1. Trang chủ
  2. » Giáo án - Bài giảng

Bài soạn SKKN giải bài tập phần dao động và sóng 12

41 842 11

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 1,52 MB

Nội dung

 Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 1 A - PHẦN MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI. Hiện nay, khi mà hình thức thi trắc nghiệm khách quan được áp dụng trong các kì thi tốt nghiệp tuyển sinh đại học, cao đẳng thì yêu cầu về việc nhận dạng để giải nhanh tối ưu các câu trắc nghiệm, đặc biệt là các câu trắc nghiệm định lượng là rất cần thiết để có thể đạt được kết quả cao trong kì thi. Trong đề thi tuyển sinh ĐH CĐ năm 2010, môn Vật Lý có những câu trắc nghiệm định lượng khá khó mà các đề thi trước đó chưa có, nếu chưa gặp chưa giải qua lần nào thì thí sinh khó mà giải nhanh chính xác các câu này. Để giúp các em học sinh nhận dạng được các câu trắc nghiệm định lượng từ đó có thể giải nhanh chính xác từng câu, tôi xin tập hợp ra đây các bài tập điển hình trong sách giáo khoa, trong sách bài tập, trong các đề thi tốt nghiệp THPT, thi tuyển sinh ĐH – CĐ trong những năm qua phân chúng thành những dạng cơ bản từ đó đưa ra phương pháp giải cho từng dạng. Hy vọng rằng tập tài liệu này giúp ích được một chút gì đó cho các quí đồng nghiệp trong quá trình giảng dạy các em học sinh trong quá trình kiểm tra, thi cử. II. ĐỐI TƯỢNG PHẠM VI ÁP DỤNG 1) Đối tượng sử dụng đề tài: Giáo viên dạy môn Vật lý lớp 12 tham khảo để hướng dẫn học sinh giải bài tập. Học sinh học lớp 12 ôn tập để kiểm tra, thi môn Vật Lý. 2) Phạm vi áp dụng: Phần dao động cơ, sóng cơ, sóng âm của chương trình Vật Lý 12 – Ban Cơ bản. III. PHƯƠNG PHÁP NGHIÊN CỨU Xác định đối tượng áp dụng đề tài. Tập hợp các bài tập điển hình trong sách giáo khoa, trong sách bài tập, trong các đề thi tốt nghiệp THPT, thi tuyển sinh ĐH – CĐ trong những năm qua phân chúng thành các bài tập minh họa của những dạng bài tập cơ bản. Hệ thống các công thức, kiến thức liên quan phương pháp giải cho từng dạng. Có lời giải các bài tập minh họa để các em học sinh có thể kiểm tra so sánh với bài giải của mình. Cuối mỗi phần có các câu trắc nghiệm luyện tập là đề thi ĐH – CĐ trong hai năm qua. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 2 B - NỘI DUNG I. DAO ĐỘNG CƠ 1. Tìm các đại lượng đặc trưng trong dao động điều hòa. * Các công thức: + Li độ (phương trình dao động): x = Acos(ωt + ϕ). + Vận tốc: v = x’ = - ωAsin(ωt + ϕ) = ωAcos(ωt + ϕ + 2 π ). + Gia tốc: a = v’ = - ω 2 Acos(ωt + ϕ) = - ω 2 x; a max = ω 2 A. + Vận tốc v sớm pha 2 π so với li độ; gia tốc a ngược pha với li độ (sớm pha 2 π so với vận tốc). + Liên hệ tần số góc, chu kì tần số: ω = T π 2 = 2πf. + Công thức độc lập: A 2 = x 2 + 2 2 v ω = 2 2 2 4 v a ω ω + . + Ở vị trí cân bằng: x = 0 thì |v| = v max = ωA a = 0. + Ở vị trí biên: x = ± A thì v = 0 |a| = a max = ω 2 A = 2 axm v A . + Lực kéo về: F = ma = - kx. + Quỹ đạo chuyển động của vật dao động điều hòa là một đoạn thẳng có chiều dài L = 2A. * Phương pháp giải: + Để tìm các đại lượng đặc trưng của một dao động điều hòa khi biết phương trình dao động hoặc biết một số đại lượng khác của dao động ta sử dụng các công thức liên quan đến những đại lượng đã biết những đại lượng cần tìm rồi suy ra tính các đại lượng cần tìm theo yêu cầu của bài toán. + Để tìm các đại lượng của dao động điều hòa tại một thời điểm t đã cho ta thay giá trị của t vào phương trình liên quan để tính đại lượng đó. Lưu ý: Hàm sin hàm cos là hàm tuần hoàn với chu kỳ 2π nên khi thay t vào nếu được góc của hàm sin hoặc hàm cos là một số lớn hơn 2π thì ta bỏ đi của góc đó một số chẵn của π để dễ bấm máy. + Để tìm thời điểm mà x, v, a hay F có một giá trị cụ thể nào đó thì ta thay giá trị này vào phương trình liên quan giải phương trình lượng giác để tìm t. Lưu ý: Đừng để sót nghiệm: với hàm sin thì lấy thêm góc bù với góc đã tìm được, còn với hàm cos thì lấy thêm góc đối với nó nhớ hàm sin hàm cos là hàm tuần hoàn với chu kỳ 2π để đừng bỏ sót các họ nghiệm. Cũng đừng để dư nghiệm: Căn cứ vào dấu của các đại lượng liên quan để loại bớt một họ nghiệm không phù hợp. * Bài tập minh họa: 1. Phương trình dao động của một vật là: x = 6cos(4πt + 6 π ) (cm), với x tính bằng cm, t tính bằng s. Xác định li độ, vận tốc gia tốc của vật khi t = 0,25 s. 2. Một vật nhỏ khối lượng 100 g dao động điều hòa trên quỹ đạo thẳng dài 20 cm với tần số góc 6 rad/s. Tính vận tốc cực đại gia tốc cực đại của vật. 3. Một vật dao động điều hoà trên quỹ đạo dài 40 cm. Khi ở vị trí có li độ x = 10 cm vật có vận tốc 20π 3 cm/s. Tính vận tốc gia tốc cực đại của vật. 4. Một chất điểm dao động điều hoà với chu kì 0,314 s biên độ 8 cm. Tính vận tốc của chất điểm khi nó đi qua vị trí cân bằng khi nó đi qua vị trí có li độ 5 cm. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 3 5. Một chất điểm dao động theo phương trình: x = 2,5cos10t (cm). Vào thời điểm nào thì pha dao động đạt giá trị 3 π ? Lúc ấy li độ, vận tốc, gia tốc của vật bằng bao nhiêu? 6. Vật dao động điều hòa với phương trình: x = 5cos(4πt + π) (cm). Vật đi qua vị trí cân bằng theo chiều dương vào những thời điểm nào? Khi đó độ lớn của vận tốc bằng bao nhiêu? 7. Một vật nhỏ có khối lượng m = 50 g, dao động điều hòa với phương trình: x = 20cos(10πt + 2 π ) (cm). Xác định độ lớn chiều của các véc tơ vận tốc, gia tốc lực kéo về tại thời điểm t = 0,75T. 8. Một vật dao động điều hòa theo phương ngang với biên độ 2 cm với chu kì 0,2 s. Tính độ lớn của gia tốc của vật khi vật có vận tốc 10 10 cm/s. 9. Một vật dao động điều hòa với phương trình: x = 20cos(10πt + 2 π ) (cm). Xác định thời điểm đầu tiên vật đi qua vị trí có li độ x = 5 cm theo chiều ngược chiều với chiều dương kể từ thời điểm t = 0. 10. Một vật dao động điều hòa với phương trình: x = 4cos(10πt - 3 π ) (cm). Xác định thời điểm gần nhất vận tốc của vật bằng 20π 3 cm/s đang tăng kể từ lúc t = 0. * Đáp số hướng dẫn giải: 1. Khi t = 0,25 s thì x = 6cos(4π.0,25 + 6 π ) = 6cos 6 7 π = - 3 3 (cm); v = - 6.4πsin(4πt + 6 π ) = - 6.4πsin 6 7 π = 37,8 (cm/s); a = - ω 2 x = - (4π) 2 . 3 3 = - 820,5 (cm/s 2 ). 2. Ta có: A = 2 L = 2 20 = 10 (cm) = 0,1 (m); v max = ωA = 0,6 m/s; a max = ω 2 A = 3,6 m/s 2 . 3. Ta có: A = 2 L = 2 40 = 20 (cm); ω = 22 xA v − = 2π rad/s; v max = ωA = 2πA = 40π cm/s; a max = ω 2 A = 800 cm/s 2 . 4. Ta có: ω = 314,0 14,3.22 = T π = 20 (rad/s). Khi x = 0 thì v = ± ωA = ±160 cm/s. Khi x = 5 cm thì v = ± ω 22 xA − = ± 125 cm/s. 5. Ta có: 10t = 3 π  t = 30 π (s). Khi đó x = Acos 3 π = 1,25 (cm); v = - ωAsin 3 π = - 21,65 (cm/s); a = - ω 2 x = - 125 cm/s 2 . 6. Khi đi qua vị trí cân bằng thì x = 0  cos(4πt + π) = 0 = cos(± 2 π ). Vì v > 0 nên 4πt + π = - 2 π + 2kπ  t = - 3 8 + 0,5k với k ∈ Z. Khi đó |v| = v max = ωA = 62,8 cm/s. 7. Khi t = 0,75T = 0,75.2 π ω = 0,15 s thì x = 20cos(10π.0,15 + 2 π ) = 20.cos2π = 20 cm; v = - ωAsin2π = 0; a = - ω 2 x = - 200 m/s 2 ; F = - kx = - mω 2 x = - 10 N; a F đều có giá trị âm nên gia tốc lực kéo về đều hướng ngược với chiều dương của trục tọa độ. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 4 8. Ta có: ω = 2 T π = 10π rad/s; A 2 = x 2 + 2 2 v ω = 2 2 2 4 v a ω ω +  |a| = 4 2 2 2 A v ω ω − = 10 m/s 2 . 9. Ta có: x = 5 = 20cos(10πt + 2 π )  cos(10πt + 2 π ) = 0,25 = cos(±0,42π). Vì v < 0 nên 10πt + 2 π = 0,42π + 2kπ  t = - 0,008 + 0,2k; với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này (ứng với k = 1) là 0,192 s. 10. Ta có: v = x’ = - 40πsin(10πt - 3 π ) = 40πcos(10πt + 6 π ) = 20π 3  cos(10πt + 6 π ) = 3 2 = cos(± 6 π ). Vì v đang tăng nên: 10πt + 6 π = - 6 π + 2kπ  t = - 1 30 + 0,2k. Với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này là t = 6 1 s. 2. Các bài toán liên quan đến quảng đường đi, vận tốc gia tốc của vật dao động điều hòa. * Kiến thức liên quan: Trong một chu kỳ vật dao động điều hoà đi được quãng đường 4A. Trong nữa chu kì vật đi được quãng đường 2A. Trong một phần tư chu kì tính từ vị trí biên hay vị trí cân bằng thì vật đi được quãng đường A, còn từ các vị trí khác thì vật đi được quãng đường khác A. Càng gần vị trí cân bằng thì vận tốc tức thời của vật có độ lớn càng lớn (ở vị trí cân bằng vận tốc của vật có độ lớn cực đại v max = ωA), càng gần vị trí biên thì vận tốc tức thời của vật có độ lớn càng nhỏ (ở vị trí biên v = 0); do đó trong cùng một khoảng thời gian càng gần vị trí cân bàng thì quãng đường đi được càng lớn còn càng gần vị trí biên thì quãng đường đi được càn nhỏ. Càng gần vị trí biên thì gia tốc tức thời của vật có độ lớn càng lớn (ở vị trí biên gia tốc của vật có độ lớn cực đại a max = ω 2 A), càng gần vị trí cân bằng thì gia tốc tức thời của vật có độ lớn càng nhỏ (ở vị trí cân bằng a = 0); do đó càng gần vị trí biên thì độ lớn của lực kéo về (còn gọi là lực hồi phục) càng lớn còn càng gần vị trí cân bằng thì độ lớn của lực kéo về càng nhỏ. Các công thức thường sử dụng: v tb = S t∆ ; A 2 = x 2 + 2 2 v ω = 2 2 2 4 v a ω ω + ; a = - ω 2 x; * Phương pháp giải: Cách thông dụng tiện lợi nhất khi giải bài tập loại này là sử dụng mối liên hệ giữa dao động điều hòa chuyển động tròn đều: + Tính quãng đường đi của con lắc trong khoảng thời gian ∆t từ t 1 đến t 2 : - Thực hiện phép phân tích: ∆t = nT + 2 T + ∆t’. - Tính quãng đường S 1 vật đi được trong nT + 2 T đầu: S 1 = 4nA + 2A. - Xác định vị trí của vật trên đường tròn tại thời điểm t 1 vị trí của vật sau khoảng thời gian nT + 2 T trên đường tròn, sau đó căn cứ vào góc quay được trong khoảng thời gian ∆t’ trên đường tròn để tính quãng đường đi được S 2 của vật trong khoãng thời gian ∆t’ còn lại. - Tính tổng: S = S 1 + S 2 . GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 5 + Tính vận tốc trung bình của vật dao động điều hòa trong một khoảng thời gian ∆t: Xác định góc quay được trong thời gian ∆t trên đường tròn từ đó tính quãng đường S đi được tính vận tốc trung bình theo công thức: v tb = S t∆ . + Tính quãng đường lớn nhất hay nhỏ nhất vật đi được trong khoảng thời gian 0 < ∆t < 2 T : ∆ϕ = ω∆t; S max = 2Asin 2 ϕ ∆ ; S min = 2A(1 - cos 2 ϕ ∆ ). + Tính tần số góc ω (từ đó tính chu kỳ T hoặc tần số f) khi biết trong một chu kỳ có khoảng thời gian t để vận tốc có độ lớn không nhỏ hơn một giá trị v nào đó: trong một phần tư chu kỳ tính từ vị trí cân bằng khoảng thời gian để vận có vận tốc không nhỏ hơn v là: ∆t = 4 t ; ∆ϕ = 2 T π ∆t; vật có độ lớn vận tốc nhỏ nhất là v khi li độ |x| = Asin∆ϕ. Khi đó: ω = 2 2 v A x− . + Tính tần số góc ω (từ đó tính chu kỳ T hoặc tần số f) khi biết trong một chu kỳ có khoảng thời gian t để vận tốc có độ lớn không lớn hơn một giá trị v nào đó: trong một phần tư chu kỳ tính từ vị trí biên khoảng thời gian để vận có vận tốc không lớn hơn v là: ∆t = 4 t ; ∆ϕ = 2 T π ∆t; vật có độ lớn vận tốc lớn nhất là v khi li độ |x| = Acos∆ϕ. Khi đó: ω = 2 2 v A x− . + Tính tần số góc ω (từ đó tính chu kỳ T hoặc tần số f) khi biết trong một chu kỳ có khoảng thời gian t để gia tốc có độ lớn không nhỏ hơn một giá trị a nào đó: trong một phần tư chu kỳ tính từ vị trí biên khoảng thời gian để vận có gia tốc không nhỏ hơn a là: ∆t = 4 t ; ∆ϕ = 2 T π ∆t; vật có độ lớn gia tốc nhỏ nhất là a khi li độ |x| = Acos∆ϕ. Khi đó: ω = | | | | a x . + Tính tần số góc ω (từ đó tính chu kỳ T hoặc tần số f) khi biết trong một chu kỳ có khoảng thời gian t để gia tốc có độ lớn không lớn hơn một giá trị a nào đó: trong một phần tư chu kỳ tính từ vị trí cân khoảng thời gian để vận có gia tốc không lớn hơn a là: ∆t = 4 t ; ∆ϕ = 2 T π ∆t; vật có độ lớn gia tốc lớn nhất là a khi li độ |x| = Asin∆ϕ. Khi đó: ω = | | | | a x . * Bài tập minh họa: 1. Một chất điểm dao động với phương trình: x = 4cos(5πt + 2 π ) (cm). Tính quãng đường mà chất điểm đi được sau thời gian t = 2,15 s kể từ lúc t = 0. 2. Một chất điểm dao động điều hòa với chu kì T = 0,2 s, biên độ A = 4 cm. Tính vận tốc trung bình của vật trong khoảng thời gian ngắn nhất khi đi từ vị trí có li độ x = A đến vị trí có li độ x = - 2 A . 3. Một chất điểm dao động theo phương trình x = 2,5cos10t (cm). Tính vận tốc trung bình của dao động trong thời gian 8 1 chu kì kể từ lúc vật có li độ x = 0 kể từ lúc vật có li độ x = A. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 6 4. Vật dao động điều hòa theo phương trình: x = 2cos(10πt - 3 π ) cm. Tính vận tốc trung bình của vật trong 1,1 giây đầu tiên. 5. Một vật dao động điều hòa theo phương trình: x = 5cos(2πt - 4 π ) cm. Tính vận tốc trung bình trong khoảng thời gian từ t 1 = 1 s đến t 2 = 4,825 s. 6. Vật dao động điều hòa theo phương trình: x = 12cos(10πt - 3 π ) cm. Tính quãng đường dài nhất ngắn nhất mà vật đi được trong 1 4 chu kỳ. 7. Một chất điểm dao động điều hòa với chu kì T biên độ 10 cm. Biết trong một chu kì, khoảng thời gian để chất điểm có vận tốc không vượt quá 20π 3 cm/s là 2 3 T . Xác định chu kì dao động của chất điểm. 8. Một chất điểm dao động điều hòa với chu kì T biên độ 8 cm. Biết trong một chu kì, khoảng thời gian để chất điểm có vận tốc không nhỏ hơn 40π 3 cm/s là 3 T . Xác định chu kì dao động của chất điểm. 9. Một con lắc lò xo dao động điều hòa với chu kì T biên độ 5 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s 2 là 3 T . Lấy π 2 = 10. Xác định tần số dao động của vật. 10. Một con lắc lò xo dao động điều hòa với chu kì T biên độ 4 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 2 T . Lấy π 2 = 10. Xác định tần số dao động của vật. * Đáp số hướng dẫn giải: 1. Ta có: T = ω π 2 = 0,4 s ; T t = 5,375 = 5 + 0,25 + 0,125  t = 5T + 4 T + 8 T . Lúc t = 0 vật ở vị trí cân bằng; sau 5 chu kì vật đi được quãng đường 20A trở về vị trí cân bằng, sau 4 1 chu kì kể từ vị trí cân bằng vật đi được quãng đường A đến vị trí biên, sau 8 1 chu kì kể từ vị trí biên vật đi được quãng đường: A - Acos 4 π = A - A 2 2 . Vậy quãng đường vật đi được trong thời gian t là s = A(22 - 2 2 ) = 85,17 cm. 2. Khoảng thời gian ngắn nhất vật đi từ vị trí biên x = A đến vị trí cân bằng x = 0 là 4 T ; khoảng thời gian ngắn nhất vật đi từ vị trí cân bằng x = 0 đến vị trí có li độ x = 2 A − là 3 4 T = 12 T ; vậy t = 4 T + 12 T = 3 T . Quãng đường đi được trong thời gian đó là s = A + 2 A = 2 3A  Tốc độ trung bình v tb = t s = T A 2 9 = 90 cm/s. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 7 3. Ta có: T = ω π 2 = 0,2π s; ∆t = 8 T = 0,0785 s. Trong 8 1 chu kỳ, góc quay được trên giãn đồ là 4 π . Quãng đường đi được tính từ lúc x = 0 là ∆s = Acos 4 π = 1,7678 cm, nên trong trường hợp này v tb = 0785,0 7678,1 = ∆ ∆ t s = 22,5 (cm/s). Quãng đường đi được từ lúc x = A là ∆s = A - Acos 4 π = 0,7232 cm, nên trong trường hợp này v tb = 0785,0 7232,0 = ∆ ∆ t s = 9,3 (cm/s). 4. Ta có: T = ω π 2 = 0,2 s; ∆t = 1,1 = 5.0,2 + 2 2,0 = 5T + 2 T  Quãng đường vật đi được là : S = 5.4A + 2 A = 22A = 44 cm  Vận tốc trung bình: v tb = t S ∆ = 40 cm/s. 5. T = ω π 2 = 1 s; ∆t = t 2 – t 1 = 3,625 = 3T + 2 T + 8 T . Tại thời điểm t 1 = 1 s vật ở vị trí có li độ x 1 = 2,5 2 cm; sau 3,5 chu kì vật đi được quãng đường 14 A = 70 cm đến vị trí có li độ - 2,5 2 cm; trong 8 1 chu kì tiếp theo kể từ vị trí có li độ - 2,5 2 cm vật đi đến vị trí có li độ x 2 = - 5 cm nên đi được quãng đường 5 – 2,5 2 = 1,46 (cm). Vậy quãng đường vật đi được từ thời điểm t 1 đến thời điểm t 2 là ∆S = 71, 46 cm  v tb = t S ∆ ∆ = 19,7 cm/s. 6. Vật có vận tốc lớn nhất khi ở vị trí cân bằng nên quãng đường dài nhất vật đi được trong 1 4 chu kỳ là S max = 2Acos 4 π = 16,97 cm. Vật có vận tốc nhỏ nhất khi ở vị trí biên nên quãng đường ngắn nhất vật đi được trong 1 4 chu kỳ là S min = 2A(1 - cos 4 π ) = 7,03 cm. 7. Trong quá trình dao động điều hòa, vận tốc có độ lớn càng nhỏ khi càng gần vị trí biên, nên trong 1 chu kì vật có vận tốc không vượt quá 20π 3 cm/s là 2 3 T thì trong 1 4 chu kỳ kể từ vị trí biên vật có vận tốc không vượt quá 20π 3 cm/s là 6 T . Sau khoảng thời gian 6 T kể từ vị trí biên vật có |x| = Acos 3 π = 5 cm  ω = 22 xA v − = 4π rad/s  T = ω π 2 = 0,5 s. 8. Trong quá trình dao động điều hòa, vận tốc có độ lớn càng lớn khi càng gần vị trí cân bằng, nên trong 1 chu kì vật có vận tốc không nhỏ hơn 40π 3 cm/s là 3 T thì trong 1 4 chu kỳ kể từ vị trí cân bằng vật có vận tốc không nhỏ hơn 40π 3 cm/s là 12 T . Sau khoảng thời gian 12 T kể từ vị trí cân vật có |x| = Asin 6 π = 4 cm  ω = 22 xA v − = 10π rad/s  T = ω π 2 = 0,2 s. 9. Trong quá trình vật dao động điều hòa, gia tốc của vật có độ lớn càng nhỏ khi càng gần vị trí cân bằng. Trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s 2 là 3 T thì trong một phần tư chu kì tính từ vị trí cân bằng, khoảng GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 8 thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s 2 là 12 T . Sau khoảng thời gian 12 T kể từ vị trí cân bằng vật có |x| = Acos 6 π = 2 A = 2,5 cm. Khi đó |a| = ω 2 | x| = 100 cm/s 2  ω = || || x a = 2 10 = 2π  f = π ω 2 = 1 Hz. 10. Trong quá trình vật dao động điều hòa, gia tốc của vật có độ lớn càng lớn khi càng gần vị trí biên. Trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 2 T thì trong một phần tư chu kì tính từ vị trí biên, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 8 T . Sau khoảng thời gian 8 T kể từ vị trí biên vật có |x| = Acos 4 π = 2 A = 2 2 cm. Khi đó |a| = ω 2 |x| = 500 2 cm/s 2  ω = || || x a = 5 10 = 5π  f = π ω 2 = 2,5 Hz. 3. Viết phương trình dao động điều hòa của vật dao động, của con lắc lò xo của con lắc đơn. * Các công thức: + Phương trình dao động của con lắc lò xo: x = Acos(ωt + ϕ). Trong đó: ω = m k ; con lắc lò xo treo thẳng đứng: ω = m k = 0 g l∆ ; A = 2 0 2 0       + ω v x = 2 2 2 4 v a ω ω + ; cosϕ = A x 0 ; (lấy nghiệm "-" khi v 0 > 0; lấy nghiệm "+" khi v 0 < 0); với x 0 v 0 là li độ vận tốc tại thời điểm t = 0. + Phương trình dao động của con lắc đơn: s = S 0 cos(ωt + ϕ). Trong đó: ω = l g ; S 0 = 2 2 v s ω   +  ÷   = 2 2 2 4 v a ω ω + ; cosϕ = 0 s S ; (lấy nghiệm "-" khi v > 0; lấy nghiệm "+" khi v < 0); với s = αl (α tính ra rad) v là li độ vận tốc tại thời điểm t = 0. + Phương trình dao động của con lắc đơn có thể viết dưới dạng li độ góc: α = α 0 cos(ωt + ϕ); với s = αl; S 0 = α 0 l (α α 0 tính ra rad). * Phương pháp giải: Dựa vào các điều kiện bài toán cho các công thức liên quan để tìm ra các giá trị cụ thể của tần số góc, biên độ pha ban đầu rồi thay vào phương trình dao động. Lưu ý: Sau khi giải một số bài toán cơ bản về dạng này ta rút ra một số kết luận dùng để giải nhanh một số câu trắc nghiệm dạng viết phương trình dao động: + Nếu kéo vật ra cách vị trí cân bằng một khoảng nào đó rồi thả nhẹ thì khoảng cách đó chính là biên độ dao động. Nếu chọn gốc thời gian lúc thả vật thì: ϕ = 0 nếu kéo vật ra theo chiều dương; ϕ = π nếu kéo vật ra theo chiều âm. + Nếu từ vị trí cân bằng truyền cho vật một vận tốc để nó dao động điều hòa thì vận tốc đó chính là vận tốc cực đại, khi đó: A = max v ω , (con lắc đơn S 0 = max v ω ). Chọn gốc thời gian lúc truyền vận tốc cho vật thì: ϕ = - 2 π nếu chiều truyền vận tốc cùng chiều với chiều dương; ϕ = 2 π nếu chiều truyền vận tốc ngược chiều dương. GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 9 * Bài tập minh họa: 1. Một con lắc lò xo thẳng đứng gồm một vật có khối lượng 100 g lò xo khối lượng không đáng kể, có độ cứng 40 N/m. Kéo vật nặng theo phương thẳng đứng xuống phía dưới cách vị trí cân bằng một đoạn 5 cm thả nhẹ cho vật dao động điều hoà. Chọn gốc O trùng với vị trí cân bằng; trục Ox có phương thẳng đứng, chiều dương là chiều vật bắt đầu chuyển động; gốc thời gian là lúc thả vật. Lấy g = 10 m/s 2 . Viết phương trình dao động của vật. 2. Một con lắc lò xo gồm vật năng khối lượng m = 400 g, lò xo khối lượng không đáng kể, có độ cứng k = 40 N/m. Kéo vật nặng ra cách vị trí cân bằng 4 cm thả nhẹ. Chọn chiều dương cùng chiều với chiều kéo, gốc thời gian lúc thả vật. Viết phương trình dao động của vật nặng. 3. Một con lắc lò xo có khối lượng m = 50 g, dao động điều hòa trên trục Ox với chu kì T = 0,2 s chiều dài quỹ đạo là L = 40 cm. Viết phương trình dao động của con lắc. Chọn gốc thời gian lúc con lắc qua vị trí cân bằng theo chiều âm. 4. Một con lắc lò xo treo thẳng đứng gồm một vật nặng khối lượng m gắn vào lò xo khối lượng không đáng kể, có độ cứng k = 100 N/m. Chọn trục toạ độ thẳng đứng, gốc toạ độ tại vị trí cân bằng, chiều dương từ trên xuống. Kéo vật nặng xuống phía dưới, cách vị trí cân bằng 5 2 cm truyền cho nó vận tốc 20π 2 cm/s theo chiều từ trên xuống thì vật nặng dao động điều hoà với tần số 2 Hz. Chọn gốc thời gian lúc vật bắt đầu dao động. Cho g = 10 m/s 2 , π 2 = 10. Viết phương trình dao động của vật nặng. 5. Một con lắc lò xo gồm một lò xo nhẹ có độ cứng k một vật nhỏ có khối lượng m = 100 g, được treo thẳng đứng vào một giá cố định. Tại vị trí cân bằng O của vật, lò xo giãn 2,5 cm. Kéo vật dọc theo trục của lò xo xuống dưới cách O một đoạn 2 cm rồi truyền cho nó vận tốc 40 3 cm/s theo phương thẳng đứng hướng xuống dưới. Chọn trục toạ độ Ox theo phương thẳng đứng, gốc tại O, chiều dương hướng lên trên; gốc thời gian là lúc vật bắt đầu dao động. Lấy g = 10 m/s 2 . Viết phương trình dao động của vật nặng. 6. Một con lắc đơn có chiều dài l = 16 cm. Kéo con lắc lệch khỏi vị trí cân bằng một góc 9 0 rồi thả nhẹ. Bỏ qua mọi ma sát, lấy g = 10 m/s 2 , π 2 = 10. Chọn gốc thời gian lúc thả vật, chiều dương cùng chiều với chiều chuyển động ban đầu của vật. Viết phương trình dao động theo li độ góc tính ra rad. 7. Một con lắc đơn dao động điều hòa với chu kì T = 2 s. Lấy g = 10 m/s 2 , π 2 = 10. Viết phương trình dao động của con lắc theo li độ dài. Biết rằng tại thời điểm ban đầu vật có li độ góc α = 0,05 rad vận tốc v = - 15,7 cm/s. 8. Một con lắc đơn có chiều dài l = 20 cm. Tại thời điểm t = 0, từ vị trí cân bằng con lắc được truyền vận tốc 14 cm/s theo chiều dương của trục tọa độ. Lấy g = 9,8 m/s 2 . Viết phương trình dao động của con lắc theo li độ dài. 9. Một con lắc đơn đang nằm yên tại vị trí cân bằng, truyền cho nó một vận tốc v 0 = 40 cm/s theo phương ngang thì con lắc đơn dao động điều hòa. Biết rằng tại vị trí có li độ góc α = 0,1 3 rad thì nó có vận tốc v = 20 cm/s. Lấy g = 10 m/s 2 . Chọn gốc thời gian là lúc truyền vận tốc cho vật, chiều dương cùng chiều với vận tốc ban đầu. Viết phương trình dao động của con lắc theo li độ dài. 10. Một con lắc đơn dao động điều hòa với chu kì T = 5 π s. Biết rằng ở thời điểm ban đầu con lắc ở vị trí biên, có biên độ góc α 0 với cosα 0 = 0,98. Lấy g = 10 m/s 2 . Viết phương trình dao động của con lắc theo li độ góc. * Đáp số hướng dẫn giải: GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 10 1. Ta có: ω = m k = 20 rad/s; A = 2 2 2 2 2 0 2 0 20 0 )5( +−=+ ω v x = 5(cm); cosϕ = 5 5 0 − = A x = - 1 = cosπ  ϕ = π. Vậy x = 5cos(20t + π) (cm). 2. Ta có: ω = m k = 10 rad/s; A = 2 2 2 2 2 0 2 0 10 0 4 +=+ ω v x = 4 (cm); cosϕ = 4 4 0 = A x = 1 = cos0  ϕ = 0. Vậy x = 4cos20t (cm). 3. Ta có: ω = T π 2 = 10π rad/s; A = 2 L = 20 cm; cosϕ = A x 0 = 0 = cos(± 2 π ); vì v < 0  ϕ = 2 π . Vậy: x = 20cos(10πt + 2 π ) (cm). 4. Ta có: ω = 2πf = 4π rad/s; m = 2 ω k = 0,625 kg; A = 2 2 0 2 0 ω v x + = 10 cm; cosϕ = A x 0 = cos(± 4 π ); vì v > 0 nên ϕ = - 4 π . Vậy: x = 10cos(4πt - 4 π ) (cm). 5. Ta có: ω = 0 l g ∆ = 20 rad/s; A = 2 2 0 2 0 ω v x + = 4 cm; cosϕ = A x 0 = 4 2− = cos(± 3 2 π ); vì v < 0 nên ϕ = 3 2 π . Vậy: x = 4cos(20t + 3 2 π ) (cm). 6. Ta có: ω = l g = 2,5π rad/s; α 0 = 9 0 = 0,157 rad; cosϕ = 0 0 0 α α α α − = = - 1 = cosπ  ϕ = π. Vậy: α = 0,157cos(2,5π + π) (rad). 7. Ta có: ω = T π 2 = π; l = 2 ω g = 1 m = 100 cm; S 0 = 2 2 2 )( ω α v l + = 5 2 cm; cosϕ = 0 S l α = 2 1 = cos(± 4 π ); vì v < 0 nên ϕ = 4 π . Vậy: s = 5 2 cos(πt + 4 π ) (cm). 8. Ta có: ω = l g = 7 rad/s; S 0 = ω v = 2 cm; cosϕ = 0 S s = 0 = cos(± 2 π ); vì v > 0 nên ϕ = - 2 π . Vậy: s = 2cos(7t - 2 π ) (cm). 9. Ta có S 2 0 = 2 2 0 ω v = s 2 + 2 2 ω v = α 2 l 2 + 2 2 ω v = 4 22 ω α g + 2 2 ω v  ω = 22 0 vv g − α = 5 rad/s; S 0 = ω 0 v = 8 cm; cosϕ = 0 S s = 0 = cos(± 2 π ); vì v > 0 nên ϕ = - 2 π . Vậy: s = 8cos(5t - 2 π ) (cm). 10. Ta có: ω = T π 2 = 10 rad/s; cosα 0 = 0,98 = cos11,48 0  α 0 = 11,48 0 = 0,2 rad; Cosϕ = 0 α α = 0 0 α α = 1 = cos0  ϕ = 0. Vậy: α = 0,2cos10t (rad). 4. Các bài toán liên quan đến thế năng, động năng cơ năng của con lắc lò xo. * Các công thức: + Thế năng: W t = 2 1 kx 2 = 2 1 kA 2 cos 2 (ω + ϕ). GV: TR¦¥NG V¡N THANH. Website http:truongthanh85.violet.vn [...]... π so với dao động thứ nhất Biết pha ban 2 π Viết các phương trình dao động thành phần phương 4 trình dao động tổng hợp GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 23 2 Một vật tham gia đồng thời hai dao động: x 1 = 3cos(5πt + = 3 3 cos(5πt + π ) (cm) 3 x2 π ) (cm) Tìm phương trình dao động tổng... ra tính đại lượng cần tìm GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 21 * Bài tập minh họa: 1 Một con lắc lò xo dao động tắt dần Cứ sau mỗi chu kì, biên độ của nó giảm 0,5% Hỏi năng lượng dao động của con lắc bị mất đi sau mỗi dao động toàn phần là bao nhiêu % ? 2 Một con lắc lò xo đang dao động. .. các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 29 II SÓNG SÓNG ÂM 1 Tìm các đại lượng đặc trưng của sóng – Viết phương trình sóng * Các công thức: + Vận tốc truyền sóng: v = ∆ s ∆ t = λ T = λf + Hai điểm trên phương truyền sóng cách nhau một số nguyên lần bước sóng (d = kλ) thì dao động cùng pha, cách nhau một số nguyên lẽ nữa bước sóng (d = (2k + 1) λ 2 ) thì dao động ngược... 7 cm dao động với tần số 40 Hz, tốc độ truyền sóng là 0,6 m/s Tìm số điểm dao động cực đại giữa A B trong các trường hợp: a) Hai nguồn dao động cùng pha GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 33 b) Hai nguồn dao động ngược pha 5 Ở bề mặt một chất lỏng có hai nguồn phát sóng kết hợp S1 S2... đó biên độ pha ban đầu của dao động hợp là: A = 2 2 Ax + Ay tanϕ = Ay Ax * Phương pháp giải: Tùy theo từng bài toán sở trường của từng người, ta có thể dùng giãn đồ véc tơ hoặc công thức lượng giác để giải các bài toán loại này * Bài tập minh họa: 1 Hai dao động điều hoà cùng phương cùng tần số f = 10 Hz, có biên độ lần lượt là 100 mm 173 mm, dao động thứ hai trể pha đầu của dao động thứ... nhẹ vật nhỏ dao động điều hòa theo phương ngang với tần số góc 10 rad/s Biết rằng khi động năng thế năng (mốc ở vị trí cân bằng của vật) bằng nhau thì vận tốc của vật có độ lớn bằng 0,6 m/s Biên độ dao động của con lắc là GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 25 A 6 cm B 6 2 cm C 12 cm D 12. .. pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 11 1 2 1 2 1 2 + Động năng: Wđ = mv2 = mω2A2sin2(ω +ϕ) = kA2sin2(ω + ϕ) Thế năng động năng của con lắc lò xo biến thiên tuần hoàn với tần số góc ω’ = 2ω, với tần số f’ = 2f với chu kì T’ = T 2 + Trong một chu kì có 4 lần động năng thế năng của vật bằng nhau nên khoảng thời gian liên tiếp giữa hai lần động năng và. .. lần động năng GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng âm  Trang 12 10 Con lắc lò xo gồm vật nhỏ có khối lượng m = 400 g lò xo có độ cứng k Kích thích cho vật dao động điều hòa với cơ năng W = 25 mJ Khi vật đi qua li độ - 1 cm thì vật có vận tốc - 25 cm/s Xác định độ cứng của lò xo biên độ của dao động. .. luôn dao động cùng pha với dao động tại O 9 Một mũi nhọn S được gắn vào đầu một lá thép nằm ngang chạm nhẹ vào mặt nước Khi lá thép dao động với tần số f = 120 Hz, tạo ra trên mặt nước một sóng có biên độ 0,6 cm Biết khoảng cách giữa 9 gợn lồi liên tiếp là 4 cm Viết phương trình sóng của phần tử tại điểm M trên mặt nước cách S một khoảng 12 cm Chọn gốc thời gian lúc mũi nhọn chạm vào mặt thoáng và. .. vật dao động thì nó sẽ dao động điều hòa với vận tốc cực đại 40 cm/s Chọn trục tọa độ trùng với phương dao động của vật, gốc tọa độ tại vị trí cân bằng, gốc thời gian khi vật đi qua vị trí cân bằng theo chiều dương Viết phương trình dao động của vật Lấy g = 10 m/s 2 GV: TR¦¥NG V¡N THANH Website http:truongthanh85.violet.vn  Phương pháp giải các dạng bài tập Vật lý 12Dao động cơ - Sóng cơ, sóng . pháp giải các dạng bài tập Vật lý 12 – Dao động cơ - Sóng cơ, sóng âm  Trang 2 B - NỘI DUNG I. DAO ĐỘNG CƠ 1. Tìm các đại lượng đặc trưng trong dao động. Phương pháp giải các dạng bài tập Vật lý 12 – Dao động cơ - Sóng cơ, sóng âm  Trang 17 7. Sự phụ thuộc của chu kì dao động của con lắc đơn vào độ cao và nhiệt

Ngày đăng: 28/11/2013, 18:11

HÌNH ẢNH LIÊN QUAN

4. Vật lí 12 – Những bài tập hay và điễn hình – Nguyễn Cảnh Hòe – NXB ĐHQG Hà Nội – 2008 - Bài soạn SKKN giải bài tập phần dao động và sóng 12
4. Vật lí 12 – Những bài tập hay và điễn hình – Nguyễn Cảnh Hòe – NXB ĐHQG Hà Nội – 2008 (Trang 40)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w