SEFGH = 0 EFHG HEFG

Vậy tứ giác nội tiếp hình vng có diện tích nhỏ có hai đường chéo song song với cạnh hình vng

Câu (2 điểm)

a) 2

3

x +y +zxy+ y+ z− 2

3

x y z xy y z

 + + − − − + 

2 2

3

x y z xy y z

 + + − − − +  − (vì x, y, z số nguyên)

( )

2

2

3 1

2

y y

x z

   

 −  +  −  + − 

   

1

x y z

=  

 =

 = 

b) x2− −x 2015.2016=x2−2016x+2015x−2015.2016 G Q

P H

F N

E

D

M

(11)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 11

( 2016) 2015( 2016) ( 2016)( 2015)

x x x x x

= − + − = − +

Đề số

Câu Cho a, b bình phương hai số nguyên lẻ liên tiếp Chứng minh ab a b− − +1 chia hết cho 48

Câu

a) Giải phương trình: ( ) (2 )2 ( )( )

2x + −x 2016 +4 x −5x−2015 =4 2x + −x 2016 x −5x−2015

b) Cho số a, b, c, d thỏa mãn abcd =1 Tính giá trị biểu thức

1 1

1 1

M

abc ab a bcd bc b acb cd c abd ad d

= + + +

+ + + + + + + + + + + +

Câu Cho đa thức P x( ) thỏa mãn chia cho x−3 dư 17 ; chia cho x−1 dư tìm dư phép chia P x( ) cho

4 xx+

Câu Cho tam giác ABC nhọn có đường cao AA; BB; CC, trực tâm H

a) Tính tổng AH BH CH

AA+BB+CC

b) Gọi AI phân giác tam giác ABC; IM, IN theo thứ tự phân giác góc AIC; AIB (

MAC, NAB) Chứng minh AN BI CM =BN IC AM

c) Tam giác ABC phải thỏa mãn điều kiện biểu thức ( )

2

2 2

AB BC CA

AA BB CC

+ +

 +  +  đạt giá trị nhỏ

Câu Cho x, y, z số dương thỏa mãn 1 2016

x+ + =y z

Tìm giá trị lớn biểu thức P x2 y2 y2 z2 z2 x2

x y y z z x

+ + +

= + +

+ + +

ĐÁP ÁN

Câu

Ta có ab a b− − + =1 (a−1)(b−1)

Vì a, b bình phương hai số nguyên lẻ liên tiếp nên a=(2n+1)2, b=(2n+3)2, (n ), suy

( )( ) ( ) (2 )

1 1 16

ab− − + =a b ab− = n n+ n+

n, (n+1), (n+2) tích ba số nguyên liên tiếp nên n n( +1)(n+2) chia hết cho 3, mà (16,3)=1 nên 16n n( +1) (2 n+2 48) nên ab a b− − +1 48

Câu

a) Đặt

2x + −x 2016=a;

5 2015

xx− =b, ta có

( )2

2

4 2

(12)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 12

Câu

Vì đa thức chia

4

xx+ có bậc hai nên đa thức dư có dạng ax b+

Ta có P x( ) (= x−1)(x−3 ) ( )Q x +ax b+

( )3 17 17

P =  a b+ = P( )1 =  + =3 a b Do a=7; b= −4 nên đa thức dư có dạng 7x−4 Câu

a) Ta có

1 ABC

S = AA BC ;

2 BHA

S = BA AH ;

2 CHA

S = CA AH

( )

2

AHB AHC ABC

A B A C AH

S S AA

AA BC

S AH

 + 

 +

 =  =

Chứng minh tương tự ta có:

( )

2

AHB BHC ABC

AB B C BH

S S BH

BB AC

S BB

+  +

=  =

;

( )

2

BHC AHC ABC

BC AC CH

S S CH

CC AB

S CC

+  +

=  =

2

2 AHB AHC AHB BHC BHC AHC ABC

ABC ABC

S S S S S S S

AH BH CH

AA BB CC S S

+ + + + +

+ + = = =

  

b) Theo tính chất đường phân giác tam giác ta có:

AN AI

BN = BI ;

BI AB

IC = AC ;

CM IC

AM = AI , từ suy

AN BI CM AI AB IC AB IC AB AC

AN BI CM BN IC AM

BN IC AM = BI AC AI = AC BI = AC AB =  =

c) Vẽ CxCC, gọi D điểm đối xứng với A qua Cx Ta có tam giác BAD vng A CD=CA; AD=2CC

Xét ba điểm B, C, D, ta có BDBC CD+

I

x N

M

D H

C'

B'

A' C

B

(13)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 13 BAD

 vuông A nên AB2+AD2 =BD2

( )2

2

AB AD BC CD

 +  +

( )2

2

4

AB CCBC AC

 +  +

( )2

2

4CCBC AC AB

  + −

Chứng minh tương tự ta có:

( )2

2

4AA  AB+ACBC

( )2

2

4BB  AB+BCAC

( 2 2 2) ( )2 ( )2

2 2

4 AA BB CC AB BC CA AB BC CA

AA BB CC

+ +

  

 + +  + +  

 +  + 

Đẳng thức xảy BC= AC AC; = AB AB; =BC ABC Câu

Áp dụng bất đẳng thức 2(a2+b2)(a b+ )2; 1

a+ b a b+

Ta có

( )

( ) (( )) (( ))

2 2 2 2 2 2

2 2

2 2

x y y z z x

x y y z z x

P

x y y z z x x y y z z x

+ + +

+ + +

= + + = + +

+ + + + + +

( )

( )2 (( )2) (( )2)

2 2 1 1 1 1 1

2

4

x y y z z x

P

x y y z z x x y y z z x

x y y z z x

+ + +    

 + + =  + +   + + + + + 

+ + +

+ + +    

2 1

2 2016

4 P

x y z

 

  + + 

 

Vậy 2016

2016 minP=  = = =x y z

Đề số

Câu Chứng minh rằng:

a) Nếu tổng hai số nguyên chia hết cho tổng lập phương chúng chia hết cho b) Tích số tự nhiên liên tiếp cộng số phương

Câu Cho biểu thức

3

2

1

:

1

x x

B x

x x x x

 −  −

= − 

− − − +

 

a) Rút gọn biểu thức B

b) Tính giá trị biểu thức B 12 x= −

(14)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 14

Câu

a) Giải phương trình ( ) (3 2)3 ( )3

5

xx+ + −x = − x

b) Cho x y z

a+ + =b c

a b c

x+ + =y z Chứng minh

2 2 2

x y z

a +b +c =

Câu 4.Cho hình chữ nhật ABCD Trên đường chéo BD lấy điểm P, gọi M điểm đối xứng điểm C qua P

a) Tứ giác AMDB hình gì? Tại sao?

b) Gọi E F hình chiếu điểm M lên AB AD Chứng minh EF/ /AC ba điểm E, F, P thẳng hàng

c) Chứng minh tỉ số cạnh hình chữ nhật MEAF khơng phụ thuộc vào vị trí điểm P

d) Giả sử CPBD CP=2, 4cm,

16 PD

PB = Tính độ dài cạnh hình chữ nhật ABCD

Câu Tìm tất số nguyên dương x, y, z thoả mãn đồng thời điều kiện:

11

x+ + y z 8x+9y+10z=100

ĐÁP ÁN Câu

Vì n  N nên n2 + 3n +  N Vậy n(n + 1)(n + 2)(n + 3) + số phương

Câu

a, ( điểm ) Với x khác -1 thì:

A = = = ) ( ) )( ( ) )( ( : 1 2 x x x x x x x x x x x + − + − + + − − + − − ) )( ( ) )( ( : ) )( ( 2 x x x x x x x x x x + − + + − − − + + − ) ( : ) ( x x − + ) )(

( +x2 −x

a) Gọi số phải tìm a b, ta có a + b chia hết cho 0,25

Ta có a3 + b3 = (a + b)(a2 – ab + b2) = (a + b) =

= (a + b) 0,5

Vì a + b chia hết (a + b)2 - 3ab chia hết cho 3;

Do (a + b) chia hết cho

b) Gọi số tự nhiên, liên tiêp là: n, n + 1, n + 2, n + (n N) Ta có n(n + 1)(n + 2)(n + 3) + = n.(n + 3(n + 1)(n + 2) + = (n2 + 3n)( n2 + 3n + 2) + (*) Đặt n2 + 3n = t (t  N) (*) = t( t + ) + = t2 + 2t + = ( t + )2 = (n2 + 3n + 1)2

(a2 +2ab+b2)−3ab

(15)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 15

b, (1 điểm) Tại x = = thỡ A =

=

c, (1 điểm) Với x khác -1 B < (1)

Vì với x nên (1) xảy

KL: B < x >

Câu

a) Đặt x2 - 5x + = a, - x2 = b a + b = - 5x Phương trình trở thành a3 + b3 = (a + b)3 Biến đổi thành ab(a + b) =

<=> a = b = a + b = Từ tìm S =

b) Từ :

ayz+bxz+cxy

0 0

a b c

x + y + z =  xyz =

ayz + bxz + cxy =

Ta có : x y z 1 (x y z)2 1

a + + = b c a + +b c =

2 2

2 2 2( ) 1

x y z xy xz yz

a b c ab ac bc

 + + + + + =

2 2

2 2 2 1

x y z cxy bxz ayz

a b c abc

+ +

 + + + =

2 2

2 2 1( )

x y z

dfcm

a b c

 + + =

Câu

a) Gọi O giao điểm đường chéo hình chữ nhật ABCD PO đường trung bình tam giác CAM ( )

3 −

3

−  + − − − − ) ( )

3 (

1

) )( 25

( + +

27 10 27

272

8

34 = =

=

0 ) )(

( +x2 −x

1+x2  1−x0x1

2; 3; -1; 1; 1,2

A B

C D

O M

P

I E

(16)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 16

AM//PO

Tứ giác AMDB hình thang

b) Do AM //BD nên góc OBA = góc MAE (đồng vị) Tam giác AOB cân O nên góc OBA = góc OAB

Gọi I giao điểm đường chéo hình chữ nhật AEMF tam giác AIE cân I nên góc IAE = góc IEA

Từ chứng minh : có góc FEA = góc OAB, EF//AC (1) Mặt khác IP đường trung bình tam giác MAC nên IP // AC (2) Từ (1) (2) suy ba điểm E, F, P thẳng hàng

c) Chứng minh MAF ~ DBA (g-g) nên =>

AD AB FA MF =

khơng đổi

d) Nếu

Nếu CBD ~ DCP (g-g) =>

CP PB PD CP =

do CP2 = PB.PD hay (2,4)2 = 9.16 k2 => k = 0,2 PD = 9k = 1,8(cm); PB = 16k = 3,2 (cm => BD = (cm)

C/m BC2 = BP.BD = 16 BC = (cm); CD = (cm)

Câu

Ta có: 8x + 8y + 8z < 8x + 9y + 10z = 100 => x + y + z <

8 100

< 13

cùng với giả thiết, có 11 < x + y + z < 13, x + y + z  Z => x + y + z = 12 Ta có hệ: x + y + z = 12 (1); 8x + 9y + 10z = 100 (2)

Nhân vế (1) với trừ vế-vế (2) cho (1), được: y + 2z = (3) Từ (3) suy z = (vì z ≥ y ≥ => y + 2z ≥ 4, mâu thuẫn) Với z = 1, tìm y = x =

Thử lại, thấy Vậy có x = 9, y = z = thoả mãn

9 16 PD PB =

9 , 16

9 16

PD PB

k PD k PB k

= =  = =

(17)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 17

Website HOC247 cung cấp môi trường học trực tuyến sinh động, nhiều tiện ích thơng minh, nội dung giảng biên soạn công phu giảng dạy giáo viên nhiều năm kinh nghiệm, giỏi kiến thức chuyên môn lẫn kỹ sư phạm đến từ trường Đại học trường chuyên danh tiếng

I.Luyện Thi Online

-Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ Trường ĐH THPT danh tiếng xây dựng khóa luyện thi THPTQG mơn: Tốn, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học Sinh Học

-Luyện thi vào lớp 10 chun Tốn: Ơn thi HSG lớp luyện thi vào lớp 10 chuyên Toán trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An trường Chuyên khác TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo Thầy Nguyễn Đức Tấn

II.Khoá Học Nâng Cao HSG

-Toán Nâng Cao THCS: Cung cấp chương trình Tốn Nâng Cao, Tốn Chun dành cho em HS THCS lớp 6, 7, 8, u thích mơn Tốn phát triển tư duy, nâng cao thành tích học tập trường đạt điểm tốt kỳ thi HSG

-Bồi dưỡng HSG Toán: Bồi dưỡng phân mơn Đại Số, Số Học, Giải Tích, Hình Học Tổ Hợp dành cho học sinh khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn đôi HLV đạt thành tích cao HSG Quốc Gia

III.Kênh học tập miễn phí

-HOC247 NET: Website hoc miễn phí học theo chương trình SGK từ lớp đến lớp 12 tất môn học với nội dung giảng chi tiết, sửa tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú cộng đồng hỏi đáp sôi động

-HOC247 TV: Kênh Youtube cung cấp Video giảng, chuyên đề, ôn tập, sửa tập, sửa đề thi miễn phí từ lớp đến lớp 12 tất mơn Tốn- Lý - Hố, Sinh- Sử - Địa, Ngữ Văn, Tin Học Tiếng Anh

Vng vàng nn tảng, Khai sáng tương lai

Hc mi lúc, mọi nơi, mọi thiết bi Tiết kim 90%

Hc Toán Online Chuyên Gia

I.Luyện Thi Online - - II.Khoá Học Nâng Cao HSG III.Kênh học tập miễn phí -

Ngày đăng: 23/04/2021, 09:35

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w